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Introduction. Let A be a complex algebra. A subset V of A is
said to be idempotent if VV £Ξ V; V is said to m-convex (multiplicatively-
convex) if V is convex and idempotent; V is said to be circled if cV —
V for all scalars c such that | c | ^ 1. A is a locally convex algebra if
A is a (Hausdorfϊ) topological algebra which has a basis for neighbor-
hoods of the origin consisting of sets which are convex and circled; A
is a locally m-convex (multiplicatively-convex) algebra if A has a basis
for neighborhoods of the origin consisting of sets which are m-convex
and circled. These sets can be taken to be closed. A family of closed,
circled, m-convex subsets of a locally m-convex algebra A whose scalar
multiples form a basis for the neighborhoods of the origin will be called
an m-base for A.

If A is a locally m-convex algebra and 3 "̂ is an m-base for A define
a nonnegative real-valued function V(x) on A, V in 3̂ ~, by V(x) =
inf {c> 0 : x in cV}. Then V(x + y) ^ V(x) + V(y), V(xy) ̂  V(x)V(y),
and V(cx) — \ c \ V(x) for all x, y in A and all scalars c. Thus with
each V in ^ is associated a pseudo-norm V(x). Denote the null set
of V(x) by Nv. Then Nv is a closed ideal and A/Nv is a normed algebra
with norm V(x + Nv) — V(x). Denote AjNv by Av, x + iVF by xv, and
the completion of Av by 2?F. Note that Bv is a Banach algebra.

l The spectrum* An elements x in an algebra A is said to be
quasi-regular in A if there exists an element y in A such that sc + y —
#1/ = 0 = x + 2/ — yx. y is called the quasi-inverse of as. The spectrum,
SpA(x), of an element a? in A, is given by SpA(x) = {c Φ 0: c complex,
c"1^ is not quasi-regular in A}, with zero added unless A has an identity
and or1 exists in A. The spectral radius, rA(x), is defined by r^α?) =
sup {| c I: c in Sp4(#)}. If A is a locally m-convex algebra and x is in
A then SpA(x) is not empty [1; 2.9].

Waelbroeck [3] has given a different definition of the spectrum of
an element in a locally convex algebra with identity. Although his
definition is actually given for a particular class of locally convex algebras,
it can be used in any locally convex algebra with identity. However
some of the properties which hold in the class of algebras which Wael-
broeck considers may fail to hold in more general cases. We extend
this definition to locally m-convex algebras which do not necessarily have
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an identity and show that this definition is equivalent to Waelbroeck's
if the algebra does have an identity.

Let x be an element of a locally m-convex algebra A with identity
e. A set S contained in C is said to be spectral for an element x in
A, if (x — ce)-1 is defined and bounded on C — S, the complement of S
in the field of complex numbers, C. The spectral sets for x are a filter.
Denote the Riemann sphere by C", i.e., the compact space obtained by
adding a point at infinity to the complex field; and denote the set of
points of C" which are limit points of the filter associated with an ele-
ment x in A by W'SpA(x). This is the spectrum defined by Waelbroeck.

Now let x be an element of an arbitrary locally m-convex algebra
and let £*(x) = {S g C: c^c^x)0 is defined and bounded on C - S},
where (c^xf is the quasi-inverse of c^x. If S is in £f(x) and if S' 2 S
then S' is in £f(x). If S and S' are in &>(x) then S Π S' is in £*(x).
Since each S in Sf(x) contains zero the empty set is not in S^(x). Thus
Sf(x) is a filter. Let WSpΛ(x) be the set of limit points in C" of 6^{x),
with the exception of 0 if A has an identity and 0 is not in W'SpA(x).

THEOREM 1.1. If A is a locally m-convex algebra with identity
then W'SpA{x) = WSpA(x) for all x in A.

Proof. It follows directly from the definition that 0 is in W'SpA(x)
if and only if 0 is in WSpA(x) for all x in A.

If x is an arbitrary element of A and if °o is not in W'SpA(x) then
there exists a bounded set S contained in C such that (x — ce)-1 is
defined and bounded on C — S, where e is the identity of A. Let S' =
S U {c in C: | c \ ̂  1}. Then c-^c^x)0 is defined for c in C - S' since
c^ic^xf = c~xe + (x — ce)~τ. This equality also shows that c^ic^xf is
bounded on C — S' since

{c-'β + (x - ce)-1 : c i n C - S ' } S {c^e :c in C - S'}

+ {(a? - ce)-1: c in C - S'} S {c^β : | c | > 1}

+ {(x - ce)-1: c in C - S} ,

and both of these sets are bounded. Thus c^c^xf is defined and bounded
on the complement of a bounded set in C so that oo is not in WSpA(x).
Conversely, if oo is not in WSpA(x) then there exists a bounded set S
contained in C such that c^c^xf is defined and bounded on C — S.
Again, let S' = S U {c in C: | c | ^ 1}; then S' is bounded and (x — ce)-1

is defined and bounded on C — S' so that oo is not in W'SpA(x).
If c' is not in WfSpA(x), cr Φ 0, oo, then there exists a set S contained

in C such that cf is not in the C '-closure of S and (x — ce)-1 is defined
and bounded on C - S. Let S' = S U {c in C : | c \ ̂  l/2c'}. Then c-1^-1^)0
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is defined and bounded on C — S' and c' is not in the C'-closure of S'9
so that c' is not in WSpΛ(x). Similarly, if c' is not in WSpΛ(x), c' Φ 0, co,
then c' is not in W'SpΛ(x).

THEOREM 1.2. If x is an element of a locally m-convex algebra A
then WSpA(x) is compact in C.

Proof. Since C" is compact it is sufficient to show that WSpΛ(x)
is closed in C" for each x in A, or, equivalently, that C" — WSpA(x) is
open in C .

If 0 is not in WSpΛ(x) then A has an identity e and there exists
a set S contained in C such that {x — ce)'1 is defined and bounded on
C — S and 0 is not in the C '-closure of S. Then 0 is not in S, the
closure of S in C, and C — S is a neighborhood of 0 in C such that
(C — S) Π WSpA(x) = φ, where φ is the empty set.

If co is not in WSpΛ(x) then there exists a bounded set S contained
in C such that c~\c~xxf is defined and bounded on C — S. Then C — S
is a neighborhood of co such that (C — S) Π TFS^(α ) = φ.

If c' is not in WSpA(x), c' Φ 0, oo, then there exists a set S contained
in C such that c' is not in the C closure of S and such that C — S is
a neighborhood of c' in C with (C - S) Π JTSp^aO - φ.

THEOREM 1.3. // x is an element of a locally m-convex algebra
then WSpA(x) is the C-closure of SpA(x).

Proof. If 0 is in SpA(x) then x is not invertible in A so that 0 is
in WSpA(x). If c' Φ 0 and cf is in SpA(x) then ((c')"1^)0 does not exist
so that cr is in every S in S^(x) and hence in WSpA(x). Therefore
SpA(x) is contained in WSpA(x). Denoting the C '-closure of SpA(x) by
K, we have K S TΓSp^a?).

If co is not in K then there exists a positive number M in C such
that K S {c in C : | c | ^ M}. Let S = {c in C : | c \ ̂  Λf}. Then c^ic^x)0

is defined for c in C - S. Now let ̂  be an m-base for A. Since M ^
^(^) ^ rΛF(a?F) we have (c^x,,)0 = -ΣZ-Λc^vY for c in C - S , It
follows that {c-^c^Xyf :c in C — S} is bounded in I?F for each V in^.
Therefore {c^c^xf : c in C — S} is bounded, and S is in S^(x). Since
co is not in the C '-closure of S, co is not in WSpA(x).

If 0 is not in C — K then A has an identity which we will denote
by e. Take a compact neighborhood U of 0 contained in C — K. (x —
ce)~x is then defined for c in U. Since U is compact in C it follows
that {x — ce : c in U) is compact in A. Then {(x — ce)"1 :c in £7} is
compact in A since quasi-inversion and hence inversion is continuous in
a locally m-convex algebra [1; 2.8]. C — U is therefore a spectral set
for x. Since 0 is not in the C '-closure of C — U, 0 is not in WSpA(x).
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Now let c' be in C — K, cf Φ 0, and let U be a compact neighbor-
hood of & contained in C - (K U (0)). Then c-^c^x)0 is defined for c
in U and {c^c^xf : c in ί7} is bounded so that C — Z7 is in ^ ( # ) . Since
c' is not in the C '-closure of C — U, c' is not in WSpA(x). Therefore
C'-KSC - WSpA{x).

COROLLARY 1.4. In a locally m-convex algebra A, rA(x) = max{|c|: c
in WSpΛ(x)}, for all x in A.

A locally m-convex algebra A is said to be advertibly complete if,
for every m-base ψ~ for A, each x in A is quasi-regular in A if and
only if xv is quasi-regular in Bv for each V in 5^. See [4] for a discus-
sion of advertible completeness and equivalent definitions. In particular
note that most of the results of §§ 5-11 in [1] hold if the advertible
completeness of a locally m-convex algebra is assumed in place of com-
pleteness. Thus the following two theorems are known in the case
where the algebras are advertibly complete ([1] 5.3 (b) and 5.7).

THEOREM 1.5. If A is a sequentially complete or advertibly com-
plete locally m-convex algebra with m-base ψ', and if x is in A, then
rA(x) = miprBv(xv), V in y .

Proof. The inequality rA(x) ^ sup rBv{xv), V in 5^, always holds,
so that if sup rΛF(av) — oo, then the equality holds. If &vφrBγ{xv) Φ oo,
let c be any element of C such that \c\ > supr^av) , V in 3*"*. Then
-Σn^ic-'Xv)71 = (c-'xf for all V in 3*\ If A is advertibly complete
this implies that {c^Xyf exists by the definition. If A is sequentially
complete then — ΣΓ=i(c"xίc)w is a Cauchy sequence in A, hence converges,
and is the quasi-inverse of c~λx. It follows that rjx) = sup rBv(xv), V
in jr.

THEOREM 1.6. Let A be a locally m-convex algebra which is either
advertibly complete or sequentially complete, and let x and y be elements
of A which commute. Then

( i ) rA(x + y) ^ rA(x) + rjy) .

(i i) rA(xy) ^ rA(x)rA(y) .

(iii) τA(cx) — I c I rA(x) , c in C .

Proof. These properties are known to hold in a Banach algebra,
hence the theorem follows directly from the preceding theorem.

COROLLARY 1.7. If A is a commutative locally m-convex algebra
which is either advertibly complete or sequentially complete then
{x in A : rΛ(x) < oo} is a subalgebra of A.
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If A is an arbitrary locally m-convex algebra we denote {x in
A : rA(x) < 00} by Ar. Note that if A has an identity e then e is in A!
since SpA(e) = {1}.

If A is a locally m-convex algebra we denote by Ax the algebra
which we get by adding an identity to A in the usual way. Ax is the
vector space direct sum of A and the complex numbers with the car-
tesian product topology, and with multiplication defined by (x, a)(y, b) =
(xy + ay + bx, ab). Ax is a locally m-convex algebra with this topology
[i; 2.4].

LEMMA 1.8. If A is a locally m-convex algebra and if x is in A
then SpAl(x) = Spjx).

COROLLARY 1.9. WSp
Al
(χ) = WSp

A
(χ).

COROLLARY 1.10. r
Al
(x) = r

A
(x).

THEOREM 1.11. If A is a locally m-convex algebra and if x is
quasi-regular in A then x° is in Ar if x is in A!.

Proof. First assume that A has an identity e and let x be an ele-
ment of A such that x° exists and rA(x) < oo . Then (x — (1 + c~x)eYx

is defined and bounded for c near zero. It follows from the identity
(x - (1 + c)e)~ι = (x- e)-1 -(x- eγ

2((x - e)~x - c^e)'1 = (x~ e)'1 - (x - e)~2

(x° — (1 + c'^eY1 that (x° — teY1 is defined and bounded for t near
infinity, and hence that oo is not in WSpA(x°). The theorem then follows
from Corollary 1.9.

COROLLARY 1.12. If A is a locally m-convex algebra and if x is
in A! then WSpA,(x) = WSpJx).

COROLLARY 1.13. If A is a locally m-convex algebra and if x is
in A! then rA(x) = rA,(x).

2. The radical, the spectrum and M(A). Denote the set of con-
tinuous homomorphisms of a locally m-convex algebra A into the complex
numbers by M(A). If A is a commutative advertibly complete locally
m-convex algebra then SpA(x) U (0) = {f(x):/ in M(A)}, for all x in A
[4; §3] and [1; 5.5]. We now look at this equality.

THEOREM 2.1. If A is a locally m-convex algebra and if SpA(x) U
(0) = {f(x): / in M(A)}, all x in A, then A is advertibly complete.

Proof. If SpA(x) U (0) - {f(x):/ in M(A)} then f(x) Φ 1 for all /
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in M(A) implies that 1 is not in SpA(x) so that x is quasi-regular. This
condition implies that A is advertibly complete [4; cor. of Thm. 5].

COROLLARY 2.2. If A is a commutative locally m-convex algebra
then A is advertibly complete if and only if SpΛ(x) (J (0) = {f(x): / in
M(A)} for all x in A.

The multiplicative radical of a locally m-convex algebra A is denoted
by MR(A) and defined by MR(A) = {x in A:f(x) = 0, all / in M(A)}.
We denote the Jacobson redical of an algebra A by R(A). The following
theorem and the first corollary are given in [4; §3].

THEOREM 2.3. Let Abe a locally m-convex algebra. Then MR(A) =
R(A) if and only if for all x in A, if x is not quasi-regular then
there exists an f in M(A) such that f(x) Φ 0.

COROLLARY 2.4. If A is a commutative advertibly complete locally
m-convex algebra then R(A) = MR(A), and, in particular, R{A) is
closed.

COROLLARY 2.5. Let A be a locally m-convex algebra such that
SpΛ(x) U (0) = {f(x): f in M(A)} for all x in A. Then
( i ) R(A) = MR(A).
(ii) R(A) is closed.
(iii) A is commutative modulo R(A).
(iv) A is commutative if A is semi-simple.

Proof. We only need look at (iii). This follows since f(xy — yx) =
f(xy) - f(yx) = f(x)f(y) -f(v)f(x) - 0 for all / in M(A).

COROLLARY 2.6. If A is a semi-simple advertibly complete locally
m-convex algebra then A is commutative if and only if SpΛ(x) U (0) =
{/(%): / in M(A)}, all x in A.

COROLLARY 2.7. If A is a semi-simple Banach algebra then A is
commutative if and only if SpΛ(x) U (0) = {f(x): / in M(A)} for all x
in A.

3* The radical and quasi*nilρotent elements and topological divisors
of zero. We follow Michael in defining topological divisors of zero.
Let A be a Banach algebra, let x be an element of A, and let c be a
scalar, x + c is called a left (right) strong topological divisor of zero
i f t h e r e e x i s t s a s e q u e n c e y n i n A s u c h t h a t | | 2 / » | | = 1 , n = 1 , 2 , •••,
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and (x + c)yn —> 0(yn(x + c) —> 0). x + c is said to be a strong topological
divisor of zero if cc + c is either a left or a right strong topological
divisor of zero. If x + c is both a left and a right strong topological
divisor of zero then it is called a two-sided strong topological divisor
of zero.

If A is a locally m-convex algebra and x is an element of A, and
c is a scalar, then x + c is called a (Ze/ί, ri#/^, two-sided) topological
divisor of zero, if, whenever ψ~ is an m-base for A9 there exists a Fin 5^
such that #F + c is a (left, right, two-sided) strong topological divisor
of zero in Bv. See [1; § 6] for a discussion of topological divisors of zero.
Note that if x is an element of a Banach algebra then x + c is a strong
topological divisor of zero if and only if it is a topological divisor of zero.

We call an element x in a locally m-convex algebra quasi-nilpotent
if rA(x) = 0 and denote the set of quasi-nilpotent elements by NA. NA

is called the quasi-radical of A. An ideal I in A is said to be a quasi-
nϊl ideal if every element in / is quasi-nilpotent.

LEMMA 3.1. If A is a Banach algebra then every element of NΛ

is a two-sided topological divisor of zero.

Proof. This is proved in [5; 2.26]. One could also use the proof
of Rickart that each element of R(A) is a topological divisor of zero
[2; 2.3.5 (Hi)], since the spectrum of each element of NA also consists
only of zero, and JV̂  can contain no nonzero idempotents.

COROLLARY 3.2. If A is a locally m-convex algebra then every
element of NA is a two-sided topological divisor of zero.

THEOREM 3.3. If A is a locally m-convex algebra then R(A) is a
quasi-nil ideal.

Proof. Recall that R(A) consists of all elements x in A such that
(c + y)x is quasi-regular for every y in A and c in C. Now let x be
in R(A). Then ex is quasi-regular for all c in C, hence SpA(x) = (0)
and rA(x) = 0.

COROLLARY 3.4. If A is a locally m-convex algebra then every
element of R(A) is a two-sided topological divisor of zero.

THEOREM 3.5. NΛ is an ideal in A if A is a commutative locally
m-convex algebra which is either advertibly complete or sequentially
complete.

Proof. This follows from Theorem 1.6.



588 ELEANOR KILLAM

THEOREM 3.6. If A is a locally m-convex algebra then R(A) is a
quasi-nil ideal equal to the sum of all quasi-nil left (or right) ideals.

Proof. R(A) is a quasi-nil ideal by Theorem 3.3. Let / be any
quasi-nil left (or right) ideal in A. Then SpA(x) = (0) for each x in I
so that I is a quasi-regular ideal and hence contained in R(A).

COROLLARY 3.7. If A is a locally m-convex algebra and if NA is
a left (or right) ideal then R(A) = NA. In particular if A is com-
mutative and is advertibly or sequentially complete then R(A) — NA.

COROLLARY 3.8. If A is a commutative semi-simple locally m-
convex algebra which is either advertibly complete or sequentially com-
plete then any subalgebra is semi-simple.

Proof. Let B be a subalgebra of A and let x be in R(B). Then
ex is quasi-regular in B for all c in C so that ex is quasi-regular in A
for all c in C. Therefore SpA(x) = (0) and hence x is in NA — R(A) so
that x = 0.
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