
A CONTINUITY PROPERTY FOR VECTOR

VALUED MEASURABLE FUNCTIONS
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l Introduction. The principal purpose of this paper is to charac-
terize certain types of Banach spaces of vector valued and integrable
functions and their conjugate or adjoint spaces, and to apply these
characterizations to obtain an effective way of determining the adjoint
space of the Banach space R[a, b], where [α, b] is a real number interval,
R[a, b] is the space of Riemann integrable functions on [α, &], and for
fe R[a, &], | | / | | = sup [\f(x) I; a ^ x ^ 6], We use the term effective in
the sense that we want our determination of the adjoint space of R[a, b]
to enable us to probe deeper into its analytic structure in order to, say
for example, obtain a weak convergence and compactness theory.

We are interested in spaces of vector valued functions which arise
in the following manner. Let X be a set, B a Banach space, and / a
a vector valued function on X to B. We call / partitionable if for
each ε > 0, there exists a finite partition [1^; i ^ n] of X such that
m a x [ 0 ( / , Ed; i ^ n] < ε, w h e r e 0 ( / , E , ) = s u p [\\f(x) - f ( y ) ||; χ , y e E{].
Hence, if S is an algebra of subsets of X and g is a bounded and
finitely additive set function on S, then the collection of bounded, B-
valued, partitionable, and ^-measurable functions on X (defined in § 2)
form a Banach space which we denote by m(X, S, g, B) (the norm of
the elements / of m(X, S, g, B) is sup [||/(a?)||; x e X]). The space
m(X, S, g, B) is the type of space we characterize and we do it by
isomorphically and isometrically embedding m(X, S, g, B) onto the space
C(X, T, B) of B-valued functions defined on X which are continuous
(Definition 2.4) with respect to an algebra T of subsets of X. The set
T is essentially the #-outer measure completion of S. Then we charac-
terize the adjoint space C*(X, Γ, B) of the space C(X, T, B) by embed-
ding C*(X, T, B) isomorphically and isometrically onto a space of bounded
5*-valued finitely additive set functions on T (defined in § 3) and, con-
sequently, we can easily find the adjoint space m*(X, S, g, B). In the
case where B is the real number system (henceforth we shall denote by
& the real number system) we simply denote m(X, S, g, B) by m(X,S,g).
The space R[a, b] turns out to be a realization of this type of space
and it is by this method that we characterize 72*[α, b].

The text of this paper consists of three sections. In § 2 we present
several definitions and introduce some notation and terminology. In § 3
our principal results (Theorems 3.2, 3.3, and 3.4) give a characterization
of the spaces m(X, S, g, B), C*(X, S, B), and m*(X, S, g, B) respectively,
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and in § 4 we treat the space R[a,b],
At this point we wish to remind the reader that if B is finite di-

mensional and / is a bounded B-valued function on X then / is par-
titionable.

2 Definitions, notation, and terminology. We shall use the no-
tation and terminology used in [1]. Hence, if (X, S) denotes a set
algebra, then H(X, S) denotes the Banach space of bounded and finitely
additive set functions on S, where the norm of the elements g of H(X, S)
is the total variation V(g, X) of g on X, i.e., if for the elements E of
S, we set g+(E) = sup [g(F); FeS,Fc E) and g~(E) = inf [g(F);FeS,
F c E], then V(g, E) = g+(E) - g~(E) = sup [ £ « * I g(E{) \;π = [E,; i < n]
is a partition of E and E{e S for i ^ ri\.

DEFINITION 2.1. If U is a set of subsets of X, then a partition π
of X is said to be a partition of X in Z7 if each element of π is an
element of U.

In this paper we use a definition of measurability which is for
bounded functions equivalent to the definition of measurability used in
[2].

DEFINITION 2.2. Suppose (X, S) is a set algebra, geH(X, S), B is
a Banach space, and / is a function on X to B. Then / is said to be
a g-measurable function if for each P > 0 and ε > 0 there exists a finite
partition [E^i <£ n] of J in S such that

(1) max [0(fp, Et); i < n] < ε and
(2) F(£, #n) < ε, where fp{x) = f(x) if \\f(x) \\ S P and /p(x) -

if

DEFINITION 2.3. A function / on X to B is said to be a (X, S, J5)-
simple function if (1) the range of / is a finite subset of B and (2) for
each b e J5, f-\b) e S.

DEFINITION 2.4. A function / on X to B is said to be a (X, S, B)-
continuous function if for each ε > 0, there exists a finite partition
[E{; i^n] of X in S such that max [0(/, E,); i ^ n] < e (cf. [1]). We
shall denote by C(X, S, B) the Banach space of (X, S, I?)-continuous
functions.

REMARK. We note (1) that C(X, S, B) is isomorphically isometric,
via the natural embedding, to the Banach space of topologically con-
tinuous ί?-valued functions defined on the Stone-Cech type compactifi-
cation of S, (2) that a function / on X to B is in C(X, S, B) if and
only if for each ε > 0, there exists a (X, S, £)-simple function k such
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that \\k-f\\=zvp[\\k(x)'-f(x)\\;xeX]<ε:C(X,S,B) is the com-
pletion of the normed linear space of (X, S, i?)-simple functions, (3) that
if a B-valued function / on X is not partitionable, then for no algebra
W of subsets of X is it possible to uniformly approximate / by {X, W, B)
simple functions: if there exists an algebra W of subsets of X such
that fe C(X, W, B) then / is partitionable, and (4) that C(X, S, B) =
Γ\geπ(χ,sMX, S, g, B) (cf. [l], Theorem 2.1).

3 The principal theorems* In this section we establish our princi-
pal results (Theorems 3.2, 3.3, and 3.4). However, in order to relate
our definition of measurability to classical results we shall first digress
for a few moments.

LEMMA 3.1. Let f be a bounded B-valued function on X, g e H(X, S),

and f be Stieltjes integrable with respect to g (cf. [5]), i.e., 1 fdg ex-

ists, then f is Stieltjes integrable with respect to V(g, ).

Proof. It is sufficient to show that I fdg+ exists. (This may be

seen as follows. Suppose i fdg+ exists. Then, since g~ = (—g)+, \ fdg~
Jx Jx

exists and, hence, since V(g9 ) = g+ — g~, \ fdV(gy ) exists.) Suppose
Jx

ε > 0. Then there exists E e S such that g+(X) — g(E) < ε/2 and, hence,
V(g+ - glE, X) < ε, where gjE(F) = g{E Π F) for E and FeS. We
shall denote by a g/E'-refinement sum of a partition π, a sum of the
form Σi^f(xi)gjE(Ei) where [E^i ^ n] is a partition of X in S such
that for each i ^ n 1) xi e E{ and (2) there exists (uniquely) an element

Γ f Γ
F in π such that E{ c F. Since I fdg exists, I fd(gjE) = \ fdg exists

J X J X JE

and, hence, there exists a partition π of X in S such that any two gjE-
refinement sums of π differ by less than ε. This implies that any two
(/+-refinement sums of π differ by less than 2(2| |/ | | ε) + ε. Hence
\ fdg+ exists and, consequently, I fdV(g,E) exists.
J X J X

THEOREM 3.1. If f is a partitionable (hence bounded) B-valued
function on X and g e H{X, S) then fem(X,S,g,B), i.e., f is also
g-measurable, if an only if f is Stieltjes integrable with respect to g.

Proof. If / e m(X, S, g, B) then 1 fdg exists. Hence it is sufficient
Jx

to show that if / is Stieltjes integrable with respect to g, then / is g-
measurable; moreover, in view of Lemma 3.1, it is sufficient to suppose
g ^ 0. Suppose / φ m(X, S, g, B). Then there exists ε > 0 such that
if π = [Ei; i ^ n] is a partition of X in S then g(\J[Ei'f 0(/, Et) ^ ε]) ̂  ε.
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Since / is partitionable, there exists a partition [Fά] j gΞ m] of X such
that lub^w 0(/, Fj) < ε/8. Let π be a partition of X in S. Let [Gk; k ^ p]
be an enumeration of the elements E{ of π such that 0(/, Ei) ^ ε.
Let ί^ - U [Gt; Gk n F, Φ θ, Gk n ί7; =£ 0, and d(F,, Fy) = inf [||/(x) -
f(y) W xeF^yeFj]^ 3ε/4]. Then \J H^ = [JGk and, hence, there exists
Hi:j such that g(Hi5) ^ ε/[m(ra - 1K2"1)]. Let ^ 6 ^ ; let x^Fά\ and if
G* c Hi3 then let αAί e Gk Π F< and ccAi e G& Π i*V Then

aM) - fix,)) + (/(*,) - f(xj))

^ ( C ) - ^ [ | !/(*„) -/(«<) 11 +
Sel4Σkg(Gk) - ^[ε/8 + ε/8]flf(Gfc

, ) ^ (ε/2)(ε/[m(m - 1X2"1)] = ?\m{m - 1).

Thus there exist refinement sums of π which differ by at least ε2jm(m — 1)
and, hence (π was an arbitrary partition of J in S), / is not Stielt jes
integrable with respect to g.

Let us now see to what extent Theorem 3.1 goes through for bounded
vector valued functions which are not partitionable. If / is ^-measurable
then the Stieltjes integral I fdg exists; however, the converse is not,
in general, true. In fact, the following example shows that / may be
Stieltjes integrable with respect to a nontrivial bounded finitely additive
set function g even though / oscillates "wildly" on every nonempty
element of S. Let X be the set of positive integers; let S be the algebra
of "periodic" subsets of X: E e S if and only if there exists a positive
integer n and a finite set [£,-; j ^ k] of positive integers such that 1)
ij ^ n for j <£ k and 2) E = \Jj^k [i3 + m n; m ^ 0]; and let g(\Jj^k [ij +
m n; m Ξ> 0]) = k/n. (Each element of S has invariant Banach measure
(cf. [7]); indeed, any Banach measure is an extension of g.) Let B be
the Banach space of bounded real valued functions on X (sup norm).
Let [E{; i ^ 1] be an enumeration of the nonempty elements of S (S
is a countable algebra of subsets of X). Let R = [r^ i ^ 1] be an
enumeration of the rational numbers in the half open interval (0, 1].
Since each nonempty element E{ of S is an infinite subset of X and
each of X, R, and S is countable, there exists a real valued function
y on X such that, for each nonempty element E{ of S, y(Ei) = [y(x);
xe Ei] = R and, hence, 0(y, E{) = 1 for i ^ 1. For each x e Xf let fx

be the element of B such that fx(x) — y(x) and fx{z) = 0 if z Φ x. For

each xe X, let f(x) = /x. Hence / is a bounded J5-valued function on
r

X, 11/11 = 1, and I /c£# exists and is the zero function. But, the oscil-
lation of / on each nonempty element E{ of S is one.

The function y defined in the preceding paragraph is a bounded
real valued function on X which has the property that if g e H(X, S)
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c
and g Φ 0, then I fdg does not exist.

Jx

In his 1927 paper ([4]) on Riemann type integration of vector valued
functions defined on an interval [α, 6], L. M. Graves gives an interesting
example of an everywhere discontinuous vector valued function which
is (Riemann type) integrable. Graves' example can be translated into
the setting of our § 4. In this setting Graves' example yields another
example of a bounded non-measurable vector valued function which is
Stieltjes integrable.

We shall now turn our attention to proving our principal theorems.

DEFINITION 3.1. Let T = [E; E a X; χ(E) e m(X, S, g)] where we
denote by χ(E) the characteristic function of E.

Theorem 3.2 says, in effect, that T is an algebra of subsets of X,
miX, S, g, B) = C(X, T, B) (for all 5), and, hence, m*(X, S, g) = C*(X, T) =
H(X, T). Hence we wish to characterize the elements of T in a way
which will enable us to show (1) T is an algebra of subsets of X and
(2) one can approximate the elements / of m(X, S, g, B) uniformly by
{X, T, 2?)-simple functions. In order to motivate our final characterization
of T, we shall first give an elementary characterization of T (Lemma
3.2) and then modify this orginal characterization in stages.

LEMMA 3.2. If E c X, then EeT if and only if for each ε > 0
there exist elements H and K of S such that HaE, KaE', and
V(g, (H U K)f) < ε. (We denote complement X — E of the subsets E of
X by E'.)

Proof. Necessity. If E e T and ε > 0 then there exists a partition
π of X in S such that if [F{; i ^ n] is a refinement of π in S and each
of Xi and yt is an element of F, then | Σ^n (X(E)(xd - i{E){yi))g{F%) | <
ε/2 and, hence, V(g, U [Ft; F{ Π E Φ θ and F, f] Er Φ ff\) ̂  ε/2 < ε. Let
H = U [Fi\ Fi c E] and let K = U [F,; F, c E']. Sufficiency. Let ε > 0.
Then there exist elements H and K of S such that H c E, K c E\ and
V(g, (H U K)') < ε. Let π = [H, K, (H U K)']. If \F{; i rg n] is a re-
finement of π in S and xt e Fif then | Σ»̂ n χiE^x^giF,) - g(H) \ ^
V(g, (H U KY) < ε.

LEMMA 3.3. If Ea X, then Ee T if and only if there exists a
sequence {(Eiy Fi)} of pairs of elements ofS such that {Ei}] in S,
inS, (U Ei)n(ΌFt) = θ, \imiV(g,(EiVFt)') = 0, {jE^

Proof. Necessity. For each positive integer i there exist, by
Lemma 3.2, elements ίΓ{ and K{ of S such that Hi c E, K{ c Ef, and
V(g, (^ U KJ) < 2~\ Let E{ - {J^ H5 and let Ft = Uy^ Ks.
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Sufficiency follows from Lemma 3.2.
At this point we shall introduce some notation.

DEFINITION 3.2. Let

A = [{(Ei9 Ft)}; {E{}} in S, {F^ in S, (U Et) Π (U F<)

= θ, lim V(g, El n FI) = 0] ,

and

2? = [#; Ea (n (£7/ Π F/))f {(Ei9 F{)}eA] .

The following lemma lists a few elementary properties of the sets A, Q,
and D which we shall have occasion to use.

LEMMA 3.4.

( i ) {(Ei9 Ft)} eA if and only if {(Fi9 Et)}A ,
(ϋ) SaQ,
(iii) If each of E and Fe Q then each ofEljF and E n FeQ ,
(iv) HeD if and only if there exists a sequence {iϊ,}j in S such

that H c (n Hi) and lim^ V(g, Hi) = 0, and
(v) D is an ideal in the algebra of all subsets of X.

Proof, (i) and (ii) are immediate consequences of Definition 3.2.
(iii) Suppose each of {(Ki9 L,)} and {(Mi9 N{)} e A. Then [U {K, U ΛQ] Γl
[U (Li n Ni)] = θ and (K{ U MJ f] (L{ n Nt)' = [(K( Π Ml) Π (LJ U JVi')]c
[(iΓ/ n Ld U (M/ Π JVi')] and, hence, {((K, U AT,), (L{ n JVJ)} e A. (iv)
Suppose {fli} j in S, lim, V(g9 Ht) = 0 and H c (n fli). Then {(H/, β)} e A.
(v) follows immediately from (iv) and the fact that if {Hi} I in S,
in S, lim, F(g, fl,) = 0, lim, V(g9 Ki) = 0,Ha(f) Ht)9 and K c (n
then {fl, U Ki}\ in S, lim, F(έ/, H, U ̂ ) - 0, and (H U # ) c (Π (£Γ4 U ^ ) ) .

Turning again to our characterizations of T, we have the following.

LEMMA 3.5. If Ea X, then EeT if and only if there exist
{(E{, Fi)} e A and KeD such that E = (UE{) U K.

Proof. Necessity follows from Lemma 3.3.

Sufficiency. Since KeD, there exists a sequence {GJj in S such
that K c ΓίGi and lim, V(g9 G,) = 0. Then {(S, n G5, ^ Π G')} e A, since
((£7, Π GO U (Fi n G'd)' = (El U G,) n (Fl U G,) = (El Π ί7/) U G,, and,,
hence by Lemma 3.3, EeT.

LEMMA 3.6. T is an algebra of subsets of X.
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Proof. It is sufficient to show that [H U K; He Q, Ke D] is an
algebra of subsets of X. Suppose each of H and ί ^ e Q and K and Kτ e D.
Then H U Hx e Q and K U KteD and, hence, (H U K) U (H, U i Q =
(iϊ U Hτ) U (iΓ U Kτ) is in T. In order to complete a proof of (vi), it is
sufficient to show that if He Q and Ke D, then (H U K)' e T. Suppose
{(Ei9 Ft)} 6 A, {Gi}{ in S, lim, F(g, G{) = 0, and # c (Π G<). Let L = i£ -
U£7,. Then El Π (Ή Π GO' - [£7/ n (*7 U Gt)] c [(£7/ Π £7) U GJ which
implies {(Ei9 F, n GO} e A and, hence ((U E{) n if)' = ((U £7<) U L)' -

[u(Fi n GO] u [(u(Ή n GOX n (u^y n L Ί e r.
At this point let us pause for a moment and survey the situation.

We know that T is the largest algebra W (with respect to inclusion)
of subsets of X such that C(X, W, B) c m(X, S, g, B). Hence, in order
to complete a proof of Theorem 3.2, it is sufficient to prove the following

LEMMA 3.7. m(X, S, g, B) c C(X, T, B).

Proof. It is sufficient to show that if a function fem{X,S,g,B)
and ε > 0, then there exists a partition [E3 ; ^ P] of X in Γ such that
max [0(/, Ej); j ^ P] < ε. Suppose a function / e m(X, S, g, B) and ε > 0.
Then there exists a partition [2£(1, ί); ί ^ %] of I in S such that
0(/, JS7(1, ί)) < ε/3 for i < nx and V(g, £7(1, ̂ ) ) < 2~\ There exists a
partition [E(2, i); i ^ n2] of £7(1, %) in S such that 0(/, ί7(2, i)) < ε/3
for i < n2 and F(#, £7(2, w2)) < 2~2. If we repeat this process inductively,
we obtain a sequence {[E(i, t);t ^ ^]}^i such that

(1) [£7(1, ί); t ^ n,] is a partition of X in S,
(2) [E(i + 1, ί); t ^ ^ ί + 1] is a partition of E(ί, n{) in S,
(3) 0(/, £7(ί, ί)) < ε/3 if i ^ 1 and ί < ^ , and
(4) 0(/, E(i, nt)) < 2~\
Since / is partitionable, there exists a finite partition [Fj j^P]

of X such that max [0(/, j ^ ); j ^ P] < ε/3. If i ^ 1 and t < ni9 let
F(£7(ΐ, ί)) = min [j; j ^ P, E(i, t) n F, Φ ff\. Let F, = Ui U*<n4 [E(if t);
F(E(i,t))=j], let TΓ= Π-&(i,^), and let Wό = W f] Fj. For each
positive integer j ^ P, Vs e Q (if Vjk = \J^k \Jt<nι [E(i, t); F(E(ί, t)) = j]
and Fjk = X-(V, kU E{k, nk)), then {(VSk, Fjk)}k^ e A and Vs = \Jk Vjk)
and W3- e D. Hence, if we let E5 = V5 U Wj9 then [£7, ; j ^ P] is a
partition of X in T (Lemma 3.4) and max [0(/, Eό)\j ^ P] < ε.

We note that T is determined by g and, hence, is independent of
B; in fact, T is the g-outer measure completion of S.

Therefore we now have the following

THEOREM 3.2. Let {X, S) be a set algebra, g e H{X, S), and B be
a Banach space. Then m{X, S,g,B) = C(X, T,B).

In the case of real valued functions (i.e. B — &) we know (cf. [5])
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that C*(X, T) is isomorphic and isometric to H(X, T) and hence

COROLLARY 3.2.1. If geH(X,S) then m*(X,S,g) is isomorphic
and isometric to H{X, T) in the sense that if Le m*(X, S, g) then there
exists, uniquely, h e H{X, T) such that L(f)=\ fdh for each f e m(X, S, g)
and \\L\\ = \\h\\ = V(h, X).

Moreover, this identification enables us to apply P. Porcelli's results
(cf. [6]) on weak convergence and sequential weak compactness in
H(X, T) to obtain results such as the following

COROLLARY 3.2.2. // {Ln} is a sequence of elements of m*(X, S, g),
then {Ln} is weakly convergent if and only if limn (Σii^iLnχ(Ei)) exists
for every sequence {i?J of pairwise disjoint elements of T.

We shall conclude this section by presenting an analog of Corollary
3.2.1 for an arbitrary Banach space B. However, in order to motivate
our representation of m*(X, S, g, B) we shall first reinterpret Corollary
3.2.1 as follows. Corollary 3.2.1 says, in effect, that if Le C*(X, T)
then there exists, uniquely, h e H{X, T) such that L(f) = \ fdh =

Jz

limΛ(ΣX t€^ i6*/(a0M# )) for each fem(X,S,g) and | |L| | = ||fe||, where
the limit is taken (cf. [5]) in the Moore-Smith sense over the directed
set of partitions π of X in T. But, and this is the crux of the matter,
if f e ^ * then F(r) = F(l)-r for each re &. We exploit this fact
as follows. Let G be a function on T to . ^ * such that if Ee T and
re^ then G(E)(r) = r h(E). Then

\imπ (Σ

DEFINITION 3.3. Let (X, S) be a set algebra and S be a Banach
space. Then we denote by H(X, S, B) the Banach space of functions
G on S to B* such that

(1) G(θ) = 0,
(2) If E, Fe S and E n F = θ, then G(E U F) = G(E) + G(F), and
(3) | | G | | = s u P 7 r ( Σ ^ I I G ( ^ ) ! l ) < oo .

Moreover, if / is a 5-valued function on X,G e H(X, S, B), and
r

\\mπ{YΛx.eE4eπG{Ei)f{x%)) exists then we denote this limit by I dG f.
1 . Jχ

The following two lemmas are immediate consequences of Definition
3.3.

LEMMA 3.8. If \ dG f exists, then
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^ \\G\\-suiρxex\f(x)\ .

LEMMA 3.9. If fe C(X, S, B) and G e H(X, S, B) then ί dG-f exists.

LEMMA 3.10. If Ge H(X, S, B) and L(f) = ί dG-f for each fe

C(X, S, B) then L e C*(X, S, B) and \\ L || = || G ||. '

Proof. By Lemmas 3.8 and 3.9, LeC*{X,S,B) and | | L | | ^ | |G | | .
Let ε > 0. Then there exists a partition π = [E^ i ^ n] of X in S such
that || G || - Σ*4e* II G(Ei) \\ < ε/2. For each E{eπ there exists b{ e B such
that || 6, || - 1 and || G(E{) \\ - G(^)(&ι) < e/2n. Let fZ^baiE^ Then
| | / 1 | = 1 and L(/) = \ dG-f= Σ«» G(^)(6*) > IIG || - ε and, hence,

Now we are ready to establish the following.

THEOREM 3.3. // (X, S) is a set algebra and B is a Banach space,
then C*(X, S, B) is isomorphic and isometric to H{X, S, B). Moreover,
if Le C*(X, S, B) then there exists, uniquely, G e H(X, S, B) such that

= ( dG-f for each feC(X,S,B) and \\G\\ = \\L\\.

Proof. In view of Lemma 3.10 it is sufficient to prove the "moreover"
part of Theorem 3.3. Let L e C*(X, S, B). Let G be the function on
S to B* such that G(E)(b) = L(bχ(E)) for each EeS and beB. Then
G(θ) = 0. Moreover, if E, Fe S, E n F = θ, and beB, then G(E U F)
(b) = Lφχ(E ΌF)) = L(bχ(E)) + Lφχ(F)) = G(E)φ) + G(F)φ). Finally, if
[Ef] i 5Ξ w] is a p a r t i t i o n of X i n S,b(e B f o r ί ^ t i , a n d || Z>{ || sΞ 1 for
i £ n, then ^i&n G(E{χbt) = Σ i s , Hhχ(Et)) = L ( Σ , S , δ 4 χ ( ^ ) ) ^ II ̂  ll
Thus (we can conclude from the argument used in Lemma 3.10)
Σ^JIGCEΌII ^ ||I/1| and, hence, GeH{X,S,B). Moreover, if fc is an
(X, S, JB)-simple function, then L(k) = \ dG k. Hence, since the (X,

S, i?)-simple functions are dense in C(X, S, B), L{f) = \ dG •/ for each

fe C(X, S, B) (if k is an (X, S, B)-simple function then '

L(f)-\ dG f

= L(f-k)+\ dG {k-f) ^(| |L| | + ||G||)||/-fc||
JX

= 2\\L\\.\\f-k\\).

As an immediate consequence of Theorems 3.2 and 3.3, we have
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the following.

THEOREM 3.4. If (X, S) is a set algebra, g e H(X, S), and B is a
Banach space, then m*(X,S,g,B) is isomorphic and isometric to H(X, T,B)
in the sense of Theorem 3.3 (i.e. if L e m*(X, S, g, B) then there exists,
uniquely, G e H(X, T, B) such that L(f) = f dG-f for each fem(X, S,
g,B) and \\ G || = || L ||).

4«. A Banach space of Riemann integrable functions* In this
section we give a determination of the bounded linear functionals on
the Banach space R[a,b],

We denote [a, b] by / and R[a, b] by R(I). Let SΣ denote the
algebra of subsets of I generated by segments (c, d) where a S c < d ^b
(i.e. Ee SΣ if and only if there exists a finite subset F of / and a finite
set [(ci9 di); a ^ c{ < d{ g b] of segments such that E = F U (U ^ f e , di)).
Then we denote by s the element of H(I, SΣ) such that if a <£ c < d ^
6 then s((c, c£)) = eZ — c and if x e I then s([x]) = 0 (i.e. if l?e Sj then
sίjE) is the Jordan content of i?). Finally, if / is a real valued function
on I and x e I, let d(f, x) = lims_0+ 0(/, (x — ε, x + ε) Π /).

Let us recall that a real valued function / on / is in R(I) if and
only if (1) / is bounded and (2) if ε > 0 then there exists a finite set
[(cif d^; i ^n] of segments such that [x; d(f, x) ^ ε] c \Ji£n (ci9 di) and
Σ*s s((ci9 dt) n / ) < ε. Hence i2(/) - m(/, SIf s) = C(/, Γz) where Γ, is
determined as in Theorem 3.2. Moreover, R*(I) is isomorphic and
isometric to H(I, TΣ) in the sense of Theorem 3.4.

T. H. Hildebrandt informed the author that 0. Frink had shown
(cf. [3], in particular Theorem 10) that a real valued function / on I is
Riemann integrable if and only if there exists a sequence [fi'tfi =
Σi^^ί ri3 X(Eij)> rίj e &> En is measurable Jordan: the boundary of Ei5

has Jordan content zero] of simple functions such that lim; (sup^ \f(x) —
fi(x) I) = 0. From our characterizations of TIf we see that Ee T7 if and
only if there exist sequences {Ei}} in S and {FJ| in S such that \jEt c E,
\jFi c Er and limi s((Ei U FJ) — 0; moreover, since points have s-measure
zero we can require that the sets Et and Ft be open. Thus Ee TΣ if
and only if E is measurable Jordan (the interior of E ZD 11-27* and the
interior of E1 ZD ΌF{; the boundary of E is a closed set). Hence (cf.
[5]) every bounded linear functional L on R{I) is expressible in the

form \ fdg where the integral is of the Stieltjes type, g is bounded
finitely additive set function on the algebra Tι of subsets of I which
have Jordan content, and the total variation of g on I is | |L | | .

We shall conclude by discussing (briefly) Riemann type integration
of partitionable vector valued functions defined on 7. In the case of
partitionable functions / defined on I both the norm definition of Riemann
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integrability of / defined by Graves (cf. [4]) and the refinement definiton
of Riemann integrability of / are equivalent to the S-integrability of /
with respect to s. We shall not prove this statement; however, we
shall prove Lemma 4.1 which provides a tool with which to reduce a
proof of this statement to a standard argument.

LEMMA 4.1. Let f be a B valued function on X, g be a nonnegative
finitely additive set function on S,b e B, and π be a partition of X
in S. Then

sup (|| 6 - Σ /(»,
π'^π in S

^ sup (|| 6 - Σ

Proof. I t is sufficient to show t h a t if w e B, F and G e S, F Π G =

θ, E = F U G, y e F, and zeG, then there exists xeE such t h a t \\w —

f(x)g(E)\\ ^ \\w - (f(y)g(F) + f(z)g(G))\\ (i.e. we can eliminate one set
at a time). It is sufficient to suppose that g(E) Φ 0 and || w —f{z)g(E) \\ ^
\\w-f(y)g(E)\\. Then

\\w-(g(F)f(y) + g(G)f(z))\\

= || g(F)lg(E)(w - g(E)f(y)) + g(G)lg(E)(w - g(E)f(z)) \\

^ g(F)lg(E) \\w - g(E)f(y) || + g(G)lg(E) \\w~ g(E)f(z) ||

^\\w-g(E)f(y)\\.

Thus vv̂e are in a position to assert that the most general linear
functional on the space of partitionable 5-valued Riemann integrable
functions defined on I is determined by a bounded finitely additive B*
valued set function defined on the algebra TI of subsets of I which have
Jordan content.
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