
REMARKS ON AFFINE SEMIGROUPS

H. S. COLLINS

A problem of fundamental importance in the study of measure semi-
groups is the following: if S is a compact topological semigroup and S
is the convolution semigroup (with the weak-* topology) of nonnegative
normalized regular Borel measures on S, what relationship exists between
a measure μ in S and its carrier? In the paper numbered [9, Lemma
5], Wendel proved that when S is a group and μ an idempotent in S,
then carrier μ is a group and μ is Haar measure on carrier μ. He
proved further that the mapping μ —•> carrier μ is a one-to-one mapping
from the set of idempotents of S onto the set of closed subgroups of
S. Glicksberg in [6] extended these results to the case when S is an
abelian semigroup, In addition he showed (when S is a group or an
abelian semigroup) the structure of the closed subgroups of S to be
quite simple: each closed subgroup of S consists of the G-translates of
Haar measure on some closed normal subgroup of a suitably^ chosen closed
group G of S.

It is our purpose in this paper to prove in § 2 that these properties
are equivalent in general, each being equivalent to several other prop-
erties of some interest (see Theorem 2). One of these conditions is
the geometric requirement that S can contain no 'parallelogram' whose
vertices are μ, v9 μv, and vμ, with all four of these measures idempotent
and μ and v distinct. A crucial lemma of independent interest is
that found in Theorem 1 of § 1, where it is shown that a line segment
of an aίϊine semigroup (see [3] for definitions) which contains three dis-
tinct idempotents consists entirely of idempotents. Several corollaries
are drawn from this theorem, among them the result that a compact
affine semigroup consists of idempotents (i.e., is a band in the sense
of [2]) if and only if it is rectangular, and that this occurs if and only
if it is simple (i.e., contains no proper ideals).

References for terminology and notation used here may be found
in [3, 6, 8, 9].

l General affine semigroups. This section is devoted primarily to
several results about general affine semigroups. However, we list first
without proof two lemmas ([3, Theorem 3] and [4, Theorem 2]) needed
in the sequel.

LEMMA 1. Let T be a compact a fine topological semigroup and
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let K be its kernel (=minimal ideal). Then
(a) Each minimal left or right ideal is convex.
(b) xeK if and only if xTx = {x}; in particular, each point of

K is idempotent.

LEMMA 2. Let S be a compact topological semigroup and μ be an
idempotent in S. Then H = carrier μ is a compact simple semigroup,
and for each continuous complex function f on S the mapping y —*

\f(xy)dμ(x) is constant on each minimal left ideal of H.

THEOREM 1. Suppose T is an affine semigroup and L is a line
segment in T. If there exist three distinct idempotents on L, then L
consists entirely of idempotents, and xLx = {x} for all xe L.

Proof. Let e, f, and g be distinct idempotents on L, with e between
/ and g. Then there exists 0 < a < 1 such that e = af + (1 — a)g, so
af + (1 - a)g = e = e2 = a2f + α(l - a)fg + α(l - a)gf + (1 - a)2g. Multi-
plication on the left by / yields af + (1 — a)fg = a2f + α(l — a)fg +
α(l — a)fgf + (1 — affg, or af = a2f + α(l — a)fgf. Rewriting this as
α(l — a)f — α(l — a)fgf and using the fact that a is neither zero nor
one, we obtain / = fgf. By similar arguments one can show gfg = g,
and it follows that both fg and gf are idempotents. Again using the
fact that e is an idempotent, af + (1 — a)g = β = e2 = α2/ + α(l — a)gf +
α(l — α)/# + (1 — α)2#. This can be rewritten as α(l — a)f + α(l — α)# =
α(l — α)/βf + α(l — α)g/, so / + g = fg + gf. If now x is any point on
L, say x = bf + (1 - % , then a2 - b2f + 6(1 - δ)/flr + b(l - b)gf +
(1 _ b)2g = 62/+ 6(1 - b)[f+g - gf] + 6(1 - b)gf + (1 - δ)2g = 6/ + (1 -
b)g = cc, so each a e L is an idempotent. By direct computation it then
follows readily that xLx = {x}, all xe L.

COROLLARY 1. Every element of an affine semigroup T is idempotent
if and only if xTx — {x}, all xe T. In addition, if T is a compact
affine topological semigroup, the requirement that T be simple (i.e., T
is its own kernel) is equivalent to each of the above conditions.

Proof. If x Tx — {x} for all x in T, then xs = x, so x2 = x3x = xx2x = x.
Conversely, if T consists of idempotents, fix x in T. Then y in T
implies the line segment L joining x and y contains more than two
idempotents, so by the theorem xyxexLx = {x}; i.e. xTx = {x}.

When T is compact, Lemma 1 shows that T is simple if and only
if xTx = M, all xe T.

COROLLARY 2. When T is the convolution semigroup S of measures
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on a compact semigroup S, then each of the conditions of the preceding
corollary is equivalent to each of (1) the multiplication in S is either
left or right singular; i.e., xy — x for all x, yeS or xy — y for all
x,yeS, (2) the multiplication in S is either left or right singular.

Proof. It was shown in [5, Corollary 3] that S is simple if and
only if (1) holds. Now it is clear that here (2) implies (1) since S is a
semigroup of S. To show the converse, let C be the convex hull of S
in S. It is known [2, Lemmas 3.1 and 3.2] that C is dense in S. From
this fact and the requirements on the multiplication in S it follows
readily that (1) implies (2).

COROLLARY 3. If T is an affine semigroup, the following are
mutually equivalent:

(1) there exist three distinct collinear idempotents in T.
(2) there exist distinct idempotents f and g in T such that fg and

gf are also idempotents and f + g = fg + gf.
(3) T contains an affine semigroup affinely equivalent to either

the closed unit square of the Euclidean plane under the multiplication
(xf y)(a, b) = (x, b) or the closed unit interval of reals under left or
right singular multiplication.

Proof. It was seen in the proof of Theorem 1 that (1) implies (2,)
To prove (2) implies (3), let / and g be distinct idempotents, with fg
and gf idempotent and / + g — fg + gf. Denote by M the manifold
generated by {/, g, gf} (i.e., M is composed of all sums of the form
«/ + bff + cffff with a + b + c = 1). Since fg = f + g — gf, it follows
that I f ! ϊ1 contains the convex hull C of {/, g, fg, gf}. If gf is on
the line through / and g, say gf = af + (1 — a)g, then gf = gff =
α/ + (1 — a)gf, so af = agf. If a = 0, then gf == g and fg=f+g —
gf^f + 9 — 9=f- It is then easy to see that the closed line segment
L from / to g is a semigroup, with left singular multiplication. If
a Φ 0, t h e n gf = f a n d fg=f+g — gf = f+g—f=g. I n t h i s c a s e
L is a semigroup, with right singular multiplication.

In the alternate case, gf is not on the line through / and g. We
use here the identities gfg = g and fgf = f (easily deducible from the
equation fg + gf = f+g) to show that if x and y are any points of
C (say x = af + bg + [1 - (a + b)]gf and y = cf + dg + [1 - (c + d)]gf,
where a, b,c,d^ 0), then xy = af + dg + [1 — (a + d)]gf. The mapping
α? —• (a, b) can now be easily verified to be an affine equivalence between
C and the unit square, where the latter is given the multiplication
(a, b)(c, d) = (a, d). Thus (3) holds.

The final implication (3) implies (1) is obvious, for each of the three
affine semigroup mentioned in (3) clearly contain entire line segments
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of idempotents.

COROLLARY 4. The kernel K of a compact affine topological semi-
group T is non-convex if and only if there exist distinct points x and
y of K such that the open line segment between x and y misses K.

Proof. If such a pair of points exists it is obvious that K is non-
convex. Conversely, if K is non-convex one can find distinct points x
and y of K and a point of T outside K on the open line segment L
joining x to y. It is then clear (since by Lemma 1 every point of K is
an idempotent) that L misses K, for if L and K meet Theorem 1 implies
{z} — zLz = zxz e zKz c K, for all zeL. This concludes the proof.

The preceding corollary shows that the examples of nonconvex
kernels given in [3, pp. 111-112] were the only possible kind, for in
both of these the non-convexity was shown by exhibiting points x and
y such that L missed K. It seems likely that the only way in which
a kernel can fail to be convex is for there to be in Γ a usual real interval
semigroup whose two idempotents are in K.

2. Measure semigroups. Preliminary to our main Theorem 2, several
lemmas will be stated and proved. Throughout this section S will be
(as before) the convolution semigroup of measures on a compact semi-
group S. Recall that the carrier of a measure μ in S is the complement
of the largest open set of S whose μ measure is zero. A result needed
repeatedly is the fact that the carrier of a product of two measures is
the product of the carriers [6, Lemma 2.1]. We say, following Wallace,
that a semigroup of S is simple if it contains no proper (two-sided)
ideals. The proof of the following lemma is obvious, and is omitted.
In Lemma 4, the carrier of a subset Γ of S is the closure of the set
U {carrier μ : μ e Γ}.

LEMMA 3. Let H be a compact semigroup of S, let H denote the
semigroup of measures on H, and let H' be the set of measures μ e S
such that carrier μ c H. Then H and Hr (the latter with the multi-
plication and topology inherited from S) are affinely equivalent (both
topologically and algebraically).

LEMMA 4. Let Γ be a compact group in S with rj its identity
element. Let H be the carrier of η, and denote by G the carrier of Γ.
Then both H and G are compact simple semigroups of S and G and
have the same idempotents. In particular, G is a group if and
only if H is; in this case, H is a normal subgroup of G and η is
Haar measure on H.
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Proof. If μeΓ, then μ = ημ, so carrier μ — H carrier μ. But
then So = U {carrier μ : μ e Γ} = (J {iϊ carrier μ: μeΓ} = HS0. Simi-
larly Soiϊ = So; by compactness and the definition of G, it follows that
G — So = HS0 = H SQ = HG and G = GH, where A denotes the topological
closure of A. We show now that the kernel K of G (G is known to be
a semigroup [6, p. 55]) contains H. Let xeSo. There exists μeΓ such
that x € carrier μ, so a? carrier μ~\μ~x denotes the inverse in Γ) c
carrier μ carrier μ~λ = if. Thus each set #G meets H, where x e So,
and by similar arguments Gx meets H for any a? in So. It is then easily
seen that the same is true for xeG. In particular if x e K, there exist
yeHΠ xG, zeH Π Gx, and then yzexG - Gx a xGx c .KGiΓ c if. Thus
H and if intersect, so fix p e H Π K. Since if is simple (Lemma 2),
i ϊ - HpH c JΪEff c GKG c if. But then G = GH c GίΓ c if, so G = K
and G is simple.

To prove G and H have the same idempotents, it suffices (since
i ί c G) to show β2 = eeG implies eeH. By [8, Theorem 4.1], eGe is
a maximal group of G, and the argument used above shows H meets
eGe. Since ίΠs also simple, there exists p — fe H such that eGe meets
the maximal group fHf of H. However, if two groups meet their
identity elements are the same: e = /. Thus eeH. Now it is known
[8, Theorem 4.3] that a compact simple semigroup is a group if and
only if it contains exactly one idempotent; thus it is clear that H is a
group if and only if G is.

To conclude the proof, suppose iϊ(hence G) is a group, and let x e So Π
carrier μ, where μeΓ. Then x carrier μ~λc H, so if y e carrier μ*1, z =
xyeH implies x"1 = yz'1 e carrier μ~\ H = carrier μ'1. Thus x~λHx c
carrier μ~λ H carrier μ = H (here all inverses are taken in G). Since
this is true for x in the dense subset SQ of G, it is true also for xeG;
i.e., H is normal in G. Finally, it is clear by Lemma 2 that rj is Haar
measure on H. This completes the proof.

It should be remarked that the above proof of our Lemma 4 owes
much to Glicksberg's proof of Theorem 2.3 of [6].

LEMMA 5. Let H be a compact semigroup such that Ή. contains
at most two distinct collinear idempotents. Then the kernel of H is
a group.

Proof. Let μ be in the kernel of H. By Lemma 1, μ is idempotent;
and μβ and Hμ are convex. Since here H has at most two collinear
idempotents, it is clear that μS = {μ} = Hμ; i.e., μ is the zero of H.
But then (since μ is both right and left invariant) Rosen's result [7,
Corollary 1] implies the kernel of H is a group.

THEOREM 2. The following conditions are mutually equivalent:
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(1) The carrier of each idempotent measure in S is a group.
(2) No three idempotents of S are collinear.
(3) S contains no affine image of any of the three semigroups

mentioned in Corollary 3,
(4) Every compact simple semigroup of S is a group.
(5) The mapping μ—* carrier μ is one-to-one onto between the set

E of idempotents of S and the set of compact simple semigroups of S.
(6) The mapping μ —• carrier μ is one-to-one on E.
(7) Each compact group of S consists of the G-translates of Haar

measure on a compact normal subgroup of some compact group G of S.

Proof. (1) implies (2). Let μ, v e E,0 < a,0 < b, and a + b = 1 be
such that φ = aμ + bve E. Let A = carrier μ and B = carrier v. By
(1), A, B and A \J B = carrier φ are groups. It follows then from Lemma
2 that μ, v, and φ are Haar measure on A, B, and A [j B respectively.
Let e, /, and g be the identities of A, B, and A U B respectively. It
is then clear (since A, B are subgroups of the group A U B) that e =
f = g. Suppose there is t in B\A and let x e A. Then xt e AB c ( A U
B)(A U B) c A U B, so xt e A or xt e B. If xt e A, then (inverse of x
in A) xt 6 A. This implies t = ft — et e A, a contradiction. Thus xt e B,
so x = xe = xf = at-(inverse of ί in δ ) e JBJ5 c J5; thus A c B. But
then A U B = B, so carrier φ — B = carrier v. Since normalized Haar
measure on the compact group B is unique, it follows that φ — v, so
(2) is proved.

The equivalence of (2) and (3) follows immediately from Corollary
3 of § 1.

(2) implies (4). Let H be a compact simple semigroup of S. It is
clear (assuming (2)) that the H' of Lemma 3 cannot contain three dis-
tinct collinear idempotents, so the same is true (by Lemma 3) of 3.
Lemma 5 then implies that H (being its own kernel) is a group.

(4) implies (5). If H = carrier μ = carrier v, with μ,veE, then by
(4) and Lemma 2, μ and v are both normalized Haar measure on the
group H. Thus μ — v and the mapping μ —> carrier μ is one-to-one on
E. To complete the proof of (4) implies (5), let H be a compact simple
semigroup of S. By (4), H is a group, and then Haar measure μ on
H (extended to S, of course) is idempotent and carrier μ = H; i.e.,
the mapping is onto.

(5) implies (6) is clear. To show (6) implies (2), suppose there exist
three distinct collinear idempotents in S. There is then by Theorem 1
a nondegenerate line segment L of idempotent measures. In particular
then, there exist distinct measures μ and v on L such that carrier μ —
carrier v, contradicting (6).

(4) implies (7). Let Γ be a compact group in S with identity ele-
ment η, let G be the carrier of Γ, and let H = carrier η. By (4) and
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Lemmas 4 and 2, G and H are groups with H normal in G and η is
Haar measure on H. Then the proof given by Glicksberg (starting on
page 57 of [6] with the phrase "Now suppose S is a (non-abelian) compact
group—") applies to our situation to prove (7) holds, for an examination
of his proof reveals that all he needs there is that H be a normal sub-
group of the group G, with rj being Haar measure on H (or one could
apply Glicksberg's result to G).

To conclude, we show (7) implies (1). Let μ2 = μeS and let Γ be
the maximal group cantaining μ [8, Theorem 2.1]. Then Γ is a compact
group of S so by (7) there are compact groups G and H of S, with H
a normal subgroup of G, such that Γ = ηG, where η is Haar measure
on H. The measure η is then invariant on H {ηx — xη = η, all xe H),
so {η} = ηH aηG — Γ implies (Γ being a group))? = μ. Thus carrier μ =
carrier η — H, a group. This completes the theorem.

It has already been remarked that condition (1) of Theorem 2 holds
in case S is either a group or an abelian semigroup. More generally,
this is true if the idempotents of S commute. In fact, if H is a com-
pact simple semigroup of S and e and / are idempotents of H, then
ef e Hf n eH and fe e He π fH. Since here /e = ef, this says that the
maximal groups eHe = e i ϊ Π flβ and /ff/ = fH Π fl/ of H meet. How-
ever, two maximal groups which meet coincide [8, Theorem 2.1], so
eHe = fHf and e — /. But then H has exactly one idempotent and so
is a group [8, Theorem 4.3].
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