CLOSED EXTENSIONS OF THE LAPLACE OPERATOR
DETERMINED BY A GENERAL CLASS OF
BOUNDARY CONDITIONS

W. G. BADE AND R. S. FREEMAN

1. Introduction. This paper is concerned with the spectral theory
of closed operators in Hilbert space determined by the Laplace operator
and certain general boundary conditions. The method is that of J. W.
Calkin [5, 6,7,8]. In this series of papers Calkin developed a theory of
abstract symmetric boundary conditions in Hilbert space, and indicated
how these general results might be applied to the Laplace operator and
slightly more general operators on certain regions in the plane conformally
equivalent to the unit circle. The boundary conditions there are of the
type 0u/on = Lu, where L is an arbitrary, bounded, self-adjoint operator
in L,@G). The potential theoretic details necessary to apply the general
results were given in Calkin’s thesis, but not published elsewhere. They
were subsequently also obtained by J. W. Smith [21] (for the case of
the unit circle), who studied cases where the operator L was unbounded.
R. S. Freeman [12] extended Calkin’s results to a general class of plane
domains and obtained a method for treating unbounded domains in E™,
m = 2, once the results were known for bounded domains. In this paper
we treat the case of a bounded domain in E™ with C'!' boundary. In
addition, we extend the method to cover the case for which the operator
L in the boundary condition is not necessarily self-adjoint. The case of
unbounded domains is treated in another paper [13].

Following Calkin’s method, we show there exists an appropriate
linear class of functions <, (G) & L(G) such that the operator S in the
Hilbert space L,(G) @ L, (0G) with domain

2(8) = {[u, #]|lue 2.(G)}
and
S[uy a] = [—A’LL, ﬁn] , UE gl(G) ’
is self-adjoint. Here # and %, are the values of u and 6u/on on 0G.

If L is an arbitrary (not necessarily self-adjoint) bounded operator in
L,(0G), then the operator T, = — 4 on the domain

(T,) = {ue 2:(G)| 4, = L}

is closed, and T'; is equal to T;.. It is shown that the spectrum of T,
is discrete and is contained in a parabola with horizontal axis and opening
to the right. One of our aims is a precise determination of &,(G). It
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consists of the class of functions in the domain of the maximal operator
associated with — 4 such that w and 6u/on have L, boundary values. In
potential theoretic terms it is the set of all sums » + k, where p is the
potential due to a charge g in G and & is a potential due to a surface
charge f on 8G, where g and f are, respectively, square integrable over
G and 0G (Theorem 3.4).

Section 2 contains geometric preliminaries and definitions. Section 3
develops the potential theory necessary to define the S operator in § 4.
In § 5 certain bounded perturbations of S lead, via a projection argument,
to the properties of the operator T,;. The possibility that L is not self-
adjoint leads to new difficulties not treated by previous authors. It
should be remarked that Ohdnoff [20] has independently introduced the
S operator for general second-order elliptic operators, utilizing the
method of Friedrichs. He does not obtain its domain explicitly.

It follows from general results of Browder [2] and others, that when
0G is C* and L is multiplication by a smooth function, then &(T}) =
W*G). It would be interesting to know whether (T, & W**(G),
whenever L is an operator in L,(@G) with the property that Lf is at
least as smooth as f.

2. Preliminaries. Throughout the paper G will be a bounded,
connected, open set in E™ whose boundary is a C** surface. The boundary
need not be connected, but will necessarily consist of a finite number of
components. Points of G will be denoted by =z, ¥, etc., and points of 0G
by 0, 6. At 0e0G, n, will be the exterior unit normal. We summarize
first certain properties of such surfaces that we will need. They may
be found in the systematic exposition of Lucas [18]. See also [1].

2.1. THEOREM. If S is a C*' surface, there exists a positive
constant v, called the ‘‘minimal radius’’ of S, such that

(i) All segments of length r, centered at points of S and normal
to S are mutually disjoint and exhaust a meighborhood of S.

(ii) At each point 0 of S, spheres (exterior and interior) of radius
r, can be found tangent to S at 0 which contain mo points of S.

(iii) The normals to S satisfy a Lipschitz condition with constant
ro'

ng —my| <10 — gllr,, 6,¢,€8.
(iv) The set
S, ={0 —pneldcS}
18 a C** surface for o < r, with minimal radius r, satisfying r, — |p| =

1, <7+ |0|. Such surfaces will be called ‘‘parallel surfaces to S.”
(v) The surface measures on S and S, are mutually absolutely
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continuous with uniformly bounded Radon-Nikodym derivatives for
(o] < 7of2.

Let 6 S and .7~ be the tangent plane to S at 4. Choose Cartesian
axes with ¢t = (&, +-+, &,..)€ .7 and positive £, axis along the inner
normal to S at 6. Let M), |[t| < 7, be the function representing S
locally near 0. We shall need the following facts.

2.2. LEMMA. There exist constants k,, k,, and o, independent of
8 such that

@® MO Tltl, 18] < 72
® |5 ovoer ] skt 161<ri2
© 15— pny — 0 = 2 [t + 01, p<p,,

where ¢ = [t, MD)], |t] < ro/2.

Proof. Statement (a) follows from (ii) above, while (b) follows from
(iii). To prove (c) we note

|6 — ong — OF = 3, & — PRO“ONOEF + M) + 2@
= 0+ [t + DO T+ 20200 [10) — T govog |
where
m—1 1/2
20 =[1+ 5 oveer|
Thus we have
|6 — omy — OF = 0 + 181 — 200 + k) |2,

which yields the desired result with o, = 47 (k, + k,)*.

Next we shall need certain classes of functions on G. In the notation
of Browder [3], W™?(G) is the class of all functions in L?(G), 1 £ p < oo,
all of whose distribution derivatives of order < n are functions of L*(G).
It is a Banach space under the norm which is the sum of the L, norms
of all derivatives of order < n. We shall be concerned only with the
cases » =1 and 2.

Let u be a function defined on the intersection of G with a neighbor-
hood of 0G. Let o < 7, and u,(0) = u(@ — pn,), 0 €0G. Thus u, is the
restriction of u to the parallel surface at a distance p along the normal.
If w, e L(0G) and % = lim,_, u, exists in L,(0G), we say u has the L, —
boundary value %. It is known that every function in W*?(G) has an
L? — boundary value. (See for example [19].)
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The following class of functions will be of basic importance throughout
the paper.

2.3. DEFINITION. We denote by <,(G) the class of functions
u € L,(G) such that

(i)  u belongs to W?*@G,) for each open set G; whose closure lies in G,

(i) 4due L(@),

(iii) « and éu/on have L, boundary values & and #, on 0G.

Clearly, W**(G) & 2,(G) & W**(G). The inclusions are proper (as
one sees, for example, by considering the case of harmonic functions in
the unit circle). Conditions (i) and (ii) are the conditions that % should
lie in the domain of the ‘‘maximal operator’’ corresponding to the
Laplacian on G—that is, the adjoint of the ‘‘minimal operator’’ which
is the closure of the Laplacian on C>~ functions with compact support.

It follows easily from Theorem 2.1 (v) that Green’s identities hold
for functions in =,(G):
noou 0v J
> — —dx — S #©,0d0, wu,ve 2(Q),
=1 Qx; 0x;

G 1=1 2G

I Sg(—du)mx - S

11 SG(—Au)a di — Sau(:——dv)dx — S (@5, — 0,5)d0, u,ve D(G).

Gl
3. DPotential theory. In this section we prove that the inhomogeneous
Neumann problem

—4du =0, oulon =k on 0G

has a solution in <,(G) whenever k € L,(6G) and S k(0)dg = 0. This fact
2@

will be needed in later sections. The solution # will be a single-layer
potential

w@)=—L— | SOW_ e, rer66), m=3,
m — 2 Joe |x — 6]

or

w@) = — SaGf(é’) log |z — 0]d6, zeG, feLG), m=2.

The argument that for such potentials both % and 6u/60n have boundary
values works equally well in L,, 1 < p < o, and we present it in that
generality for convenience of reference for a later paper.

If u is a single-layer potential with charge f in L,(0G), then

(s —on) = | N5, 00700,
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where, writing ¢ — pony = ¢,, we have

N, 6) = — P S, mzz.
P

Let T, be the bounded linear mapping of L,(0G) into itself which carries
f into the function (7}, 1) (¢) = (0u/on)(s,), ¢ €0G. It is well known that
when f has a continuous derivative

() TG = Foufe) — | L0t roa, geoc,

uniformly on 8G, where ,,_, is the volume of the unit sphere in E™,
Thus to prove that du/on has an L, boundary value, it suffices to prove
that the maps T, are uniformly bounded in L,(0G). Then the integral
in formula (*) will determine a bounded linear map, and (*) will hold
for all f in L,(0G). To prove the maps 7, are uniformly bounded, it
suffices (cf. [9], page 518) to prove the existence of constants M and p,
such that

@ sup | [N, O)[dp = M, p <y

(i) sup | | N, 0)[d0 = M, p < .
beoa Jog

Then || T,|| = M, 0 < 0.

We first prove (i). Let 8 be any fixed point of 8G and .7~ be the
tangent plane to 8G at 6. Choose Cartesian axes for E™ with origin at
0, t=(&, -, &) e 9 and positive &, axis along the inner normal at
6. Let &, =\{), |t] < 1, be the C** function representing 0G locally
near 8. Then we have

160 — 0l cos (5, — 0,m9) = 200 [ 20 (T & 2) — 0 S ol

i=1 0, i=1
—Mp2®) — o],

where

o =[1+F(F)T"

and ¢t = Pg, P being the perpendicular projection of E™ onto .Z~. Now
by Lemma 2.2 (c) we have

[, — O z——]é—[ltl2 + 07, ¢eC<€,%ro>=6Gﬁ{xHx —0|< %'ro} ,
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for all small p. Combining this fact with 2.2 (a) and (b), we see

G Cup t="Pg, scClo, L
N # 62C(0gm),

| No(¢, 0)| élt

for all p less than a suitable o,, where C, and C, are constants independent
of p and 6. The integral (with respect to t) of the right side is bounded
independent of o over [t| < 7)/2; so therefore

sup [Ny(8, O)| dop < 0, 0 < 0.

0€0G Sow,ulmro‘/
Since
|¢p_el = l¢—0!—1027'0/4

if p<mr/4 and |p — 0| > ry/4, it follows that |N,(¢,0)| is uniformly
bounded independent of 6 if |¢ — €] > 7,/2. Thus (i) follows. The proof
of (i) is simpler. If we now take the tangent plane at ¢ instead of 6,
[¢o — 0] cos (g, — 0, ny) = Mt) — p, t = PO, and similar estimates apply.
Thus we have

3.1. THEOREM. Let 1 < p < o, and u be the single-layer potential
wm G with charge f, where fe L,(0G). Then u and ou/on have L,
boundary values % and %, given by the formulas

wg) = — | £©Ologls—olds, m=2

1 S fodo - g
m—2 be|p—0"

and

~ _1 _ cos (¢ — 0, ny)
T(6) = + 0 f(9) — | 2O L) 100, 6206

The maps B: f— i and T: f— i, are bounded linear maps in L,(0G).
The fact that ou/on has a boundary value implies the same for wu,
as one sees by an elementary estimate from the formula

1 ou

— (0 — any) da .
Py on

’M/(e - lolne) - u(a - pzne) = - S

The formula for # follows from the fact it is valid for C*! functions.

3.2. COROLLARY. If u s a single-layer potential with charge in
L,0G), then ue 2,(Q).
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3.3. THEOREM. Let ke L,(3G), 1< p< o, and suppose Sa l(6)d0 =
2]

0. Then there exists a single-layer potential with charge in L, 0G)
such that %, = k. :

Proof. It suffices by Theorem 2.1, to find a function f in L,(0G)
which satisfies the integral equation

™) 16— | K, 0/0)d0 = k() ,
where & = 20;", k and

K(s, 0) = wz cols ¢(¢—_é ]01;_'@) _

The Fredholm theory is applicable to this equation since an appropriate
iterate of the kernel K is bounded (cf. the discussion in [22], Chapter
XTI and [11], p. 542). Thus equation (*) has a solution f if and only if

Sa k(0)(0)d6 = 0 for all solutions I in L,8G), p™+ q¢*=1, of the
[ed

adjoint homogeneous equation

1o = | K, 0Upds .

It is well known that the constant functions are the only continuous
solutions of this equation. However, any solution [ also satisfies the
equation obtained by replacing K by any of its iterates. Since an ap-
propriate iterate is bounded, ! is continuous and hence constant. Thus

equation (*) has a solution if and only if Sa k(0)do = 0.
' G

Returning now to the case » =2, we seek a potential theoretic
characterization of 2(G). If ge L,(G), the function

p(w)=g 9w g, m=3
oo —ylm?

= — | gwloglo —ylay, m=z2,

will be called the space potential with charge ¢g. Since G is a bounded
domain, p belongs to W?*@), and —4p = m ®,,g almost everywhere in
G. These facts may be derived from [4], pp. 130, 134. There the
point-wise existence of the first two derivatives is established almost
everywhere. Since they are given by formulas that define bounded
maps in L,(G), it follows that we W**G).

3.4. THEOREM. A function u belongs to 2.(G) if and only if u =
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D + h, where p is a space potential due to a charge in Ly,G), and h is
a single-layer potential with charge in L, (0G).

Proof. If w has this form, then, clearly, w € ©2,(G). To prove the
converse, let u be given in &,(G) and let p be the space potential whose
charge is —(mw,)™ 4u. Then 4p = 4u, and therefore v =u — p is

harmonic and belongs to £,(G). By Green’s second identity, Sa ¥(0)do = 0;
q

thus by Theorem 3.3 there exists a single layer potential w such that
W, = ¥,. But then Green’s first identity implies w — v is constant.
However, the function 1 in G is a single layer potential. Its charge is
the (normalized) solution of the homogeneous equation

f@) = |, K, 0500 .

It follows from the Riesz theory that the set of solutions is one dimensional
(since this was the case for the adjoint equation).
We next consider the inhomogeneous Neumann problem.

3.5. THEOREM. Let ge L(G), le L,(0G). The equations

—du=g, @,=1

have a solution w in 2,(G) if and only if
*) S g(@)dz + g (6)do =0 .
@ Gl

Proof. Suppose condition (*) holds. Let p be the space potential
with charge (mw,)'g. Then pe W**G) and —4p =g. By Green’s
identity.

Saag(ac)dx + Saeﬁn(ﬁ)da —0.

Thus Sa [D.(0) — 1(6)] d0 = 0, and therefore by Theorem 3.3 there exists
Qq

a harmonic function v in <2(G) such that %, = p, — . The function
% = p — v solves the problem. Conversely, if u is a solution, formula
(*) results from applying Green’s identity to « and 1.

3.6. THEOREM. Let ge L(G). The equations
—du=9, %,=0

have a solution u in 2,(G) if and only if S gdx = 0. The operator
aq

Ty tn L(G) with domain < (Ty) = {ue 2(G)|%, = 0} and Tyu = —4du
18" self-adjoint. Moreover .22 (Ty) = 4+ (Ty)", the null manifold con-
sisting of the constant functions.
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Proof. The first statement follows from the previous theorem. To
prove the second, we recall that the method of Friedrichs [14] yields a self-
adjoint operator Fy in L.,(G) corresponding to —4 and the boundary
condition 6u/on = 0 in 0G. Explicitly, consider the closed semi-bounded
form

D(u,v) = S i ou 627dx
@ i=1 0x; 0,

on the dense subspace W'*G) & L,(G). Then uwe & (Fy) if and only if
there exists an element g € L,(G) such that

D(u,v) =(9,v), allve W(G),

and Fyu =g for ue & (Fy). The range of F, is closed and is the
orthogonal complement of its null manifold, which clearly consists of the
constant functions. Thus 4+ (Ty) = " (Fy), Z(Ty) = #(Fy) and Ty =
Fy. However, if we o(Fy), then Fyu = Tyv for some ve o (Ty);
therefore Fy(u — v) = 0. Thus u = v + constant € &7 (Ty), showing
F,=T,.

REMARK. It is known [2], that when 8G is of class C?, then
(Fy) & W*(G).

4. The S operator. In this section, following Calkin [6], page 435,
we introduce the operator S in L,(G) @ L,(0G). In the next section,
certain bounded perturbations of S lead, via a projection argument, to
closed linear operators in L,(G) corresponding to restricting —4 by
boundary conditions.

4.1. DEeFINITION. In the Hilbert space, L,(G) @ L.(0G) define the
operator S with domain

2(S) = {lu, #]|u ¢ 2(G)}
and

Slu, @] = [—4u,%,], [u,i]e =2(S).

As we shall see, the theory of the S operator is intimately connected
to the inhomogeneous Neumann problem of Theorem 3.5.

4.2. THEOREM. The operator S ts densely defined, closed, self-
adjoint, and has compact resolvent.

Proof. To see that = (S) is dense in 27~ = L,(G) @ L.(6G), suppose
([w, @], [v,1]) = (, v) + (@, 1) =0
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for all w € 2,(G). Then (taking u = 1) we see
Svdw+s 1d6=0;
Q@ 2@

consequently there exists g € ©(G) such that —4g = v, g, = 1. Thus,
using Green’s formula, we have

(—=4u, 9) + (@, §) = (w, v) + (@, ) =0, ue 2(G).

If we consider only those u such that #, = 0, we can show that
g€ #(T,)". It follows from Theorem 8.6 that g is constant. Thus v
and ! are zero.

Since & (S) is dense, S* exists, and Green’s formula shows S & S*.
Suppose now that [w, j] € =7 (S*). There exists an element [v,1] in &
such that

(Slu, @], [w,J]) = ([w, @],[v, 1), we 2:(G);
i.e.,
(**) (—4du, w) + (@,, ) = (u, V)]+ @), we 2(G).

Thus (taking % = 1) we have
[,vdo+ | 1a0=0.
G (led

Consequently, by Theorem 3.5 we can find z € &,(G) such that —4z=
v, Z, = 1. By Green, again, we have
(—4u,2) + #@,, 2) = (w, —42) + (&, Z,)
=, v) + @1, we 2(G),
and so

(—Au’z—w)_l_(ﬁmg—‘?):o; ue.@l(G)‘

Restricting attention to those w with %, = 0 shows z — w is constant.
Thus w € 2(3), —4w = v, and @, = I. Putting these facts in (**)
and applying Green again, we obtain

@, —W) =0, ue 2(q).

One sees easily from Theorem 3.5 that there are functions # in <,(G)
for which %, takes arbitrary values in L,(0G). Thus @ = j. Hence
[w, 7] = [w, W] € = (S) and [v, ] = S[w, W], proving S is self-adjoint.

If _#(\)#0 and (M — S)[v* 9%], £k =1,2,+--, is a bounded
sequence in 57, the sequence [v*, 9%] is bounded, since (A I—S)! is
bounded. Thus

D(w*, v*) = (—4 ", v%) + (73, 7
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is bounded and the v* are bounded in W'*G). Since the maps v —>v
and v — ¥ of W**(G) into L,(G) and L,(0G) are compact (cf. [19], p. 208),
we can extract a sub-sequence of the [v*,U%] converging in 57, showing
(A1 — S)* is compact.

4.3. COROLLARY. The range of S is closed, #(S)= _+7(S)", and
A7(8S) consists of the constants [a, a] in L,(G) @ L,(0G).

5. Boundary conditions for —4. We now proceed to the main
results of the paper.

5.1. DEFINITION. Let L be an arbitrary bounded operator in L,(0G).
Define the operator T; in L,(G) with domain

2Ty = {ulu e 21G6), %, — Lu =0},
TL%'—“ '_'Au, ’M/G c@((ZWL) .

It will be shown that T, is a closed linear operator with compact
resolvent, and (7T})* = T,,. Thus T; is self-adjoint if L = L*. These
results will be proved by perturbation of the operator S and a projection
argument.

5.2. DEFINITION. Let L be a bounded operator in L,(0G), and N a
complex number. The operators L and P(\) are defined in L,(G) @ L.(6G)
by the formulas

L(f, k) = [0, Lk] , [f, k] € Ly(G) @® Ly3G) .
POV (Lf, k) = [MF, 01, [f, Kl € Ly(G) @ L,(3G) .

5.3. Lemma. [|L|| =[ILI|, | POV = x], and (L)* = (L*)", POV)* =
P()). Note that the operator S — L — P(\) carries [u, #] into [— du — \u,
i, — L.

5.4. LEMMA. The operator S — L — P(\) is closed, denfely defined
in Ly(G) @ L,(0G), and has compact resolvent. Thus, (S — L — P(\)) =
A(S — L* — P(\)".

Proof. It is well known that a bounded perturbation of an unbounded
self-adjoint operator with compact resolvent is a closed operator with
compact resolvent (cf. [6], p. 435). The last statemant then follows
from the Riesz theory.

Now consider the case » = 0. The general element of the graph
Z(S — L) in Ly(G) @ L,(6G) ® L(G) @ L,(0G) has the form

[w, @, —dw, i, — Lil, uwe (G).
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Moreover, & (S — L) is a closed linear manifold. We denote by .2 the
submanifold consisting of all those elements of £ (S — L) for which
%, — L = 0. Clearly, % is also closed. The map J: 97" — Ly(G) @ LAG)
is defined by the equation

Jluw, & —4u,0] =[u, —4u}.

The following facts are immediate consequences of this definition.

5.5. LEMMA. The mapping J is a one-to-one linear mapping of
K onto the graph Z(T,) of T, in Ly(G) @ L.G), and ||J|| = 1.

5.6. LEMMA. The operator T, is a closed linear operator in L,(G)
with dense domain.

Proof. Since C7 (G) S = (T,), the domain is dense. To prove T
is closed it suffices to prove that J has a closed range in L,(G) @ L.(G).
For this it is enough to show that J maps bounded closed sets onto closed
sets (cf. [9], page 489).

Let B be a bounded closed set in % and [u®, %%, —4u®, 0],
k=1,2, ..., be a sequence in B such that [u*, —4u*] converges in
L(G)@ L,(G). By Green’s identity we have

Du*, u*) = (— 4 uk, u¥) — (@t 4*)
= (—4u®, u*) — (L %", @")
=@ +IILI) M,
where M is a bound for B. It follows that {u*} is bounded in W**G).
A sub-sequence (which we may take to be {u*}) converges weakly in

W), and therefore {#*} converges strongly in norm (cf. [19], page 208).
Thus [u®, #*, —4u”, 0] converges, and so J(B) is closed.

5.7. COROLLARY. There exists a constant K, such that
NElP = Ko (lulP + [ dulfy®, we 2(Ty) .

Proof. Since J is one-to-one and maps onto a closed manifold, its
inverse is continuous.

It follows from Green’s formula that T,, & T,*. Our next objective

is to prove the two operators are equal. This will be done by consideration
of ranges and null manifolds.

5.8. LEMMA. Let N be any complex number. Then we have

(a) BT, — M) ={ge L(G)|[g, 0] € 2(S — L — PO\)},
(b) (T, — ) = {ue 2(0)|[u, & e +(S—L— PO .
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Proof. If [g,0] € &#(S — L — P(\)), there exists u € =(G) such
that —du —xu =9, %, — L = 0. Thus g € &#(T; — M). Conversely,
it is clear that if g € <2(T, — \I), then [g,0] € <#(S — L — P(\)). The
proof of (b) is equally direct.

5.9. LEMMA. For each complex N, we have
FB(Ty —N) = 47 (T — XI)-L ’

therefore, in particular, FH(T, — \I) is closed.

Proof. We know g € <Z(T,—\I)if and only if [g, 0] € 9/?(51—IA1—P(>»)).
By Lemma 5.4, however, the latter manifold is _#°(S — L* — P(\))",
and clearly

(9,0, [w, @) =0, [u,@&] e _1°(S—L* = P®)

if and only if
(g,u):O, ueJ/(TL*—XI)-

5.10. LEMMA.
(TL)* = TL* .

Proof. Taking N = 0 in the last lemma, we have Z(T,)=_+"(T:,)".
But since & (T}) is closed, &2 (Ty) = 4+ ((Ty)*)*. Since T, and T,, are
closed, so are their null manifolds, and

@ A(TY) = A7 (Tr)

Because .#(T;) is closed, so is .2 (T.*) (cf. [15]). Now T, = T,**,
showing

(ii) B(T) = (T = A47(T)" = B (T1)

From these facts we can show that T.* & T,,, as follows: If w € (T,
we can find ¥y in 2 (T;,) by (ii) such that T,y = T,*u. Because
T.,. < T.*, T,*(y — u) = 0, and therefore, by (i), y — u € & (T},). Thus
u € 2 (T;,), and the required inclusion follows directly,

It remains to prove 7, has compact resolvent. As we shall see, this
is easy to prove if it can be shown that the resolvent set o(T}) of T, is
not empty. Again the problem can be thrown onto S.

5.11. LEMMA. A complex number ) is wm o(Ty) if and only if 0
18 i (S — L — P(\)).

Proof. By Lemma 5.8 (b)x A is an eigenvalue of T, if and only if
0 is an eigenvalue of S— L — P(\). If 0 is in the spectrum of
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S—L— P()\), it must be an eigenvalue by the Riesz theory. To conclude
the proof we must show that if ) is in the spectrum of 7', and (A I — Tp)™
exists, then zero is in the spectrum of S — L — P(\). Clearly, <2(T, — I )
cannot be dense, because it is closed. But then X is an eigenvalue of
T;.. It follows that zero is an eigenvalue of S — L* — P(»), and hence
of S— L — P().

To determine values of A\ such that 0e p(S — L— P(\)) we shall
need two lemmas. The first of these follows directly from the argument
of Lax and Milgram [17], p. 169.

5.12. LEMMA. Let V be a densely defined, closed, linear operator
n Hilbert space such that =2 (V) = =(V*). Suppose there is a constant
K > 0 for which we have

(Vu,w)| =z K||ul!, we (V).
Then zero is in the resolvent set of V, and || V7| < K.
The next lemma may be found in Ehrling [10], p. 270.
5.18. LEMMA. There exist constants M =1 and t, = 1 such that
NP = Mt (Dw,u) +tlull), t=t, uwe WG).
In applying these lemmas, we determine conditions on A such that
(*) I((S — P(\)) [w, @, [w, @D > || LI [[«, Z]I*, we 2(G).
For such A, we have 0 € p(S — L — P(\)), because ||(S — PO < || L]
by Lemma 5.12, and
(S — L — PO)™ =[S — POUI™ 55 (—1) [L(S — PO,

the series converging in the uniform operator topology. Let s be a
parameter, 0 < s < 1. Writing » = ¢ + 7, we have, by Green’s identity
and Lemma 5.13,

I((S — POW[w, @], [u, #]D)| = | D, u) — N |||
=z sD(u, u) + [(1 — s)|7| — so] [[ulf

=3 [D(u, u) + [a— S)IT;S— 30]”“”2]

4 0= 9lel —solllult

> SPA — 9)|z] — so" || [w, #][’
- 2M ’

if (1 —s)|t| — so > 2t,. Suppose, in addition, that
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" A —9)7r|—8s6>Cs?,

where C is the larger of 2¢, and 4 M?||L|?. Then (*) is satisfied, and
therefore ) is in the resolvent set of 7T,, by Lemma 5.11. Rewriting
(**) in the form

so C
71> 1—s + s(1 —s)’

we see o(T;) lies in each of the sectors

p=—Cs?+re?, |tang| < ls , r=0.
— 8

For each fixed value of ¢ > 0, we may compute the minimum value
of 7 satisfying

so C

= 1—s + s(1 —s)

for 0 < s < 1. The result is a complicated expression which is O(¢'?)
as 0 —> + o, We summarize the situation in

5.14. THEOREM. Let L be a bounded operator in L,0G). The
operator T, with domain

2(T)) = {u e 2.(6)|%, = Lu}
and
Tou=—4du, we 2(T),

1s a closed linear operator with compact resolvent, whose spectrum lies
inside a parabola T = ac + b, a,b > 0. Moreover, T,* = T,,.

All has been proved except the compactness of the resolvent. It is
enough to prove it for one nonzero value of N. If {(\ — Tpu*} is a
bounded sequence, the sequences {u*} and {4u*} are bounded (since
(M — T, is bounded). Thus {#%,} is bounded, by Corollary 5.7. It follows
from Green’s identity that {u*} is bounded in W**G), and therefore a
sub-sequence of {u*} converges in L,(G) (cf. the proof of 4.2).
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