DECOMPOSITION AND HOMOGENEITY OF CONTINUA ON A 2-MANIFOLD

H. C. Wiser

1. Introduction. Many partial results have been obtained in attempting to characterize homogeneous plane continua; a history of this problem can be found in [4]. The question arises; which of these results hold for homogeneous proper subcontinua of a 2 -manifold, and indeed do there exist such continua which cannot be embedded in the plane? The main purpose of this paper is to extend some results for plane homogeneous continua to corresponding results for continua on a 2manifold, with a long range aim of investigating the embedding problem.

Let X be a nondegenerate homogeneous plane continuum. F. B. Jones [10] has shown that X is a simple closed curve if it is aposyndetic or if it contains a noncutpoint, H. J. Cohen [7] has shown that X is a simple closed curve if it either contains a simple closed curve or is arcwise connected, and R. H. Bing [3] has shown that X is a simple closed curve if it contains an arc. In § 4 the above results of Cohen's and Jones' are generalized to homogeneous continua on 2 -manifolds. Section 3 contains results on collections of continua which arise rather naturally in considering the generalizations of Cohen's work.

Jones [12] has shown that if X is decomposable and is not a simple closed curve, at least it becomes one under a natural aposyndetic decomposition. In $\S 5$ this result is extended to homogeneous continua on a 2 -manifold as well as to homogeneous continua with a multicoherence restriction.

In extending plane results to results on arbitrary 2 -manifolds, we will use as a generalization of the Jordan curve theorem the fact that for any 2 -manifold M there exists a positive integer k such that M is separated by the sum of any k disjoint simple closed curves on M.
2. Definitions. Only separable metric spaces will be considered here. A connected compact metric space is called a continuum. A 2manifold is a continuum such that each of its points lies in an open set topologically equivalent to Euclidean 2 -space. A 2-manifold with boundary is a continuum such that each of its points lies in an open set whose closure is topologically equivalent to a closed 2-cell.

A point set X is said to be n-homogeneous if for any n points $x_{1}, x_{2}, \cdots, x_{n}$ of X and any n points $y_{1}, y_{2}, \cdots, y_{n}$ of X there is a home-

[^0]omorphism of X onto itself that carries $x_{1}+x_{2}+\cdots+x_{n}$ onto $y_{1}+y_{2}$ $+\cdots+y_{n}$. For $n=1$, the term homogeneous is used. A set X is said to be nearly homogeneous if for any point x of X and open set D of X there exists a homeomorphism of X onto itself carrying x into D. A set X is locally homogeneous if for each two points x and y of X there exists a homeomorphism between two open subsets of X containing x and y respectively such that x is mapped onto y.

A continuum X is said to be aposyndetic at the point p of X if for any point q of $X-p$ there is a subcontinuum Y of X and an open subset U of X such that $X-q \supset Y \supset U \supset p$. The continuum X is said to be aposyndetic if it is aposyndetic at each of its points.

A continuum X is said to be semi-locally connected at a point p if for each positive number ε there exists a positive number δ such that $X-V_{\varepsilon}(p)$ is contained in a finite number of components of $X-V_{\delta}(p)$, (Note: In general, $V_{r}(X)$ is the r-neighborhood of the set X; i.e., the set of all points x such that the distance, $\rho(x, X)$, from x to X is less than r.) If X is semi-locally connected at each of its points, X is said to be semi-locally connected.

A simple triod is the sum of three arcs each having a point p as an end point such that p is the common part of each two of these three arcs.

If G is an upper semi-continuous collection filling a continuum X, the decomposition space relative to G will be denoted by X^{\prime}. The projection map of X onto X^{\prime} relative to G will be denoted by f throughout this paper.
3. Collections of continua which fill a continuum. We will state a theorem and a corollary, from G. T. Whyburn [17, pp. 43-44], which are needed in the proofs of some of the theorems of this section.

Theorem W. If G is any uncountable collection of disjoint cuttings of a connected set M, then some element X of G separates in M a pair of points belonging to $G^{*}-X .^{1}$

Corollary W. No continuum of convergence K of a connected set M contains an uncountable collection of disjoint cuttings of M. Indeed, if a and b are points of K, no subset of K separates a and b in M.

Theorem 1. If G is a nondegenerate collection of disjoint continua filling a continuum X on a 2-manifold M, G_{0} is a countable subcollection of G, k is an integer such that M is separated by the sum of

[^1]every k elements of $G-G_{0}$, and D is a complementary domain of X, then the boundary of D is the sum of a finite number of continua B_{1}, \cdots, B_{m} each lying in some element of G.

Proof. It follows from work of J. H. Roberts' and N. E. Steenrod's [14, Lemma 1] that the boundary of D is the sum of a finite number of continua B_{1}, \cdots, B_{m}. Suppose B_{1} intersects each continuum of an uncountable subcollection G_{1} of G. There exists an uncountable collection Z such that each element of Z is the sum of k continua of $G_{1}-G_{0}$ and no two distinct elements of Z intersect. It follows from Theorem W that there is an element Q of Z such that $M-Q$ is the sum of two mutually separated sets H_{1} and H_{2} containing two continua g_{1} and g_{2}, respectively, of $G_{1}-G_{0}$. This involves a contradiction, since D does not intersect Q, and each of g_{1} and g_{2} contains a boundary point of D. Thus, since a continuum cannot be the sum of a countable number (greater than one) of disjoint closed sets, B_{1} must be contained in some element of G.

Corollary 1.1. Under the hypothesis of Theorem 1, let G_{2} be the set of elements of $G-G_{0}$ not intersecting the boundary of any complementary domain of X; then any k elements of G_{2} separate X, G_{2} is uncountable, and $f\left(G_{2}^{*}\right)$ is dense in X^{\prime}.

Proof. Suppose C is the sum of k elements of $G_{2}, M-C$ is the sum of two mutually separated sets H and K, and $X-C \subset H$. All of the complementary domains of X must then lie in H, contradicting the existence of K. Thus C must separate X. From Theorem 1, since X has at most a countable number of complementary domains, at most a countable number of elements of G intersect the boundary of a complementary domain of X; therefore G_{2} is uncountable and $f\left(G_{2}^{*}\right)$ is dense in X^{\prime}.

Theorem 2. If G is a collection of disjoint continua filling a continuum X in a connected space M, G_{0} is a countable subcollection of G, and k is an integer such that M is separated by every k elements of $G-G_{0}$, then G is upper semi-continuous and X^{\prime} is locally connected.

Proof. Suppose the sequence of points p_{1}, p_{2}, \cdots converges to p_{0}, where $p_{i}(i=0,1, \cdots)$ is a point in a continum g_{i} of the collection G. It will be shown that $g_{0} \supset \lim \sup \left\{g_{i}\right\}$. If $\lim \sup \left\{g_{i}\right\}$ intersects each continuum of an uncountable subcollection G_{1} of G, then, as in Theorem 1, obtain an uncountable collection Z of cuttings of M, each being the sum of k continua of $G_{1}-G_{0}$, and no one containing g_{0}. By Theorem

W, there is an element Q of Z such that $M-Q$ is the sum of two mutually separated sets H_{1} and H_{2} containing two continua g and g^{\prime}, respectively, of $G_{1}-G_{0}$ and such that $H_{1} \supset g_{0}$. But there exists an integer n such that $H_{1} \supset g_{i}$ for all $i>n$; thus g^{\prime} cannot intersect lim $\sup \left\{g_{i}\right\}$. This contradiction implies that $g_{0} \supset \lim \sup \left\{g_{i}\right\}$ and G is upper semi-continuous.

If X^{\prime} were not locally connected there would exist a sequence of disjoint nondegenerate continua X_{1}, X_{2}, \cdots in X^{\prime} converging to a nondegenerate continuum X_{0} in X^{\prime}. Let F be the collection consisting of G and the individual points of $M-G^{*}$. The collection F is upper semicontinuous, and M^{\prime} is connected. The nondegenerate continuum $f^{-1}\left(X_{0}\right)$ contains an uncountable collection of mutually exclusive cuttings of M, each consisting of k elements of $G-G_{0}$; thus X_{0} contains an uncountable collection of mutually exclusive cuttings of M^{\prime}, each consisting of k points. This contradicts Corollary W ; hence X^{\prime} is locally connected.

Theorem 3. (a) If G is a nondegenerate collection of disjoint continua filling a continuum X on a 2-manifold, and G_{0} is a countable subcollection of G such that every continuum of $G-G_{0}$ separates the manifold, then G is upper semi-continuous and X^{\prime} is a dendron.
(b) If each element of G separates the manifold into two complementary domains, then X^{\prime} is an arc.

Proof of (a). From Theorem 2, G is upper semicontinuous, and X^{\prime} is locally connected. From the proof of Corollary 1.1, all but a countable number of elements of G separate X; thus X^{\prime} has at most countably many nonseparating points. Every nondegenerate subcontinuum of X^{\prime} then contains uncountably many separating points of X^{\prime} so that X^{\prime} is a dendron [17, (1.1), p. 88].

Proof of (b). For each point x in X^{\prime}, let $g_{x}=f^{-1}(x)$. Suppose that some complementary domain D of X has a boundary which intersects two elements g_{a} and g_{b} of G. Since X^{\prime} is a dendron by (a), there exists an arc $[a b]$ in X^{\prime}. Let D_{1} be the complementary domain of $f^{-1}([a b])$ which contains D. By Corollary 1.1, there is a point c of ($a b$) such that g_{c} does not intersect the boundary of any complementary domain of $f^{-1}([a b])$. Let the two complementary domains of g_{c} be H and K, with D_{1} lying in H. Since D lies in H, g_{a} and g_{b} together with $f^{-1}([a c))$ and $f^{-1}((c b])$ must lie in H. All complementary domains of $f^{-1}([a b])$ must then lie in H, and K is empty. From this contradiction we conclude that the boundary of any complementary domain of X must lie in one element of G.

If g is an element of G which contains the boundary of some complementary domain of X, then as in a proof of Cohen's [7, Lemma 2.3],
it can be shown that g does not separate X. As in further proofs of Cohen's [7, Lemma 4.2 and Lemma 4.3], if [cd] is an arc of X^{\prime} and p a point of the open arc ($c d$), then g_{p} must separate g_{c} from g_{d} in M; thus, X^{\prime} cannot contain a simple triod. From part (a) above, X^{\prime} is a dendron; therefore, X^{\prime} is an arc.

Theorem 4. If G is a nondegenerate collection of disjoint continua filling a plane continuum X such that each element of G separates the plane into two complementary domains, then there exist two elements g_{0} and g_{1} of G such that $X-\left(g_{1}+g_{0}\right)$ is an open annulus.

Proof. By Theorem 3, X^{\prime} is an arc. From the proof of Theorem 3 , no element of G containing the boundary of a complementary domain of X can separate X. Using Theorem 1 and proceeding as in the case where G is a collection of simple closed curves [7, Theorem 4], we may show that the boundary of the unbounded complementary domain of X must be contained in an element g_{1} of G corresponding to an end point of X^{\prime}, the element g_{0} of G corresponding to the other end point of X^{\prime} must lie in the interior complementary domanin of g_{1}, and every point common to the interior domain of g_{1} and the exterior domain of g_{0} must be in X.

Theorem 5. If G is a collection of disjoint continua filling a plane continuum such that each element of G separates the plane into two complementary domains and is irreducible with respect to separating the plane, then G is a continuous collection.

Proof. Let X be the plane continuum filled by G. As in Theorem 3 and $4, G$ is upper semi-continuous, X^{\prime} is an arc [ab], and the interior of X is an open annulus. For each x in [ab] let g_{x} be the element of G such that $f\left(g_{x}\right)=x$. It will be sufficient to show that no sequence of elements of G converges to a proper subset of an element of G.

Suppose there is a sequence $g_{x_{1}}, g_{x_{2}}, \cdots$ of elements of G converging to a proper subset h of an element $g_{x_{0}}$ of G. Suppose without loss that $x_{0} \neq a$. Since $g_{x_{0}}$ is irreducible with respect to separating the plane, there exists an open disk D containing h but not containing all of $g_{x_{0}}$ and such that $D \cdot g_{a}=\phi$ if $x_{0}=b$ and $D \cdot\left(g_{a}+g_{b}\right)=\phi$ if $x_{0} \neq b$. For some x in $[a b], g_{x}$ lies entirely in D. Since x is neither a nor b, there exists a sub-arc $[c d]$ of (ab) such that $f^{-1}([c d])$ is contained in D and x is in $(c d)$. From the proof of Theorem $4, f^{-1}((c d))$ is an open annulus with inner boundary contained in g_{c} (or g_{a}). Then $f^{-1}([a c])$ (or $f^{-1}([d b])$) lies in D, contradicting the choice of D.

Note. In the following theorem, we are justified in referring to
X^{\prime}, since Theorem 2 and Theorem 3 assure us that G is upper semicontinuous.

Theorem 6. If G is a collection of disjoint simple closed curves filling a continuum X on a 2 -manifold M such that X^{\prime} is an arc, then X is an annulus, a Möbius strip, or a Klein bottle.

Lemma 6.1. If G is a collection of disjoint simple closed curves filling a continuum X on a 2-manifold M such that X^{\prime} is an arc or a simple closed curve, then G is a continuous collection.

Proof of Lemma 6.1.
Case 1. Suppose X^{\prime} is an arc. The proof proceeds in the same fashion as the proof of Theorem 5, since a proper subset h of an element of G is an arc or a point, and each open set containing h contains an open disk containing h.

Case 2. Suppose X^{\prime} is a simple closed curve, and g_{1}, g_{2}, \cdots is a sequence of elements of G converging to a proper subset h of an element g^{\prime} of G. We may break X^{\prime} into two arcs A_{1} and A_{2} with $f\left(g^{\prime}\right)$ interior to A_{1}. We may then choose a subsequence of g_{1}, g_{2}, \cdots whose elements correspond to points in A_{1} and, considering this subsequence and the arc A_{1}, proceed as in Case 1.

Lemma 6.2. Under the hypotheses of Theorem 6, X is a 2-manifold with boundary.

Proof of Lemma 6.2. Let X^{\prime} be the arc [ab], and for each x in [ab] let g_{x} be the element of G such that $f\left(g_{x}\right)=x$. By covering g_{x} with a circular chain of open disks, an open set of M containing g_{x} may be obtained which is homeomorphic to an open annulus or an open Möbius strip.

Case 1. Suppose g_{x} lies in an open annulus R, and x is in (ab); then there is an arc A of X^{\prime} such that $f^{-1}(A)$ is in R and x is an interior point of A. Using a theorem of Cohen's [7, Theorem 4], $f^{-1}(A)$ is a closed annulus, and each point of g_{x} is contained in an open disk in X.

Case 2. Suppose g_{x} lies in an open annulus R, and x is an endpoint (say b) of X^{\prime}; then, as in Case 1, there exists a closed annulus R_{1} contained in R such that $R_{1}=f^{-1}([c b])$, where $[c b]$ is a subarc of X^{\prime}. Let
p be a point of g_{x}, and D be a Euclidean neighborhood of p in R such that the diameter of D is less than the distance from g_{x} to $f^{-1}\left(X^{\prime}-\right.$ (cb]). Then $D \cdot X$ is contained in R_{1}, and considering X as space, p has a neighborhood in $D \cdot X$ whose closure is homeomorphic to a closed disk.

Case 3. Suppose g_{x} lies in an open Möbius strip R, but not in the interior of any annulus. Suppose without loss that $x \neq a$. If g_{x} separates R then $R-g_{x}=H+K$ where H is an open annulus and K an open Möbius strip, or H is an open disk and K an open Möbius strip with a closed disk removed. In either case K contains a simple closed curve J which fails to separate K, and thus fails to separate R; then g_{x} is contained in the open annulus $R-J$. Thus g_{x} does not separate R, and $R-g_{x}$ is an open annulus. Let [cx] be a subare of [ab] such that $f^{-1}([c x))$ is in $R-g_{x}$; then $f^{-1}([c x))$ is a half open annulus R_{1} from [7, Theorem 4]. By Lemma 6.1, G is continuous, and the boundary of R_{1} must be the sum of g_{c} and g_{x}. If $x \neq b$ there is another half open annulus $R_{2}=f^{-1}((x d])$ in $R-g_{x}$ whose boundary is the sum of g_{x} and g_{d}. But then g_{x} would lie interior to the annulus $f^{-1}([c d])$. This contradicts the choice of g_{x}; thus x must be equal to b. Let p be a point of g_{b}. Choose a disk R_{p} which contains p, has a simple closed curve C for a boundary, does not intersect $f^{-1}([a c])$, and is such that the sum of $g_{b} \cdot c l\left(R_{p}\right)$ and C is a theta-curve. Let R_{1} and R_{2} be the two complementary domains of the theta-curve which lie in R_{p}. Since p is on the boundary of $f^{-1}([c b)), R_{1}$ (say) must intersect $f^{-1}([c b))$. If $R_{1}-X$ is not empty, R_{1} must intersect the bonndary of $f^{-1}([c b))$ since R_{1} is connected. But neither g_{c} nor g_{b} intersect R_{1}, and thus R_{1} is contained in X. Similarly, either R_{2} does not intersect X, or R_{2} lies entirely in X; in either case, considering X as space, p has a neighborhood in $X \cdot R_{p}$ whose closure is homeomorphic to a closed disk.

Thus, in any case, X is a 2 -manifold with boundary.
Proof of Theorem 6. It follows from results of J. M. Slye's [15, Theorem 1 and Corollary 10] that if G is an upper semi-continuous collection of simple closed curves filling a continuum X which is a 2manifold with boundary, and X^{\prime} is an are, then X must be an annulus, a Möbius strip or a Klein bottle. Thus, Theorem 6 follows directly from Lemma 6.2 and Slye's results.

Remark. The following is a brief outline of a direct proof of Theorem 6, which does not use Slye's results.

In Case 3 of the proof of Lemma 6.2, cover g_{b} with a set of open disks $R_{1}, R_{2}, \cdots, R_{n}$ in $M-f^{-1}([a c])$ with boundaries consisting of simple closed curves $C_{1}, C_{2}, \cdots, C_{n}$ such that $R_{1}+R_{2}+\cdots+R_{n}$ is an open

Möbius strip and such that, for $i=1,2, \cdots, n$, the sum of C_{i} and $g_{b} \cdot \operatorname{cl}\left(R_{i}\right)$ is a theta-curve with interior complementary domain H_{i} and K_{i}. Suppose that the complementary domains have been numbered so that each domain in the sequence $H_{1}, H_{2}, \cdots, H_{n}, K_{1}, K_{2}, \cdots, K_{n}, H_{1}$ intersects the next domain in the sequence. As before, any domain intersecting X must lie in X; thus by an inductive process the whole Möbius strip $R_{1}+R_{2}+\cdots+R_{n}$ lies in X. If c is in ($a b$), it can be shown that, depending on whether g_{a} and g_{b} fall under Case 2 or Case 3 , each of $f^{-1}([a c])$ and $f^{-1}([c b])$ is an annulus or a Möbius strip. Thus X itself must be an annulus, a Möbius strip, or a Klein bottle.

Corollary 6.1. If G is a collection of disjoint simple closed curves filling a continuum X on a 2-manifold M such that X^{\prime} is a simple closed curve, then X must fill M and be a torus or a Klein bottle.

Theorem 7. If G is a nondegenerate collection of disjoint simple closed curves filling a proper subcontinuum X of a 2-manifold M, then X must be an annulus or a Mòbius strip.

Proof. By Theorem 2 and Theorem 13, G must be upper semicontinuous and X^{\prime} locally connected. Thus X^{\prime} must be a dendron, for if X^{\prime} contains a simple closed curve, then, by Corollary $6.1, X$ would fill M. Since M is a 2 -manifold, Theorem 6 implies that X^{\prime} contains no simple triod. Thus X^{\prime} must be an arc, and Theorem 7 follows from Theorem 6.

Remark. If the restriction that X be a proper subcontinuum of M were removed in Theorem 7, X could also be a torus of a Klein bottle.

Corollary 7.1. If G is a collection of disjoint simple closed curves filling a continuum X on a 2 -manifold M, then G is continuous and X^{\prime} is an arc or a simple closed curve.

Proof. As in the proof of Theorem 7, either the decomposition space X^{\prime} is an arc or it contains a simple closed curve. If X^{\prime} contains a simple closed curve, it must be one by Corollary 6.1. The continuity of G follows from Lemma 6.1.
4. Conditions under which a homogeneous continuum on a 2 . manifold is a simple closed curve.

Theorem 8. If X is a homogeneous proper subcontinuum of a 2
manifold M, and X contains a simple closed curve, then X must be a simple closed curve.

Proof. Suppose X is not a simple closed curve.
(1) X is one-dimensional, for otherwise X would contain an open set in M and thus would contain M. This contradicts the hypothesis of Theorem 8.
(2) X is not locally connected, for using (1) and a result of Anderson's [1, Theorem 13], X must be either a simple closed curve or the universal one-dimensional curve. This is a contradiction in either case, since the universal curve contains no open set which can be embedded in the plane.
(3) Because X is not locally connected, there is a disk on M containing an open set of X which has uncountably many components [7, Lemma 2.1 and Corollary 2.11].
(4) Suppose X contains a simple triod. By (3), some open set D of X is contained in a disk of M and has uncountably many components; thus the homogeneity of X implies that D contains uncountably many disjoint simple triods. This contradicts a theorem of R. L. Moore's [13, Theorem 75, p. 254]; thus X contains no simple triod.
(5) No two simple closed curves in X intersect, for if some two did intersect then X would contain a simple triod, contrary to (4).
(6) Let G be the collection of all simple closed curves in X; then G fills X and the elements of G are disjoint, since by homogeneity each point of X lies on a simple closed curve and by (5) no two simple closed curves intersect.

By Theorem 7, X must be an annulus or a Möbius strip; this contradicts (1), and Theorem 8 follows.

Corollary 8.1. If a nondegenerate proper subcontinuum of a 2manifold is locally connected and homogeneous, then it must be a simple closed curve.

Proof. This corollary follows from (1) and (2) in the proof of Theorem 8.

Corollary 8.2. No locally homogeneous proper subcontinuum of a 2-manifold contains a simple triod.

Proof. This corollary is obtained as in (3) and (4) of the proof of Theorem 8, where the homogeneity condition may be replaced by local homogeneity.

Remark. Cohen [7, Theorem 3] has shown that a homogeneous,
arcwise connected, plane continuum must be a simple closed curve. In a similar fashion, we have the following result.

Theorem 9. If the nondegenerate continuum X is arcwise connected, contains no simple triod, and is either nearly homogeneous or locally homogeneous; then X is a simple closed curve.

Corollary 9.1. If a nondegenerate proper subcontinuum of a 2manifold is locally homogeneous and arcwise connected then it must be a simple closed curve.

This corollary follows from Corollary 8.2 and Theorem 9.
Theorem 10. If a nondegenerate proper subcontinuum of a 2manifold is aposyndetic and homogeneous, then it must be a simple closed curve.

Lemma 10.1. Suppose A is an arc, and G is a countably infinite collection of disjoint arcs such that if $A_{i}=\left[x_{i} y_{i}\right]$ is an arc of G for $i=1,2, \cdots$, then $A_{i} \cdot A=x_{i}+y_{i}$; then for any positive integer k, there exist k disjoint simple closed curves contained in $A+G^{*}$.

Proof of Lemma 10.1. For convenience, let A be the unit interval [01]. Without loss of generality, suppose that x_{1}, x_{2}, \cdots is a monotone sequence converging to a point x of A, and y_{1}, y_{2}, \cdots is a monotone sequence converging to a point y of A.

Case 1. If $x \neq y$, let I_{x} and I_{y} be disjoint open intervals (or half open intervals if x or y is an endpoint of A) of A, containing x and y respectively. Suppose, without loss, that each point of the sequence x_{1}, x_{2}, \cdots lies in I_{x} and each point of the sequence y_{1}, y_{2}, \cdots lies in I_{y}. Let $[p q]_{A}$ denote a subinterval of A with the points p and q as endpoints. Then $J_{1,2}=\left[x_{1} x_{2}\right]_{A}+\left[y_{1} y_{2}\right]_{A}+A_{1}+A_{2}$ is a simple closed curve in $A+G^{*}$. Indeed, $\left\{J_{(2 n-1), 2 n}\right\}$ for $n=1,2, \cdots, k$ is a set of k disjoint simple closed curves in $A+G^{*}$, where $J_{2 n-1,2 n}=\left[x_{2 n-1} x_{2 n}\right]_{A}+\left[y_{2 n-1} y_{2 n}\right]_{A}$ $+A_{2 n-1}+A_{2 n}$.

Case 2. Suppose $x=y$. If the two sequences x_{1}, x_{2}, \cdots and y_{1}, y_{2}, \cdots converge to x from opposite sides, then the construction in Case 1 will give the desired set of simple closed curves. Suppose for convenience, that both sequences converge to x from the left. There exists an increasing sequence of positive numbers r_{1}, r_{2}, \cdots such that for each i, both $x_{r_{i+1}}$ and $y_{r_{i+1}}$ lie to the right of both $x_{r_{i}}$ and $y_{r_{i}}$ on A. Then $\left\{J_{n}\right\}$, for $n=1,2, \cdots, k$, is a set of k disjoint simple closed
curves in $A+G^{*}$, where $J_{n}=\left[x_{r_{n}} y_{r_{n}}\right]_{A}+A_{r_{n}}$.
Lemma 10.2. If X is a continuum satisfying the hypothesis of Theorem 10, then the boundary of each complementary domain of X is locally connected. ${ }^{2}$

Proof of Lemma 10.2. Let D be a complementary domain of X. The boundary of D must consist of a finite number of continua B_{1}, B_{2}, \cdots, B_{m} by a lemma of Roberts' and Steenrod's [14, Lemma 1]. Suppose B_{1} fails to be locally connected at a point q. Let R be a disk containing q such that $c l(R)$ intersects no B_{i} for $i=2,3, \cdots, m$. By a standard construction, there are two open sets R_{1} and R_{2} with closures in R, a continuum X_{0} in R, and a sequence of disjoint continua X_{1}, X_{2}, \cdots in R with the following properties:
(1) $\operatorname{cl}\left(R_{1}\right)$ does not intersect $\operatorname{cl}\left(R_{2}\right)$,
(2) R_{1} and R_{2} have simple closed curves C_{1} and C_{2}, respectively, for boundaries,
(3) for each i, X_{i} contains both a point of C_{1} and a point of C_{2} and is a component of the common part of B_{1} and $R-\left(R_{1}+R_{2}\right)$, and
(4) the sequence X_{1}, X_{2}, \cdots converges to X_{0}.

Let p be a point of $X_{0}-\left(c l\left(R_{1}\right)+c l\left(R_{2}\right)\right)$, ε be a positive number less than the distance from p to $c l\left(R_{1}\right)+c l\left(R_{2}\right)$, and $V_{\varepsilon}(p)$ be a circular neighborhood of p with a circle C_{ε} as boundary. Then there exists a circular neighborhood $V_{\delta}(p)$ with a circle C_{δ} as boundary such that $\delta<\varepsilon$ and all of $X-V_{\varepsilon}(p)$ lies in one component N of $X-V_{\delta}(p)$. That such a $V_{\delta}(p)$ exists follows as in a theorem of Whyburn's [16, (6.22)], since X, being compact and aposyndetic, must be semi-locally connected, and p must not be a cut point of X because X is homogeneous. Without loss of generality, suppose that the $X_{i}(i=1,2, \cdots)$ have been chosen so that each intersects $V_{\delta}(p)$ and such that $\left(X_{1} \cdot C_{j}\right),\left(X_{2} \cdot C_{j}\right)$, \ldots are ordered, as named, along the simple closed curve $C_{j}(j=1,2)$. Without change of notation, consider $X_{i}(i=1,2, \cdots)$ to be irreducible from C_{1} to C_{2}.

An open set O_{1} in R is bounded by $X_{1}+X_{2}+A_{11}+A_{12}$, where A_{11} is an arc in C_{1} irreducible from X_{1} to X_{2} and intersecting no X_{j} with $j>2$, and A_{12} is a similar arc in C_{2}. In the same way, for $i=1,2, \ldots$ obtain a "corridor" O_{i} between the continua X_{i} and X_{i+1} bounded by X_{i}, X_{i+1} and arcs $A_{i 1}$ and $A_{i 2}$ in C_{1} and C_{2} respectively. Now, since each X_{i} is on the boundary of D, for $i=2,3,4, \cdots$ we may choose a point z_{i} in $X_{i} \cdot V_{\delta}(p)$ and a neighborhood U_{i} of z_{i} in $V_{\delta}(p)$ such that U_{i} contains a point p_{i} of D and intersects no X_{j} for $j \neq i$. The point

[^2]p_{i} must lie in O_{i} or O_{i-1}. Possibly discarding some of the $p_{i}(i=1$, $2, \cdots)$ and $X_{i}(i=2,3, \cdots)$, and re-numbering the remaining points, continua, and corresponding corridors (retaining the same order as before); we arrive at a set of points $\left\{p_{i}\right\}$ of D with p_{i} in $O_{i} \cdot V_{\delta}(p)(i=1,2, \cdots)$.

Run an are $\left[p_{1} p_{2}\right]$ in D from p_{1} to p_{2}. Let x_{1} be the last point of $C_{\delta} \cdot O_{1}$ on $\left[p_{1} p_{2}\right]$ in the order p_{1} to p_{2}. Let y_{1} be the first point of C_{δ} in the order x_{1} to p_{2} along ($x_{1} p_{2}$], a subarc of $\left[p_{1} p_{2}\right]$. Then y_{1} is in some $O_{j_{1}}$ with $j_{1} \neq 1$, and ($x_{1} y_{1}$) lies in $D-\operatorname{cl}\left(V_{\delta}(p)\right)$, where $\left(x_{1} y_{1}\right)$ is an open subarc of $\left[p_{1} p_{2}\right]$. Choose n_{2} such that $n_{2}>1$ and $n_{2}>j_{1}$. Now run an arc $\left[p_{n_{2}} p_{n_{2}+1}\right]$ in $D-\left[x_{1} x_{2}\right]$ from $p_{n_{2}}$ to $p_{n_{2}+1}$. As before let x_{2} be the last point of $C_{\delta} \cdot O_{n_{2}}$ on $\left[p_{n_{2}} p_{n_{2}+1}\right]$ in the order $p_{n_{2}}$ to $p_{n_{2}+1}$, and y_{2} the first point of C_{δ} in the order x_{2} to $p_{n_{2}+1}$ along ($x_{2} p_{n_{2}+1}$; then y_{2} is in some $O_{j_{2}}$ with $j_{2} \neq n_{2}$, and $\left(x_{2} y_{2}\right)$ lies in $D-c l\left(V_{\delta}(p)\right)$. Continue constructing disjoint arcs $\left[x_{i} y_{i}\right]$ in this manner such that for $i=1,2, \cdots$:
(1) x_{i} is in $C_{\delta} \cdot O_{n_{i}}$,
(2) y_{i} is in $C_{\delta} \cdot O_{j_{i}}$ with $j_{i} \neq n_{i}$,
(3) $n_{k}>n_{i}$ for $k>i$ and $n_{k}>j_{i}$ for $k>i$,
(4) $\left[x_{i} y_{i}\right]$ lies in $D-\sum_{k=1}^{i-1}\left[x_{k} y_{k}\right]$, and
(5) $\left(x_{i} y_{i}\right)$ lies in $D-c l\left(V_{\delta}(p)\right)$.

The set $\sum_{i=1}^{\infty}\left(x_{i}+y_{i}\right)$ is a subset of an arc A in C_{δ}. Lemma 10.1 may now be applied to the arc A and the set of $\operatorname{arcs}\left\{A_{i}\right\}$ where, for $i=1,2, \cdots, A_{i}=\left[x_{i} y_{i}\right]$. Using Theorem 13 and the construction in Lemma 10.1, obtain m disjoint simple closed curves $J_{1}^{\prime}, J_{2}^{\prime}, \cdots, J_{m}^{\prime}$ whose sum separates M and such that each one is the sum of one or two arcs from the set $\left\{A_{i}\right\}$ and one or two arcs of C_{δ}.

Case 1. Suppose the simple closed curves are of the form given in Case 1 and the first part of Case 2 of Lemma 10.1. We can then re-number the arcs and corridors so that $J_{n}^{\prime}=\left[x_{2 n-1} x_{2 n}\right]_{\delta}+\left[y_{2 n-1} y_{2 n}\right]_{\delta}+$ $A_{2 n-1}+A_{2 n}(n=1,2, \cdots, m)$, and $x_{1}, x_{2}, \cdots, x_{2 m}$ forms an ordered set along C_{δ}, where $[p q]_{\delta}$ denotes a subarc of A with endpoints p and q. For each $n(n=1,2, \cdots, m)$, replace the $\operatorname{arcs}\left[x_{2 n-1} x_{2 n}\right]_{\delta}$ and $\left[y_{2 n-1} y_{2 n}\right]_{\delta}$ with arcs $\left[x_{2 n-1} x_{2 n}\right]_{V}$ and $\left[y_{2 n-1} y_{2 n}\right]_{V}$, respectively, such that the $2 m$ arcs of $\left(\left[x_{2 n-1} x_{2 n}\right]_{V},\left[y_{2 n-1} y_{2 n}\right]_{V}\right\}$ are disjoint, and $\left(x_{2 n-1} x_{2 n}\right)_{V}$ and $\left(y_{2 n-1} y_{2 n}\right)_{V}$ are open arcs lying in $V_{\delta}(p)$. Let J_{1}, \cdots, J_{m} be the new simple closed curves obtained from $J_{1}^{\prime}, \cdots, J_{m}^{\prime}$ by the replacement of arcs as described above.

We will now show that if z_{1} and z_{2} are points of C_{δ} which lie in different corridors O_{1} and O_{2}, respectively, and each of z_{1} and z_{2} is an end point of some arc in D like the $\left[x_{i} y_{i}\right]$ described above; then the arc $\left[z_{1} z_{2}\right]_{\delta}$ of C_{δ} must intersect N. Let $\left[z_{1} z_{3}\right]$ be an arc in D such that z_{3} is in $C_{\delta} \cdot O_{i}$ where $i \neq 1$ and $\left(z_{1} z_{3}\right)$ lies in $D-\operatorname{cl}\left(V_{\delta}(p)\right)$. Let $\left[z_{2} z_{4}\right]$ be an arc in D such that z_{4} is in $C_{\delta} \cdot O_{j}$, where $j \neq 2$ and $\left(z_{2} z_{4}\right)$ lies in
$D-\operatorname{cl}\left(V_{\delta}(p)\right)$. Let B be the subarc $\left[z_{1} z_{1}^{\prime}\right]$ of $\left[z_{1} z_{3}\right]$, such that z_{1}^{\prime} is the first point of C_{ε} on $\left[z_{1} z_{3}\right]$ in the order z_{1} to z_{3}. Let E be the subarc [$\left.z_{2} z_{2}^{\prime}\right]$ of $\left[z_{2} z_{4}\right]$, such that z_{2}^{\prime} is the first point of C_{8} on $\left[z_{2} z_{4}\right]$ in the order z_{2} to z_{4}. Let $C=\left[z_{1}^{\prime} z_{2}^{\prime}\right]_{\varepsilon}$ be an arc of C_{ε} in the same direction as the arc $F=\left[z_{1} z_{2}\right]_{\delta}$ on C_{δ}. Let J be the simple closed curve $B+C+E+$ F whose interior lies between C_{δ} and C_{8}. Then F must intersect X since z_{1} and z_{2} lie in different corridors, and B and E are in D. Suppose N does not intersect F, then no component of $X-V_{\delta}(p)$ can intersect both F and C, for such a component would be contained in N. However, every component of $X-V_{\delta}(p)$ must intersect C_{δ}, and thus each component of $X-V_{\delta}(p)$ which intersects the interior of J must intersect either F or C. Let H be the set of components of $X-V_{\delta}(p)$ intersecting F, and let K be the set of components intersecting C. Then H^{*} and K^{*} are disjoint closed sets. Then by a theorem proved by Moore [13, Theorem 12, p. 189], there exists an arc from B to E, lying interior to J except for end points, which does not intersect X and thus must lie in D. But then z_{1} can be connected to z_{2} by an arc in $D \cdot \operatorname{cl}\left(V_{\varepsilon}(p)\right)$; this contradicts the choice of ε and the fact that z_{1} and z_{2} lie in different corridors O_{1} and O_{2}. Therefore N must intersect the interior of $F=\left[z_{1} z_{2}\right]_{\delta}$.

By the construction of Lemma 10.1, all of the $\left[x_{2 n-1} x_{2 n}\right]_{\delta}$, for $n=$ $1,2, \cdots, m$, must lie in an arc of C_{δ} containing none of the $y_{i}(i=1$, $2, \cdots, 2 m)$. Then from the discussion above, since x_{1}, x_{2}, and x_{3} each lie in different corridors, the interior of each of the $\operatorname{arcs}\left[x_{1} x_{2}\right]_{\delta}$ and $\left[x_{2} x_{3}\right]_{\delta}$ must contain a point of N. We can then choose an arc $\left[u_{1} x_{2} u_{2}\right]_{\delta}$ of C_{δ} such that
(1) $u_{1}+u_{2} \subset N$,
(2) $\left(u_{1} x_{2} u_{2}\right)_{\delta}$ does not intersect N,
(3) u_{1} is a point of $\left(x_{1} x_{2}\right)_{\delta}$,
(4) u_{2} is a point of $\left(x_{2} x_{3}\right)_{\delta}$, and
(5) $\left[u_{1} x_{2} u_{2}\right]_{\delta}-x_{2}$ intersects no $J_{n}(n=1,2, \cdots, m)$.

Case 2. Suppose the simple closed curves $J_{1}^{\prime}, \cdots, J_{m}^{\prime}$ are of the form given in the second part of Case 2 in the proof of Lemma 10.1. We can then re-number the arcs and corridors so that $J_{n}^{\prime}=\left[x_{n} y_{n}\right]_{\delta}+$ $A_{n}(n=1,2, \cdots, m)$, and $x_{1}, y_{1}, x_{2}, y_{2}, \cdots, x_{m}, y_{m}$ forms an ordered set on A. As before, for $n=1,2, \cdots, m$ replace $\left[x_{n} y_{n}\right]_{\delta}$ by the are $\left[x_{n} y_{n}\right]_{\nabla}$ such that $\left(x_{n} y_{n}\right)_{V}$ lies in $V_{\delta}(p)$; thus obtain the set of disjoint simple closed curves $\left\{J_{n}\right\}$, where $J_{n}=\left[x_{n} y_{n}\right]_{V}+A_{n}$.

Since x_{1} and y_{1} lie in different corridors as do y_{1} and x_{2}, we can obtain an arc $\left[u_{1} y_{1} u_{2}\right]_{\delta}$ of C_{δ} such that
(1) $\left(u_{1}+u_{2}\right) \subset N$,
(2) $\left(u_{1} y_{1} u_{2}\right)_{\delta}$ does not intersect N,
(3) u_{1} is a point of $\left(x_{1} y_{1}\right)_{\delta}$,
(4) u_{2} is a point of $\left(y_{1} x_{2}\right)_{\delta}$, and
(5) $\left[u_{1} y_{1} u_{2}\right]_{\delta}-y_{1}$ intersects no $J_{n}(n=1,2, \cdots, m)$.

Notice that, in each of the above cases, N does not intersect $J_{1}+J_{2}+\cdots+J_{m}$.

For purposes of the remainder of the proof, Case 1 and Case 2 are identical, and we will use the notation of Case 2. Assume, without loss, that $J_{1}+J_{2}+\cdots+J_{m}$ separates M, but $J_{2}+\cdots+J_{m}$ does not. There exist points c and d separated from each other on M by $J_{1}+J_{2}$ $+\cdots+J_{m}$ and an arc $[c d]$ of M which does not intersect $J_{2}+\cdots+$ J_{m} and thus must intersect J_{1}. Choose $\varepsilon_{1}>0$ such that $\varepsilon_{1}<\min \left[\rho\left(u_{1}\right.\right.$, $\left.\left.J_{1}\right), \rho\left(u_{2}, J_{1}\right), \rho\left(c, J_{1}\right), \rho\left(d, J_{1}\right), \rho\left(J_{1}, J_{k}\right), k=2,3, \cdots, m\right]$. Let U be an annulus or Möbius strip contained in an ε_{1} cover of J_{1} such that J_{1} is interior to U. Let c_{1} be the first point of J_{1} on $[c d]$ in the order c to d and c_{0} a point of $U \cdot[c d]$ preceding c_{1} on $[c d]$ in the order c to d. Then in $U-J_{1}$ there is an arc B_{1} from c_{0} to a point a_{1} of $\left(u_{1} y_{1}\right)_{\delta}$ (consider u_{1} and u_{2} re-numbered if necessary). Similarly construct an arc B_{2} in $U-J_{1}$ from d_{0} to a point b_{1} of $\left(y_{1} u_{2}\right)_{\delta}$ or $\left(u_{1} y_{1}\right)_{\delta}$, where d_{0} is a point of $U \cdot[c d]$ preceding the first point $d_{\mathfrak{\Sigma}}$ of J_{1} on $[c d]$ in the order d to c. If b_{1} is in $\left(y_{1} u_{2}\right)_{\delta}$ then $\left[c c_{0}\right]+B_{1}+\left[u_{1} a_{1}\right]_{\delta}+N+\left[b_{1} u_{2}\right]_{\delta}+B_{2}+$ [$d_{0} d$] is a continuum in $M-\sum_{i=1}^{m} J_{i}$ containing both c and d, and if b_{1} is in $\left(u_{1} y_{1}\right)_{\delta}$ then $\left[c c_{0}\right]+B_{1}+\left[u_{1} a_{1}\right]_{\delta}+N+\left[u_{1} b_{1}\right]_{\delta}+B_{2}+\left[d_{0} d\right]$ is a continuum in $M-\sum_{i=1}^{m} J_{i}$ containing both c and d. This contradiction establishes Lemma 10.2.

Proof of Theorem 10. Suppose X is an aposyndetic homogeneous nondegenerate subcontinuum of a 2-manifold, and X is not a simple closed curve. By Theorem 8, X contains no simple closed curve. It follows from Corollary 8.2 and Lemma 10.2 that a component B_{1} of the boundary of a complementary domain D of X must be an arc. Cover B_{1} with an open disk R that does not intersect any other component of the boundary of D and does not contain X. Since X is connected, R must intersect $X-B_{1}$. Since B_{1} is part of the boundary of $D, R-B_{1}$ is a connected set intersecting both X and D, and thus intersecting the bounday of D; this contradicts our choice of R. Therefore X is a simple closed curve.

Corollary 10.1. Every 2-homogeneous nondegenerate proper subcontinuum of a 2-manifold is a simple closed curve.

Proof. C. E. Burgess has shown that any 2-homogeneous continuum is aposyndetic [6, Theorem 7]. Corollary 10.1 then follows directly from Theorem 10 and the fact that each 2-homogeneous continuum is homogeneous [5, Theorem 1].

Corollary 10.2. Every homogeneous nondegenerate continuum, which contains a non-cutpoint and lies on a 2-manifold, is a simple closed curve.

Proof. This follows directly from Theorem 10 and the proof of a theorem of Jones' [10, Theorem 2].

5. Decomposition of decomposable homogeneous continua.

Theorem 11. If a proper subcontinuum X of a 2-manifold M is decomposable and homogeneous, then there exists a continuous collection G of disjoint continua filling X such that X^{\prime} is a simple closed curve, and the elements of G are mutually homeomorphic, homogeneous treelike continua.

Proof. A theorem of Jones' [12, Theorem 1] gives a nondegenerate continuous collection G of mutually exclusive continua filling X such that
(1) X^{\prime} is a homogeneous aposyndetic continuum,
(2) the elements of G are mutually homeomorphic, homogeneous continua, and
(3) if g is a continuum of the collection G and K a subcontinuum of X containing both a point of g and a point of $X-g$, then g is a subset of K.

Case 1. Suppose that each element g of G is treelike. A theorem of Roberts' and Steenrod's [14, Theorem 1] implies that the collection consisting of the elements of G together with the individual points of $M-X$ forms an upper semi-continuous decomposition of M such that M^{\prime} is homeomorphic to M. Then since X^{\prime} is an aposyndetic homogeneous continuum on a 2 -manifold, it must be a simple closed curve by Theorem 10.

Case 2. Suppose that each element of G is nontreelike. Since X^{\prime} is homogeneous, it can have no separating point; thus, for any element g of $G, X-g$ is connected and lies in a complementary domain D of $M-g$. By a result due to Roberts and Steenrod [14, Lemma 1], D must contain a continuum K such that $D-K=H_{1}+\cdots+H_{s}$ where the H_{i} are disjoint open cylinders. By the continuity of G, there is some subcollection G_{1} of G filling a continuum A in one of these open cylinders. Think of this cylinder as embedded in the plane. Each element of G_{1} must separate the plane [2, Theorem 6]; indeed, each element of G_{1} must have two complementary domains, since the elements of G are homeomorphic and the plane does not contain uncountably
many disjoint continua each having three or more complementary domains. By Theorem 4, A is two-dimensional; this is a contradiction, since X is one-dimensional. Case 2 is thus vacuous, and Theorem 11 is established.

Remark. In the proof of Theorem 11, each element of G_{1} fails to separate the plane, and thus each element of G is indecomposable by a theorem of Jones' [11, Theorem 2]. The indecomposability of the elements of G also follows, as in the proof of Theorem 12, from a theorem proved by E. Dyer [8, p. 591].

Theorem 12. If X is a decomposable continuum which is homogeneous and hereditarily finitely multicoherent ${ }^{3}$, then there is a nondegenerate continuous collection G of disjoint continua filling X such that X^{\prime} is a simple closed curve and the elements of G are mutually homeomorphic, homogeneous, indecomposable continua.

Lemma 12.1. An aposyndetic hereditarily finitely multicoherent continuum must be locally connected.

Proof of Lemma 12.1. Let X be an aposyndetic hereditarily finitely multicoherent continuum. As in the proof Burgess [6, Theorem 8] has given for the case where X is hereditarily unicoherent, for any subcontinuum K of X and point p of $X-K$, there exists a positive integer m and continua $X_{1}, X_{2}, \cdots, X_{m}, Y_{1}, Y_{2}, \cdots, Y_{m}$ such that $K \subset\left[\left(X-X_{1}\right)\right.$ $\left.+\left(X-X_{2}\right)+\cdots+\left(X-X_{m}\right)\right]$ and, for each $i(i \leqq m), X_{i}+Y_{i}=X$ and $p \subset X-Y_{i}$. Since X is hereditarily finitely multicoherent, the common part of the continua $X_{1}, X_{2}, \cdots, X_{m}$ is the sum of a finite number of continua $Z_{1}, Z_{2}, \cdots Z_{n}$ not intersecting K. Then $X=Z_{1}+$ $Z_{2}+\cdots+Z_{n}+Y_{1}+Y_{2}+\cdots+Y_{m}$, and X is locally connected by a theorem of Moore's [13, Theorem 51, p. 134].

Lemma 12.2 A locally connected, hereditarily finitely multicoherent continuum X must be hereditarily locally connected.

Proof of Lemma 12.2. Suppose Y is a subcontinuum of X which fails to be locally connected. Then there exists a sequence of disjoint nondegenerate continua N_{1}, N_{2}, \cdots in Y converging to a nondegenerate continuum N. Let p_{1} and p_{2} be points of N and R_{1} and R_{2} be open sets containing, respectively, p_{1} and p_{2} such that $\operatorname{cl}\left(R_{1}\right) \cdot \operatorname{cl}\left(R_{2}\right)=O$. Since X is locally connected, there exist connected open sets U_{1} and

[^3]U_{2} containing p_{1} and p_{2}, respectively, such that U_{1} and U_{2} are contained in R_{1} and R_{2}, respectively. We may choose a sequence of disjoint continua M_{1}, M_{2}, \cdots such that each M_{i} is a subcontinuum of some N_{j}, each M_{i} is irreducible from $\operatorname{cl}\left(U_{1}\right)$ to $c l\left(U_{2}\right)$, and the sequence M_{1}, M_{2}, \ldots converges to a subcontinuum M of N. Then $\operatorname{cl}\left(U_{1}\right)+\sum_{i=1}^{\infty} M_{i}+M$ and $c l\left(U_{2}\right)+\sum_{i=1}^{\infty} M_{i}+M$ are two subcontinua of X whose intersection is the sum of an infinite number of disjoint continua. This is a contradiction; hence, X must be hereditarily locally connected

Proof of Theorem 12. There exists a nondegenerate continuous collection G of disjoint continua filling X having the properties given at the beginning of the proof of Theorem 11. If A is a subcontinuum of X^{\prime}, a result of Whyburn's [17, p. 154] for monotone decompositions implies that A is finitely multicoherent if $f^{-1}(A)$ is finitely multicoherent; thus X^{\prime} must be hereditarily finitely multicoherent. But X^{\prime} is aposyndetic and thus, by Lemma 12.1, must be locally connected. By Lemma 12.2, X^{\prime} is hereditarily locally connected, and Burgess [6, Theorem 14] has shown that a nondegenerate continuum which is homogeneous and hereditarily locally connected must be a simple closed curve.

To show the indecomposability of the elements of G, let us choose a continuous subcollection G_{1} of G which is an are with respect to its elements. Let g_{0} and g_{1} be the end elements of this arc, and x_{0} and x_{1} be points in g_{0} and g_{1} respectively. A continuum K in G_{1}^{*} which contains x_{0} and x_{1} must also contain each element of G_{1} which it intersects. But K must then contain both g_{0} and g_{1}, and, since K is connected, K must fill G_{1}^{*}; i.e. G_{1}^{*} is irreducible from x_{0} to x_{1}. Dyer [$8, \mathrm{p} .591]$ has shown that such a collection must contain an indecomposable continuum; thus, each continuum of G is indecomposable.

References

1. R. D. Anderson, One dimensional continuous curves and a homogeneity theorem, Ann. of Math., 68 (1958), 1-16.
2. R. H. Bing, Snake-like continua, Duke Math. J., 18 (1951), 653-663.
3. -, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canadian J. Math., 12 (1960), 209-230.
4. R. H. Bing and F. B. Jones, Another homogeneous plane continuum, Trans. Amer. Math. Soc., 90 (1959), 171-192.
5. C. E. Burgess, Some theorems on n-homogeneous continua, Proc. Amer. Math. Soc., 5 (1954), 136-143.
6. Continua and various types of homogeneity, Trans. Amer, Math. Soc., 88 (1958), 366-374.
7. H. J. Cohen, Some results concerning homogeneous plane continua, Duke Math. J., 18 (1951), 467-474.
8. E. Dyer, Irreducibility of the sum of the elements of a continuous collection of continua, Duke Math J., 20 (1953), 589-592.
9. F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math., 63 (1941), 545-553.
10. -. A note on homogeneous plane continua, Bull. Amer. Math. Soc., 55 (1949), 113-114.
11. Certain homogeneous unicoherent indecomposable continua, Proc. Amer. Math. Soc., 2 (1951), 855-859.
12. On a certain type of homogeneous plane continuum, Proc. Amer. Math Soc., 6 (1955), 735-740.
13. R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Colloquium Publications, vol. 13, 1932.
14. J. H. Roberts and N. E. Steenrod, Monotone transformations of two-dimensional manifolds, Ann. of Math., 39 (1938), 851-863.
15. J. M. Slye, Collections that are 2-manifolds, Duke Math. J., 24 (1957), 275-298.
16. G. T. Whyburn, Semi-locally connected sets, Amer. J. Math., 61 (1939), 733-749.
17. -, Analytic Topology, Amer. Math. Soc. Colloquium Publications, vol. 28, 1942.
18. R. L. Wilder, Sets which satisfy certain avoidability conditions, Casopis pro Pestovani Matematiky a Fysiky, 67 (1938), 185-198.
19. ——, Property S_{n}, Amer. J. Math., 61 (1939), 823-832.

University of Utah

[^0]: Received July 5, 1961. This paper is part of a thesis submitted to the faculty of the University of Utah in partial fulfillment of the requirements for the Ph. D. degree, June, 1961. The author is indebted to Professor C. E. Burgess for his encouragement and advice.

[^1]: ${ }^{1}$ For any collection G, G^{*} denotes the sum of the sets of G.

[^2]: ${ }^{2}$ As noted by the referee for this paper, Lemma 10.2 is closely related to results (mainly for the plane or n-sphere) of Jones' [9], Whyburn's [16], and Wilder's [18 and 19]. Indeed, the proof given here was motivated by the proof of Theorem 14 in [16].

[^3]: ${ }^{3}$ A continuum X is said to be finitely multicoherent if for any two subcontinua X_{1} and X_{2} of X such that $X=X_{1}+X_{2}$, the common part of X_{1} and X_{2} is the sum of a finite number of continua. If every subcontinuum of X is finitely multicoherent, then X is said to be hereditarily finitely multicoherent.

