A NOTE ON THE PRIMES IN A BANACH ALGEBRA
OF MEASURES

JAMES WELLS

1. Introduction. Let V denote the family of all finite complex-
valued and conuntably additive set functions on the Borel subsets of
R, = [0 =) (hereafter called measures); LY(R,) the set of all complex-
valued functions on R, which are integrable in the sense of Lebesgue,
identifying functions which are 0 almost everywhere; and A the ele-
ments in V which are absolutely continuous with respect to Lebesgue
measure. For each pt € V there exists an f e LY(R,) such that

(L.1) B = | f@)da

for each Borel subset E of R,. And, conversely, if fe L'(R,) the set
function £ defined by (1.1) is a measure.
We introduce a norm into V by the formula

(1.2) |l 2]l = sup X' | ((E) | (reV),

the supremum being taken over all finite partitions of R, into pairwise
disjoint Borel sets E;. It is well known ([6], p. 142 or [7]) that V
becomes a commutative Banach algebra under the convolution operation

(1.3) UB) = | WE — w)ir@) (L re V),

where E is any Borel subset of R.; in symbols
1.9 y=[tx\.
The Laplace-Stieltjes transform of ¢ e V will be denoted by :

(L.5) iz) = S:e"”dﬂ(x) (Re(z) = 0) .

The relation (1.4) is equivalent to
(1.6) D(2) = H2)N(2) (Re(2) = 0) .

The identity in V is the measure w such that w(E)=1 if 0c¢ E
and 0 otherwise. A measure /¢ is invertible provided there exists a
measure ' such that ¢ ¢ = u; and the measure N is a divisor of
the measure ¢, in symbols )|, provided there exists a measure v such
that ¢ =A%y, It follows from basic properties of the Laplace-Stieltjes
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transform that V is an integral domain and a semi-simple Banach alge-
bra (see for example [6], p. 149).

The central problem under consideration here is that of determining
the prime measures, that is, those noninvertible measures ¢ such that

(i) p=nxy always implies that one of the measures A,y is

invertible.

It is clear that every prime measure ¢ satisfies the condition

(ii) V=g < V) implies that either ) is invertible or z£|\.
And (i) follows from (ii) since V is an integral domain. Here Vxu
‘denotes the ideal {v*x |y e V}.

We give a partial solution by showing that all measures of the
form

. x@=1iau—v (Re(a) > 0)

where d7(x) = e *dx, are primes. Stated in terms of the ideal structure
of V, the result is that the maximal ideals m, = {¢¢| Z%(a) = 0}, Re(a) > 0,
are principal.

A related problem is the following: Given a fixed measure p, for
what measures \ is it true that M |p¢? Climaxing a sequence of papers
on this problem, notably [4] and [8], Fuchs [3] proved that \|g if and
only if the Hausdorff method of summability [H, ¢£] includes the method
[H,\]. In this paper we make use of recent results on the representa-
tion of linear transformations by convolution to give a simple, and
apparently unnoticed, alternative formulation in terms of the range of
a convolution transform.!

THEOREM 1. Every measure (t,, Re(a) >0, is a prime; and if
there exists a prime [t essentially different from t,, Re(a) > 0 (two
primes are essentially different 1f ome canmot be obtained from the
other by convolution with an invertible measure) then either [i(z) has
a root with real part 0 or the hull of the ideal V x pt consists only of
maximal ideals in V which contain A.

THEOREM 2. Let T,,pec V, be the linear operator from L'(R.)
into LX(R,) defined by

9 TS = £ x plt) = | £t — )dpa(o)

for fe L(R,). Let R, denote the range of T.. Then the measure \
18 a divisor of the measure p if and only if R, C R,.

1 The author is indebted to the referee for his helpful suggestions.
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2. Proofs of the Theorems.

Proof of Theorem 1. The positive result of this theorem depends
on the obvious fact (see condition (ii)) that if the maximal ideal m in
V is principal and g is a generator, that is m = V=, then ¢ is a
prime.

Fix Re(a) = 0 and set h(¢) = i(a). It follows from (1.5) and (1.6)
that & defines a multiplicative linear functional on V. Hence m, =
{re V|i(a) = 0} is a maximal ideal in V. That V=g, < m, follows
from (1.4), (1.6) and the fact that Z,(2) = (1 + @)™ — (1 + 2)™* vanishes
at a.

The reverse inclusion requires that if /¢ e m,, then ¢ = yxp, for
some v € V. To this end we use a device suggested by [9] and define

(2.1) v=>01+a)p+ 1A+ a)d,

where
@2  do, = g”ew—“d;z(t)dx - —gwe—“‘t‘x’dpe(t)dx = f(x)de .
0 z

‘The equality of the two integrals is a consequence of /(@) = 0. In case
.0 = Re(a) > 0, an application of the Fubini theorem using the second
integral in (2.2) yields
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‘This proves f € LY(R.) so that, in view of (1.1), 8, € A when Re(a) > 0.
It remains to verify that

p=vspt =1+ o)+ @+ a)f][(1+a)u — 7]
=+ o)L+ ay'y — pxn+ 0, — (L + )b, % 7] .

‘But integration by parts yields the relation

[ e omapie = @ + o[ [ rap) + {Terv-rau) |
x t
which, together with the fact that d(¢ * v)(x) = (f * ¥)(x)dx whenever
dé(x) = f(z)dx, fe L(R,) and v € V, shows that (1 + a)f, *n = —p*9 +0,.
'This establishes the result.

If ¢ is a prime essentially different from p,, Re(a) > 0, and [(?)
has no roots with real part 0, then 7(z) has no roots. To see this note
‘that /t(a) = 0 for Re(a) > 0 implies that Vg c Vg, = m, Hence
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¢ =vx*, for some v € V which, because of condition (ii), forces v to
be invertible; so ¢ is not essentially different from g,. Thus V¢ is
not contained in m, for any a, Re(a) = 0. Phillips ([6], p. 148 or [7])
has shown that in the space 4 of maximal ideals in V, 4, = {m,| Re(a) = 0}
is precisely those maximal ideals which omit an element of A so that
4, = 4 — 4, consists of all those maximal ideals which contain 4. It is
clear, then, that the hull of V' (, i.e., all maximal ideals which contain
it, must be a subset of 4,.

Proof of Theorem 2. First suppose that \|g. Then ¢ = v*\ for
some vy € V and, therefore,

LR,) * t = LI(R) v+ \ © LI(R,) %\,

ie., B, C R,.
For the converse we note that the inclusion K, C R, implies that
for each f e L'(R,) there exists a g € LY(R,) such that

2.1) frp=g*n.

But the fact that V is an integral domain insures the uniqueness of g¢.
Hence the relation (2.1) defines a mapping 7% f— g which is linear,
commutes with convolution in the sense that T(fx*7) = T(f)*v for
feLXR,),v e V, and, via an application of the closed graph theorem,
bounded in the norm topology of L'(R,). It follows using the type of
argument given in [2], that every such mapping has the form T'(f) =
f*v for some measure v. Thus

(2.2) frp=(f*v)xh=F x@*x\)

for every fe LYR,). A second application of the fact that V is an
integral domain yields ¢ = v x ), that is A | ¢, and the theorem is proved.

3. A remark and a question. Let Re(a) >0, Re(b) > 0. It is
easy to verify that (z + 1)/(z + b) is the Laplace-Stieltjes transform of
an invertible measure. Consequently the measure defined by

1) (Re(z) = 0)

PO e J 1+ a)z
(3.1) [Mz) = b [1.(2) PRI

is a prime not essentially different from g,. The primes given by rela-
tion (8.1) coincide with those given in [4]. Existence of other primes
remains an open question.

Repeated application of Theorem 1 yields the relation

3.2) V*ﬂal*ﬂ%*-..*pan:ﬁmai, n=238,+-
i=1
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where Re(a;) >0, ©1=1,2,8,---. On the other hand, it is known [1]
that the closed ideal m = M, m,, is not trivial in case X7, 1/[a;| < .
A natural question to ask is the following: Does there exist a measure
¢ such that Vxp=m?
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