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Loosely speaking, a lattice is called distributive if the order of
performing the operations of finite suprema and infima may be inter-
changed. A lattice is called completely distributive if the order of
performing the operations of infinite suprema and infima may be inter-
changed. The purpose of this note is to relate the property of complete
distributivity in^ Z-groups to other Z-group properties. We shall prove,
for example, that an Z-group G which has an atomistic lattice of polars
is completely distributive. The most interesting results are obtained
for Archimedean Z-groups. In this case the two above-mentioned pro-
perties are equivalent to each other and to the existence of certain 'nice
representations of G as subdirect unions of simply ordered groups. In
the last section examples are given to distinguish these properties for
non-Archimedean groups.

l Preliminaries* We shall follow the notation and terminology of
Chapter XIV of [1], to which the reader is referred for general back-
ground concerning Z-groups.

1.1. DEFINITION. Let i f = {C{: iel} be a family of simply ordered
groups. The complete direct union of ^ is the i-group of all functions
α : J — > U ^ such that α, = a(i)ed for all iel with the operations
defined by (aV&)* = α<Vb{ and (α + b)t = a{ + &< for all iel. The
discrete direct union of ^ is the Z-subgroup of the complete direct
union which consists of those functions which are zero at all but a
finite number of points of I. The Z-group if is a subdirect union of
^ if it is an Z-subgroup of the complete direct union for which the
projection map Pi of H into the factor group C{ maps H onto C{ for
each iel. The subdirect union H of the family <& is called regular if
the projection map Pi is a complete lattice homomorphism for each iel;
i.e., Pί(VjejQj) — VjejPiiOj) f° r each iel. (More generally, a sublattice
L of a lattice M is called a regular sublattice if the injection map of
L into M preserves infinite suprema and infima.) A complete subdirect
union of ^ is an Z-subgroup of the complete direct union which con-
tains the discrete direct union. An Z-group is called representable if it
is isomorphic to a subdirect union of simply ordered groups.

Recall that a polar of an Z-group G is a subset of G which consists
of the elements disjoint from each element of some subset of G.
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Partially ordered by inclusion the set of polars of an Z-group forms a
complete Boolean algebra. The role of polars in the study of Z-group&
is indicated by the following proposition, a proof of which may be found
in [3].

1.2. PROPOSITION. Let G be an Z-group.
(a) If J is an Z-ideal of G, then G/J is simply ordered if and only

if J contains each element of some prime ideal in the Boolean algebra
of all polars of G.

(b) Each polar of G is an Z-ideal if and only if G is representable.
(c) G is isomorphic to a complete subdirect union of simply ordered

groups if and only if each polar of G contains a minimal direct factor
of G.

1.3. PROPOSITION. Let J be an Z-ideal of the Z-group G. In order
that the canonical homomorphism φ:G-^ G\J be a complete lattice
homomorphism it is necessary and sufficient that J be closed (i.e., if
{ji'. iel} c J and \fiei3i exists in G, then

Proof. Assume that J i s a closed Z-ideal. Let g = Vίer#;(#> 9ίe G)
Then Aίei(9 — 9i) = 0. Suppose that heG+ satisfies 0 ^ φ(h) ^ φ(g — &)•
for each iel. Then, for each iel, there exists h{ e J Π G+ such that
h ^ g — Qι + h^ from which we can calculate 0 V (h — h) ^ Qi — ΰ and

0 - Aieiiff ~ ft) = Aieilih -hi)V0]=h+ Λ<ei(-Λ< V - h), SO h =
V ei(^Λ^ )- Since J is convex, hAh^J', since J is closed, λe J.
Hence φ(h) = 0 and AieMo - Qi) = (̂ff) - VieMΰd = 0. The converse
is obvious.

1.4. COROLLARY. / / α poZαr / o/ cm l-group G is an l-ideal,.
then the homorphism φ:G-+ G/J is complete.

Proof. Let J be the set of all elements of G disjoint from each
element of the set H. Suppose that {̂ : ίel} d J and Vίe/iί exists in
G. It suffices to assume that j\ ^ 0 for each iel. Let heH. Since
Λ Λ | Λ | = 0 for each ΐ, (Vίe/Λ) A I A I = V<6/(i A 1 h |) = 0. Thus

J.

1.5. DEFINITION. An Z-group G is completely distributive if Λ ei
V;ej#u = VφejiAiei9i<P(i) whenever {gi3: i e I, j e J} is a subset of G
for which all of the indicated suprema and infima exist.

1.6. PROPOSITION. Let G be an Z-group. The following are equiva-

lent.
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(a) G is completely distributive.
(b) If {gi:j:ieI,jeJ}(zG+ and 0 < g = \f serfu f o r e a c h ίeI>

then there exists φeJ1 such that AieiQiφn) = 0 is false.
(c) If 0<geG, then there exists g* > 0 such that g = AieiQi

implies g* < g{ for some ie I.

Proof. The equivalence of (a) with (b) is discussed in [5], while
the equivalence of (b) with (c) is clear.

1.7. PROPOSITION. Let G be an i-subgroup of H such that each
positive element of H is the supremum of some family of elements of
G. If G is completely distributive, then H is completely distributive.

Proof. Suppose that 0 < h e H. There exists g e G such that
0 < g ^ h. Let g* be the element whose existence is guaranteed by
1.6(c). Suppose that h = Vίeih where {hi'.iel} c H+. For each iel
there exists a family {gij:jeJ}czG+ such that ht = VίejΛi Then

g = gAh = gA(V<€Λ) = gA(V*er./6j&y) = V*.i(ff Afty).

There exists a pair ielel,jej such that g*^gi5. Hence g*^hi9

so iJ is completely distributive.

2. The main result. Let G be an Z-group. Consider the following
properties.

(A) G is isomorphic to a complete subdirect union of simply ordered
groups.

(B) The Boolean algebra P(G) of polars of G is atomistic.
(C) G is isomorphic to a regular subdirect union of simply ordered

groups.
(D) G is completely distributive.

2.2. THEOREM. / / G is representable, then (A) =φ (B) =Φ (C) =#> (D).
7/ G is Archimedean, then the four properties are equivalent. For
arbitritary l-groups, (B) =φ (D).

Proof.
(A) implies (B). This is an immediate consequence of 1.2(c).
(B) implies (C). Observe that (C) is equivalent to the requirement

that there exist a family of ί-ideals L; such that each GIL{ is simply
ordered, each homomorphism G —> G/L< is complete, and Π Λ — {0}. Let
α be a strictly positive element of G. There exists a maximal polar Lα

containing the set of all elements disjoint from a but not containing
a. Since G is representable, each La is an {-ideal. By 1.3 and 1.2(a),
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the family {La: 0 < a e G} has the requisite properties.
(C) implies (D). Simply ordered groups, the complete direct union

of a family of simply ordered groups, and regular Z-subgroups of such
groups are completely distributive. The Z-group G belongs to the last
category.

If G is Archimedean, then (D) implies (A). Let G^ denote the
completion of G [1, p. 229]; i.e., CL is a complete Z-group which con-
tains G as an Z-subgroup in such a way that each element of CL is the
supremum of the set of all elements of G which it contains. By 1.7,
Goo is completely distributive. We shall first show that P(Goo) is atom-
istic. If P is a nonempty polar of G ,̂ then in contains a strictly
positive element/. Consider the family {{fio fujiie 1} of all pairs of
elements of Gt such that / = /<oγ' fiτ for each iel. Since CL is com-
pletely distributive and complete, there exist φe2Σ and heG^ such that
0 < h = Aieifiφw We claim that h, the smallest polar of G^ which
contains h, is an atom which is contained in P. Indeed, since h ^ /,
h c P. Now, recalling from [1, p. 233] that every closed Z-deal of a
complete Z-group is a direct factor, we see that if K and K' are
complementary polars of GL, then G^ is the direct union of K and Kr.
Thus there exist keK and k'e K' such that / = k + k' = fc V&', from
which it follows that h ^ k or h <£ kf. Hence h c K or h c K'. Since
h is contained in one element of each complementary pair of P(Goo), it
is an atom.

Now observe that the map P—*PΓ\G is an isomorphism of P(Goo)
onto P(G). Thus to complete the proof it suffices to show that, for
each atom A of P(G«,), A Π G is a direct factor of G. Let A' denote
the complement in P(G00) of A. Let feG+. There exist unique ele-
ments a e A and a9 e A' such that / = a + α'; moreover, α and α' belong
to Gi. If α' = 0, then f = aeAΓiG, so suppose a' > 0. There exists
xeG such that 0 < x g α'. Since G is Archimedean, there exists a
positive integer n such the nx j£ α'. Since A is an atom of P{G00)1 it
is simply ordered, so a' ^ nx; moreover, x ^ a' implies that x e A!. We
can calculate f Anχ — (a V a') A nχ — (a A ^ ) V (α ' A ^^) — 0 V a ' — α'»
so αf e G and a = f — a' eG. This completes the proof.

(B) implies (D). Let / be the smallest polar of G containing the
strictly positive element /. If a is an element of an atom A of P(G)
contained in / such that 0 < α, then 0 < a J\fe A. Since A is a simply
ordered Z-subgroup of G, it is completely distributive, so there exists
a* e A such that a A/ = Viei^i £ A+, implies 0 < α* ^ a{ for some ΐ e /.
Suppose that / = Vieifi,fieG+. Than aAf = V<e/(αΛ/<), and αΛΛ
G A for each ΐ 6 /, so there exists iel such that 0 < α* ^ a A/; ^ /<•
In other words, G is completely distributive.

2.2. REMARKS. The observant reader will have noticed that the
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proof that (D) implies (A) may be modified to prove that a completely
distributive i-group G has an atomistic lattice of polars provided that
G may be embedded as an i-subgroup of a group H in which each
polar is a direct factor and each positive element is the supremum of
a set of elements of G. There are i-groups for which such embeddings
cannot be found (see. 3.4.)

Some of the implications of 2.1 are suggested by earlier lattice-
theoretic propositions. That (B) and (D) are related sounds like Tarski's
theorem [4] that a Boolean algebra is completely distributive if and
only if it is atomistic. That (C) and (D) are related sounds like a
theorem of Raney [2] which says that a complete lattice is completely
distributive if and only if it is isomorphic to a regular sublattice of a
complete direct union of chains.

3. EXAMPLES. We will exhibit the following examples.

3.1. A representable i-group which satisfies (B) but not (A).

3.2. A representable i-group which satisfies (C) but not (B).

3.3. A nonrepresentable i-group which satisfies (D) but not (B).

3.4. A completely distributive i-group whose completion by cuts is
not completely distributive.

Unfortunately, we do not know if there exists a representable l-
group which satisfies (D) but not (C).

3.1. Consider the lexicographic product J'© J2 of the i-group J of
integers and the direct union J2 of two copies of J. This i-group has
precisely two proper nonzero polars, but it has no direct factors. The
details have been discussed in [3],

3.2. Let L = ©iejyJi be the lexicographic sum of a countable
family of copies of the i-group J of integers indexed by the set N of
positive integers. Let Q denote the set of rational numbers of the
form p/2fc for p = 0, 1, , 2k - 1 and keN.

Let

HPtk = {xeQ: p\V ^ x < (p + l)/2*} .

Denote by G the set of all elements g of the i-group LQ of all functions
from Q into L such that there exists k = k(g) e N satisfying the two
conditions:

(i) if k < m, then g(x)(m) = 0 for all xe Q, and
(ii) if m <: k, then g(x)(m) = g(y)(m) for all x,ye Hp,m. We shall
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show that G is an ϊ-subgroup of LQ which has the desired properties.
It is clear that g,heG, implies g-h e G, so G is a partially ordered

group. Let geG, and denote by g V 0 the supremum of g and 0 in ZΛ
Since L is simply ordered, for each xeQ, either (g V 0)(x) = 0 or (g V 0)
(x) = 0(a>). Certainly, (gV0)(x)(j) = 0 for all i > &(#) and for sΆxeQ.
Now let a?, ye Hpj for some j" ̂  &(#). Observe that XG Hq>m for m ^ j
if and only if yeHq,m. If (g\/0)(x)(j) φ (g\/O)(y)(j), then we may
assume, since g(x)(j) = g{y)U), that (#V0)(#) = 0 while 0 < 0(2/) =
(0 V0)(l/) If m is ^he first integer such that g(y)(m) Φ 0, then m ^ j .
Let g be an integer such that yeHQtm. Then xeHq>m, 0 < #(αθ(m) =
g(y)(m), and #(α?)(m') = 0 for all m' < m. Hence g(x) > 0. With this
contradiction we have completed the proof that g V 0 e G. Hence G is
an J-subgroup of ZΛ

For each x e Q, let M, = {# e G: g(x) = 0}. The reader can easily
verify that each Mx is an Z-ideal of G, that Π*eβ^ = {0}9 and that
G/Afβ, being isomorphic to L, is simply ordered. We shall prove that
each Mx is closed. Suppose, on the contrary, that there exists a set
{g{: ίe 1} c Mx such that Vie/ î = 9 while #(#) = a > 0. Let α denote
the function in LQ with constant value α. Let hi — (a — g{) V 0. Then
Λieih = (α — Vieiθi) yθe Mx, while (̂α?) = α for each ΐ e / . We can
show, however that {h{:iel} has a positive lower bound not in M9, a
contradiction which will complete the argument that G satisfies property
(C). Indeed, let j be the first integer such that a(j) > 0. (Suppose
that x = p/2\) Then ^(p/2fc)(i) = a(j) > 0 for each ie I. If k ^ i,
then hi(y)(j) = α(j) for all yeH^-tj c i ί ^ . In this case each /̂  is
bounded below by the function / defined by

(i) for yeHp2j-^p f(y)(j) - a(j), f(y)(j + 1) = α(i + 1) - 1, and
f(y)(m) = 0 otherwise; and

(ii) for 2/ 0 fl'^-*ii,/(l/) = 0.
If i < k, then let 6 e L be given by 6(&) = 1 and b(m) = 0 for m Φk.
Then 6 < α. Letting /» = fc< A ^ we see that 0 < /< and /ί(p/2fc) = &
for each ίe I. Now the previous case applies to the new set of func-
tions {fi'.ie I}.

It is easy to verify that P(G) is not atomistic. For geG, let Z(g)
= {xeQ: g(x) = 0}. Since | g | A I h \ - 0 if and only if Z(g)\JZ(h) = Qr

while, for each ge G, we can find heG such that | g \ A I h \ = 0 and
^(^) = Q — -2ΓW, we conclude that the smallest polar containing an
element g consists of all elements h such that Z(g) = Z(h). Hence the
family {HPtk: ke N; p = 0, 1, , 2fc — 1}, partially ordered by inclusion,
is isomorphic to a coinitial subset of the partially ordered set of nonzero
polars. Since the first family has no minimal elements, P(G) has no
atoms.

3.3. Consider the i-group C of one-to-one order preserving maps
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of the closed unit interval onto itself ((/ + g)(x) = / (g(x)) and / ^ g if
and only if f(x) ^ g(x) for all x). That C is completely distributive
follows from the fact that C is a regular sublattice of the lattice of all
functions from the unit interval into itself. That P(C) is not atomistic
follows from the fact that each strictly positive element of C contains
two disjoint strictly positive elements.

3.4. We again call upon the ί-group of example 3.1. Let J2 denote
the lattice obtained by adjoining a largest element (oo? oo) to J2. It is
easily verified that the completion of J®J2 is J@J2.

The conditionally complete lattice J 0 J2 is not completely distribu-
tive. For each pair of integers (α, 6), let fab = (1, (α, &)). Then

Aaej Vυejfao = (1, (°°, «>)), while
VφβJlAaejfaφia) = (0, (OO , Oθ)) .

This example is interesting for another reason. The Z-group J φ / 2

is maximal in the sense that it cannot be embedded as a proper ί-
subgroup of any ϊ-group H in such a way that each element of H is
the supremum of a set of elements of J 0 J2.
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