NORMAL MATRICES AND THE NORMAL BASIS IN ABELIAN NUMBER FIELDS

R. C. Thompson

1. Introduction. Throughout this note F denotes a normal field of algebraic numbers of finite degree n over the rational number field. Let $G_{1}, G_{2}, \cdots, G_{n}$ denote the elements of the Galois group G of F. It is known [2] that F may possess a "normal" basis for the integers consisting of the conjugates $\alpha^{q_{1}}, \alpha^{q_{2}}, \cdots, \alpha^{G_{n}}$ of an integer α. In [4] the question of the uniqueness of the normal basis was answered when G is cyclic. (See also [1, 6].) If $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ is any integral basis of F then the matrix (β_{i}^{G}), $1 \leqq i, j \leqq n$, is called a discriminant matrix. It was shown in [4] that if G is abelian then the discriminant matrix of the normal basis $\beta_{1}=\alpha^{G_{1}}, \cdots, \beta_{n}=\alpha^{\sigma_{n}}$ is a normal matrix and, if G is cyclic and F has a normal basis, then any integral basis $\beta_{1}, \cdots, \beta_{n}$ for which the discriminant matrix is normal is of the form $\beta_{\sigma(1)}=$ $\pm \alpha^{\theta_{1}}, \cdots, \beta_{\sigma(n)}= \pm \alpha^{q_{n}}$ for a suitable choice of the \pm signs, where σ is a permutation of $1,2, \cdots, n$.

It is the purpose of this note to use the methods of [4] to extend these results for cyclic fields to abelian fields. In particular, in Theorem 1, we shall give a new proof of a result obtained by G. Higman in [1]. The author wishes to thank Dr. O. Taussky-Todd for drawing the problems considered here to his attention.
2. Preliminary material. We suppose throughout that

$$
G=\left(S_{1}\right) \times\left(S_{2}\right) \times \cdots \times\left(S_{k}\right)
$$

is the direct product of k cyclic groups (S_{i}) of order n_{i}. Of course, each $n_{i}>1$ and $n=n_{1} n_{2} \cdots n_{k}$. If X and $Y=\left(y_{i, j}\right)$ are two matrices with elements in a group or a ring then we define $X \times Y=\left(X y_{i, j}\right)$. $X \times Y$ is the Kronecker product [3] of X and Y. Henceforth, in this paper, the symbol \times will always be used to denote the Kronecker product of vectors or matrices. A matrix A is said to be a circulant of type $\left(n_{1}\right)$ if

$$
A=\left[a_{1}, a_{2}, \cdots, a_{n_{1}}\right]_{n_{1}}=\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \cdots & a_{n_{1}} \\
a_{n_{1}} & a_{1} & a_{2} & \cdots & a_{n_{1}-1} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
a_{2} & a_{3} & a_{4} & \cdots & a_{1}
\end{array}\right] .
$$

Here $a_{1}, a_{2}, \cdots, a_{n_{1}}$ may lie in a group or a ring. For $i>1$ we define

[^0]by induction $\left[A_{1}, A_{2}, \cdots, A_{n_{i}}\right]_{n_{i}}$ to be a circulant of type ($n_{1}, n_{2}, \cdots, n_{i}$) if each of $A_{1}, A_{2}, \cdots, A_{n_{i}}$ is a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{i-1}\right)$. For $1 \leqq i \leqq k$ let $H_{i}=\left(1, S_{i}, S_{i}^{2}, \cdots, S_{i}^{n_{i}-1}\right)$ and $D_{i}=\left[1, S_{i}^{n_{i}-1}, S_{i}^{n_{i}-2}, \cdots, S_{i}\right]_{n_{i}}$. Henceforth we shall always let $G_{1}, G_{2}, \cdots, G_{n}$ denote the elements of G in the order implied by the vector equality
\[

$$
\begin{equation*}
\left(G_{1}, G_{2}, \cdots, G_{n}\right)=H_{1} \times H_{2} \times \cdots \times H_{k} \tag{1}
\end{equation*}
$$

\]

Let $y\left(G_{1}\right), y\left(G_{2}\right), \cdots, y\left(G_{n}\right)$ be commuting indeterminants and define the matrix Y by $Y=\left(y\left(G_{i} G_{j}^{-1}\right)\right), 1 \leqq i, j \leqq n$. Then it can be proved by induction on k that $D_{1} \times D_{2} \times \cdots \times D_{k}=\left(G_{i} G_{j}^{-1}\right), 1 \leqq i, j \leqq n$, and hence that Y is a circulant of type ($n_{1}, n_{2}, \cdots, n_{k}$). Since any circulant of type ($n_{1}, n_{2}, \cdots, n_{k}$) is determined by its first row, it follows that any circulant of type ($n_{1}, n_{2}, \cdots, n_{k}$) may be obtained by assigning particular values to the indeterminants $y\left(G_{1}\right), \cdots, y\left(G_{n}\right)$ in Y.

Lemma 1. Circulants of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ with coefficients in a field K form a commutative matrix algebra containing the inverse of each of its invertible elements. For fixed m, all matrices $X=\left(X_{i, j}\right)$, $1 \leqq i, j \leqq m$, in which each $X_{i, j}$ is a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$; with coefficients in K, form a matrix algebra containing the inverse of each of its invertible elements.

Proof. Let $W=\left(w\left(G_{i} G_{j}^{-1}\right)\right), 1 \leqq i, j \leqq m$. Then $W+Y$ and $a W$ for $a \in K$ are clearly circulants of type ($n_{1}, n_{2}, \cdots, n_{k}$). The (i, j) element of $W Y$ is

$$
\begin{aligned}
\sum_{t=1}^{n} w\left(G_{i} G_{t}^{-1}\right) y\left(G_{t} G_{j}^{-1}\right) & =\sum_{t=1}^{n} w\left(G_{i}\left(G_{t}^{-1} G_{i} G_{j}\right)^{-1}\right) y\left(\left(G_{t}^{-1} G_{i} G_{j}\right) G_{j}^{-1}\right) \\
& =\sum_{t=1}^{n} y\left(G_{i} G_{t}^{-1}\right) w\left(G_{t} G_{j}^{-1}\right)
\end{aligned}
$$

But this is the (i, j) element of $Y W$. Hence $W Y=Y W$. Define

$$
z\left(G_{i} G_{j}^{-1}\right)=\sum_{t=1}^{n} w\left(G_{i} G_{t}^{-1}\right) y\left(G_{t} G_{j}^{-1}\right)
$$

Then a straightforward calculation shows that $z\left(G_{i} G_{j}^{-1}\right)=z\left(G_{p} G_{q}^{-1}\right)$ if $G_{i} G_{j}^{-1}=G_{p} G_{q}^{-1}$. Hence the variables $z\left(G_{i} G_{j}^{-1}\right), 1 \leqq i, j \leqq n$, are unambiguously defined, so that $W Y$ is a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$. This proves the first half of the first assertion of the lemma. The rest of the first assertion follows from the fact that the inverse of a matrix is a polynomial in the matrix. The other assertion of the lemma is now clear.

We let B^{\prime} and B^{*} denote, respectively, the transpose and the complex conjugate transpose of the matrix B. The diagonal matrix
whose diagonal entries are $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ is denoted by diag $\left(\lambda_{1}, \lambda_{2}, \cdots\right.$, λ_{n}). The zero and identity matrices with s rows and columns are denoted by 0_{s} and I_{s}, respectively, and for $i=1,2, \cdots, k$, the companion matrix of the polynomial $x^{n_{i}}-1$ is denoted by $F_{i}=[0,1,0, \cdots, 0]_{n_{i}}$.

Let ζ_{u} be a primitive root of unity of order n_{u} for $1 \leqq u \leqq k$. Set $\Omega_{u}=\left(\zeta_{u}^{(i-1)(j-1)}\right), 1 \leqq i, j \leqq n_{u}$, and set $\Omega=\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{k}$. Define $T_{u}=n_{u}^{-1 / 2} \Omega_{u}$ and $T=n^{-1 / 2} \Omega$. It can be shown by direct computation that T_{u} is a unitary matrix. Hence, using the basic properties ($X \times Y$) $(Z \times W)=X Z \times Y W$ and $(X \times Y)^{*}=X^{*} \times Y^{*}$ of the Kronecker product, it follows immediately that T is a unitary matrix.

Lemma 2. If A is a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ with first row $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and complex coefficients, then $T^{*} A T=\operatorname{diag}$ $\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)$ where the vector $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)$ is linked to the vector a by $\varepsilon^{\prime}=\Omega a^{\prime}$.

Proof. The proof is by induction on k. For $k=1$ it is well known (and straightforward to check) that $A T_{1}=T_{1} \operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n_{1}}\right)$. Suppose the result known for $k-1$. If

$$
A=\left[A_{1}, A_{2}, \cdots, A_{n_{k}}\right]_{n_{k}}=\sum_{i=1}^{n_{k}} A_{i} \times F_{k}^{i-1}
$$

and if we set $d=n_{1} n_{2} \cdots n_{k-1}$ and define $\left(\gamma_{(i-1) a+1}, \gamma_{(i-1) a+2}, \cdots, \gamma_{i a}\right)$ by

$$
\begin{array}{rlr}
\Omega_{1} & \times \cdots \times \Omega_{k-1}\left(\alpha_{(i-1) d+1}, a_{(i-1) d+2}, \cdots, \alpha_{i a}\right)^{\prime} & \\
& =\left(\gamma_{(i-1) a+1}, \gamma_{(i-1) a+2}, \cdots, \gamma_{i a}\right)^{\prime}, & 1 \leqq i \leqq n_{k}, \tag{2}
\end{array}
$$

then, by the induction assumption,

$$
\begin{array}{ll}
\left(T_{1} \times \cdots \times T_{k-1}\right) * A_{i}\left(T_{1} \times \cdots \times T_{k-1}\right) & \\
\quad=\operatorname{diag}\left(\gamma_{(i-1) a+1}, \gamma_{(i-1) a+2}, \cdots, \gamma_{i a}\right), & 1 \leqq i \leqq n_{k}
\end{array}
$$

Then

$$
\begin{aligned}
T^{*} A T= & \sum_{i=1}^{n_{k}}\left(T_{1} \times \cdots \times T_{k-1} \times T_{k}\right)^{*}\left(A_{i} \times F_{k}^{i-1}\right)\left(T_{1} \times \cdots \times T_{k-1} \times T_{k}\right) \\
= & \sum_{k=1}^{n_{k}}\left(\left\{\left(T_{1} \times \cdots \times T_{k-1}\right)^{*} A_{i}\left(T_{1} \times \cdots \times T_{k-1}\right)\right\} \times\left\{T_{k}^{*} F_{k} T_{k}\right\}^{i-1}\right) \\
= & \sum_{i=1}^{n_{k}}\left(\left\{\operatorname{diag}\left(\gamma_{(i-1) a+1}, \gamma_{(i-1) a+2}, \cdots, \gamma_{i a}\right)\right\}\right. \\
& \left.\quad \times\left\{\operatorname{diag}\left(1, \zeta_{k}^{i-1}, \zeta_{k}^{2(i-1)}, \cdots, \zeta_{k}^{\left(n_{k}-1\right)(i-1)}\right)\right\}\right)
\end{aligned}
$$

Thus $T^{*} A T$ is diagonal. If $r=(b-1) d+c$ where $1 \leqq c \leqq d$ and $1 \leqq b \leqq n_{k}$, then the (r, r) diagonal element of $T^{*} A T$ is

$$
\begin{equation*}
\varepsilon_{r}=\sum_{i=1}^{n_{k}} \gamma_{(i-1) d+c} \zeta_{k}^{(b-1)(i-1)}, \quad 1 \leqq r \leqq n \tag{3}
\end{equation*}
$$

Setting $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)$ and $\gamma=\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right)$, equations (3) are the same as the matrix equation $\varepsilon^{\prime}=\left(I_{d} \times \Omega_{k}\right) \gamma^{\prime}$ and equations (2) are the same as $\left(\left(\Omega_{1} \times \cdots \times \Omega_{k-1}\right) \times I_{n_{k}}\right) a^{\prime}=\gamma^{\prime}$. Combining these two facts, we obtain $\varepsilon^{\prime}=\Omega a^{\prime}$, as required.
3. The uniqueness of the normal basis. If $\beta^{q_{1}}, \cdots, \beta^{q_{n}}$ is another normal basis of F then $\left(\beta^{G_{1}}, \cdots, \beta^{\sigma_{n}}\right)^{\prime}=\left(a_{i, j}\right)\left(\alpha^{G_{1}}, \cdots, \alpha^{G_{n}}\right)^{\prime}$ so that $\left(\beta^{G_{i} G_{j}^{-1}}\right)$ $=\left(\alpha_{i, j}\right)\left(\alpha_{i}^{G_{i} G_{j}^{-1}}\right), 1 \leqq i, j \leqq n$, where ($\left.\beta^{G_{i} G_{j}^{-1}}\right)$ and $\left(\alpha^{G_{i} G_{j}^{-1}}\right)$ are both circulants of type ($n_{1}, n_{2}, \cdots, n_{k}$) and ($\alpha_{i, j}$) is a unimodular matrix of rational integers. By Lemma $1,\left(\alpha_{i, j}\right)=\left(\beta^{G_{i} \sigma_{j}^{-1}}\right)\left(\alpha^{G_{i} G_{j}^{-1}}\right)^{-1}$ is also a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$. Conversely, if $\beta_{1}, \cdots, \beta_{n}$ is an integral basis such that $\left(\beta_{1}, \cdots, \beta_{n}\right)^{\prime}=\left(\alpha_{i, j}\right)\left(\alpha^{\theta_{1}}, \cdots, \alpha^{\sigma_{n}}\right)^{\prime}$ where $\left(\alpha_{i, j}\right)$ is a unimodular circulant of rational integers of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$, then $\left(\beta_{\imath j}^{\sigma^{-1}}\right)=\left(\alpha_{i, j}\right)\left(\alpha^{\sigma_{i} \sigma_{j}^{-1}}\right)$ so that, by Lemma $1,\left(\beta_{i j}^{q-1}\right)$ is also a circulant. Then, in $\left(\beta_{\imath j}^{\sigma^{-1}}\right)$, the elements in the first column are a permutation on those in the first rowHence $\beta_{1}, \cdots, \beta_{n}$ is a permutation of a normal basis. Following [4], we call a circulant trivial if it has but a single nonzero entry in each row. Thus $\beta_{1}, \cdots, \beta_{n}$ is necessarily a permutation of $\alpha^{G_{1}}, \cdots, \alpha^{\theta_{n}}$ or of $-\alpha^{\theta_{1}}$, $\cdots,-\alpha^{G_{n}}$ precisely when all unimodular circulants of rational integers of type ($n_{1}, n_{2}, \cdots, n_{k}$) are trivial.

If G has a cyclic direct factor of order other than $2,3,4$, or 6 , we may choose the notation so that $\left(S_{1}\right)$ is this cyclic direct factor. By [4] there exists a nontrivial unimodular circulant B of rational integers of type (n_{1}). Then $B \times I_{n_{2} \cdots n_{k}}$ is a nontrivial unimodular integral circulant of type ($n_{1}, n_{2}, \cdots, n_{k}$) and so the normal basis is not unique. Hence only the following two cases remain to be considered:
(i) each $n_{i}=4$ or 2 ;
(ii) each $n_{i}=3$ or $2 ; 1 \leqq i \leqq k$.

In either case (i) or case (ii) let A be a unimodular circulant of rational integers of type ($n_{1}, n_{2}, \cdots, n_{k}$). Then, by Lemma 2 , the determinant of A is $\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}$ where each ε_{i} is an integer and hence a unit in the field K generated by $\zeta_{1}, \cdots, \zeta_{k}$. K is generated by the root of unity whose order is the least common multiple of n_{1}, n_{2}, \cdots, n_{k}. Since this least common multiple is $2,3,4$, or 6 , by the fundamental theorem on units K contains no units of infinite order and hence each ε_{i} is a root of unity. By Lemma 2,

$$
\begin{equation*}
T a^{\prime}=n^{-1 / 2} \varepsilon^{\prime} \tag{4}
\end{equation*}
$$

Since the first row T consists of ones only, ε_{1} is rational. In (4) we replace, if necessary, each a_{i} with $-a_{i}$ and each ε_{i} with $-\varepsilon_{i}$ to ensure that $\varepsilon_{1}=1$. Since T is unitary,

$$
\begin{equation*}
a^{\prime}=n^{-1 / 2} T^{*} \varepsilon^{\prime}=n^{-1} \Omega^{*} \varepsilon^{\prime} \tag{5}
\end{equation*}
$$

Let $\Omega=\left(r_{i, j}\right), 1 \leqq i, j \leqq n$. Then, using (5), the triangle inequality, and the fact that each $\left|r_{j, i}\right|$ and each $\left|\varepsilon_{j}\right|$ is one, we find that

$$
\begin{equation*}
\left|a_{i}\right| \leqq n^{-1} \sum_{j=1}^{n}\left|\bar{r}_{j, i} \varepsilon_{j}\right|=1, \quad 1 \leqq i \leqq n \tag{6}
\end{equation*}
$$

If we have $a_{q} \neq 0$ for some q, then $\left|a_{q}\right| \geqq 1$, so that in (6) for $i=q$ we have equality. Since $r_{1, q}=\varepsilon_{1}=1$, the condition for equality in the triangle inequality forces $\bar{r}_{j, q} \varepsilon_{j}=1$ for each j so that $\varepsilon_{j}=r_{j, q}$ for $j=$ $1,2, \cdots, n$. Then, for $i \neq q$,

$$
n a_{i}=\sum_{j=1}^{n} \bar{r}_{j, i} \boldsymbol{r}_{j, q}=0
$$

since the columns of Ω are pairwise orthogonal. Thus, in A, there is but a single nonzero entry in each row.

Theorem 1. The normal basis for the integers of F is unique (up to permutation and change of sign) precisely when either (i) or (ii) below is satisfied:
(i) G is the direct product of cyclic groups of order 4 and/or order 2;
(ii) G is the direct product of cyclic groups of order 3 and/or order 2.

Another form of this theorem is given in [1, Theorem 6].
4. Normal discriminant matrices. Let $\alpha^{G_{1}}, \cdots, \alpha^{\sigma_{n}}$ be a normal integral basis of F and let Δ be any normal discriminant matrix. Permuting the row and columns of Δ in the same way (this preserves normality) we may assume $\Delta=\left(\beta_{i j}^{G-1}\right) 1 \leqq i, j \leqq n$, where G_{1}, \cdots, G_{n} are given by (1). Now $\Delta=\left(a_{i, j}\right) D$ where $D=\left(\alpha^{G_{i} \sigma_{j}}\right), 1 \leqq i, j \leqq n$, and where $\left(a_{i, j}\right)$ is a unimodular matrix of rational integers. From $\Delta \Delta^{*}=$ $\Delta^{*} \Delta$ we get $\left(a_{i, j}\right) D D^{*}\left(a_{i, j}\right)^{\prime}=D^{*}\left(a_{i, j}\right)^{\prime}\left(a_{i, j}\right) D$. As in [4], $D D^{*}$ is rational so that $D^{*}\left(\alpha_{i, j}\right)^{\prime}\left(\alpha_{i, j}\right) D$ is left fixed by every element of G. Let

$$
P_{s}=I_{n_{0} n_{1} \cdots n_{s-1}} \times F_{s} \times I_{n_{s+1} n_{s+2} \cdots n_{k+1}}, \quad 1 \leqq \varepsilon \leqq k,
$$

where, here and henceforth, $n_{0}=n_{k+1}=1$. The effect of replacing α with $\alpha^{s_{s}}$ in D may be determined by noting that

$$
\begin{aligned}
& S_{s}\left(D_{1} \times \cdots \times D_{k}\right)=D_{1} \times \cdots \times\left(S_{s} D_{s}\right) \times \cdots \times D_{k} \\
& \quad=D_{1} \times \cdots \times\left(F_{s} D_{s}\right) \times \cdots \times D_{k} \\
& \quad=I_{n_{1}} \times \cdots \times I_{n_{s-1}} \times F_{s} \times I_{n_{s+1}} \times \cdots \times I_{n_{k}} D_{1} \times \cdots \times D_{k} \\
& \quad=P_{s}\left(D_{1} \times \cdots \times D_{k}\right) .
\end{aligned}
$$

Hence, replacing α with $\alpha^{s_{s}}$ in D changes D into $P_{s} D$. Therefore $D^{*}\left(a_{i, j}\right)^{\prime}\left(a_{i, j}\right) D=\left(P_{s} D\right)^{*}\left(a_{i, j}\right)^{\prime}\left(\alpha_{i, j}\right)\left(P_{s} D\right)$ so that $P_{s}\left(a_{i, j}\right)^{\prime}\left(a_{i, j}\right) P_{s}^{\prime}=\left(a_{i, j}\right)^{\prime}\left(a_{i, j}\right)$,
for $s=1,2, \cdots, k$. Following [4] we define a generalized permutation matrix to be a permutation matrix in which the nonzero entries are permitted to be ± 1. Then Lemma 3 below shows that $\left(a_{i, j}\right)=Q C$ where Q is a generalized permutation matrix and C is a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$. Since $\left(\beta_{1}, \cdots, \beta_{n}\right)^{\prime}=\left(\alpha_{i, j}\right)\left(\alpha^{G_{1}}, \cdots, \alpha^{\theta_{n}}\right)^{\prime}$, this implies (by remarks made in §2) that $\beta_{1}, \cdots, \beta_{n}$ is a generalized permutation of a normal basis.

Theorem 2. Let F be a field with a normal integral basis. Then only generalized permutations of a normal basis can give rise to normal discriminant matrices.

Theorem 3. If A is a unimodular matrix of rational integers such that $A A^{\prime}$ is a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$, then $A=C Q$ where C is a unimodular circulant of rational integers of type (n_{1}, n_{2}, \cdots, n_{k}) and Q is a generalized permutation matrix.

Proof. Since each P_{i} is a circulant of type $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$, it follows from Lemma 1 that $P_{i} A A^{\prime} P_{i}^{\prime}=A A^{\prime}$ for $i=1,2, \cdots, k$, so that Theorem 3 follows from Lemma 3.

Lemma 3. If A is a unimodular matrix of rational integers such that $P_{i} A A^{\prime} P_{i}^{\prime}=A A^{\prime}$ for $i=1,2, \cdots, k$, then $A=C Q$ where C and Q are as in Theorem 3.

Proof. Let $A_{0}=A$ and $Q_{0}=I_{n}$. We shall prove by induction on i that, for $1 \leqq i \leqq k, A=A_{i} Q_{i}$ where Q_{i} is a generalized permutation matrix and A_{i} may be so partitioned that $A_{i}=\left(X_{s, t}\right), 1 \leqq s, t \leqq n_{i+1} n_{i+2}$ $\cdots n_{k} n_{k+1}$, where each $X_{s, t}$ is a circulant of type ($n_{1}, n_{2}, \cdots, n_{i}$). The case $i=k$ is the statement of the lemma. To avoid having to give a special discussion of the case $i=1$ we make the following definitions and changes in notation. Recall that $n_{0}=n_{k+1}=1$.

A one row, one column matrix is said to be a circulant of type $\left(n_{0}\right)$. A circulant of type $\left(n_{1}, \cdots, n_{i}\right)$ will now be called a circulant of type $\left(n_{0}, n_{1}, \cdots, n_{i}\right)$. We then know that $A=A_{0} Q_{0}$ where A_{0} is composed of one row, one column blocks which are circulants of type (n_{0}) and where Q_{0} is a generalized permutation matrix. Our induction assumption is that for a fixed value of i with $1 \leqq i \leqq k$ we have $A=$ $A_{i-1} Q_{i-1}$ where we may partition $A_{i-1}=\left(A_{s, t}\right), 1 \leqq s, t \leqq n_{i} n_{i+1} \cdots n_{k+1}$, so that each $A_{s, t}$ is a circulant of type ($n_{0}, n_{1}, \cdots, n_{i-1}$), and where Q_{i-1} is a generalized permutation matrix. We shall then deduce that $A=$ $A_{i} Q_{i}$. For notational simplicity we set $f=n_{0} n_{1} \cdots n_{i-1}, g=n_{i} n_{i+1} \cdots$ $n_{k}, h=n_{i+1} n_{i+2} \cdots n_{k+1}, m=n_{1} n_{2} \cdots n_{i}$.

Now $A A^{\prime}=A_{i-1} A_{i-1}^{\prime}$ so that from $P_{i} A A^{\prime} P_{i}^{\prime}=A A^{\prime}$ we deduce that $M_{i} M_{i}^{\prime}=I_{n}$, where $M_{i}=A_{i-1}^{-1} P_{i} A_{i-1}$. Since M_{i} is a matrix of rational integers it follows that M_{i} is a generalized permutation matrix. Since P_{i} and A_{i-1} may, after partitioning, be viewed as matrices with g rows and columns in elements which are circulants of type ($n_{0}, n_{1} \cdots, n_{i-1}$), it follows from Lemma 1 that M_{i} is also a matrix with g rows and columns in elements which are circulants of type ($n_{0}, n_{1}, \cdots, n_{i-1}$). From this point of view M_{i} must be a "generalized permutation matrix" in that it has but a single nonzero entry in each of its g rows and columns. Each of these nonzero entries is of course both a circulant of type ($n_{0}, n_{1}, \cdots, n_{i-1}$) and a generalized permutation matrix.

We now digress for a moment to note that if M is a permutation matrix whose coefficients lie in a ring with identity then a permutation matrix R exists with coefficients in the same ring such that $R^{\prime} M R$ is a direct sum of one row identity matrices and/or matrices like [$0,1,0$, $\cdots, 0]_{t}$ for $t>1$. This assertion is a consequence of the fact that a permutation may be decomposed into disjoint cycles.

Applying this fact to the "generalized permutation matrix" M_{i}, we find that a permutation matrix R_{i} exists with g rows and columns in elements which are either 0_{f} or I_{f} such that $R_{i}^{\prime} M_{i} R_{i}=N_{i}$ is a direct sum of r matrices of the following type:

$$
E_{j}=\left[\begin{array}{llllll}
0 & E_{j, 1} & 0 & 0 & \cdots & 0 \\
0 & 0 & E_{j, 2} & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & 0 & \cdot & \cdots & E_{j, e_{j}-1} \\
E_{j, e_{j}} & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

if $e_{j}>1$, and $E_{j}=\left(E_{j, 1}\right)$ if $e_{j}=1$. Here each $0=0_{f}$ and each $E_{j, q}$ is both a circulant of type ($n_{0}, n_{1}, \cdots, n_{i-1}$) (since R_{i} has circulants of this type as "elements") and a generalized permutation matrix. Moreover, $e_{1}+e_{2}+\cdots+e_{r}=g$. Since N_{i} is similar to P_{i} and $P_{i}^{n_{i}}=I_{n}$, then $N_{i}^{n_{i}}$ $=I_{n}$. This implies that each $e_{j} \leqq n_{i}$. We shall prove that each $e_{j}=$ n_{i}. The proof is by contradiction. Suppose for at least one j that $e_{j}<n_{i}$. We know that $f\left(e_{1}+e_{2}+\cdots e_{r}\right)=f g=n$. Hence $f n_{i} r>n$ and so $r>h$. Now

$$
\mathrm{P}_{i}=\left[0_{f}, I_{f}, 0_{f}, \cdots, O_{f}\right]_{n_{i}} \times I_{h}
$$

and $P_{i} A_{i-1}=A_{i-1} M_{i}$. Let $H_{s}=\left(A_{s, 1}, A_{s, 2}, \cdots, A_{s, g}\right)$ for $1 \leqq s \leqq g$. Then from $P_{i} A_{i-1}=A_{i-1} M_{i}$ it follows that: $H_{2}=H_{1} M_{i}, H_{3}=H_{2} M_{i}, \cdots, H_{n_{i}}=$ $H_{n_{i}-1} M_{i} ; H_{n_{i}+2}=H_{n_{i}+1} M_{i}, H_{n_{i}+3}=H_{n_{i}+2} M_{i}, \cdots, H_{2 n_{i}}=H_{2 n_{i}-1} M_{i} ; \cdots ; H_{(h-1) n_{i}+2}$ $=H_{(h-1) n_{i}+1} M_{i}, H_{(h-1) n_{i}+3}=H_{(h-1) n_{i}+2} M_{i}, \cdots, H_{h n_{i}}=H_{k n_{i}-1} M_{i}$. Hence, if $B_{j}=H_{(j-1) n_{i}+1}$ for $1 \leqq j \leqq h$, then $H_{(j-1) n_{i}+q}=B_{j} M_{i}^{q-1}$ for $2 \leqq q \leqq n_{i}$.

Consequently,

$$
A_{i-1} R_{i}=\left[\begin{array}{l}
B_{1} \\
B_{1} M_{i} \\
B_{1} M_{i}^{2} \\
\cdots \\
B_{1} M_{i}^{n_{i}-1} \\
\cdots \\
B_{h} \\
B_{h} M_{i} \\
\cdots \\
B_{h} M_{i}^{n_{i}-1}
\end{array}\right] R_{i}=\left[\begin{array}{l}
B_{1} R_{i} \\
B_{1} M_{i} R_{i} \\
B_{1} M_{i}^{2} R_{i} \\
\cdots \\
B_{1} M_{i}^{n_{i}-1} R_{i} \\
\cdots \\
B_{h} R_{i} \\
B_{h} M_{i} R_{i} \\
\cdots \\
B_{h} M_{i}^{n_{i-1}} R_{i}
\end{array}\right]=\left[\begin{array}{l}
B_{1} R_{i} \\
B_{1} R_{i} N_{i} \\
B_{1} R_{i} N_{i}^{2} \\
\cdots \\
B_{1} R_{i} N_{i}^{n_{i}-1} \\
\cdots \\
B_{h} R_{i} \\
B_{h} R_{i} N_{i} \\
\cdots \\
B_{h} R_{i} N_{i}^{n_{i}-1}
\end{array}\right] .
$$

Here each $B_{j} R_{i} 1 \leqq j \leqq h$, may also be regarded as a row vector with g coordinates in elements which are circulants of type ($n_{0}, n_{1}, \cdots, n_{i-1}$). This is so because both B_{j} and R_{i} have circulants of this type as "elements".

Let $X=\left(X_{1}, X_{2}, \cdots, X_{g}\right)$ be a row vector in which the X_{i} are square matrices with f rows and columns. Then

$$
\begin{aligned}
X N_{i}= & \left(X_{e_{1}} E_{1, e_{1}}, X_{1} E_{1,1}, X_{2} E_{1,2}, \cdots, X_{e_{1}-1} E_{1, e_{1}-1},\right. \\
& X_{e_{1}+e_{2}} E_{2, e_{2}}, X_{e_{1}+1} E_{2,1}, X_{e_{1}+2} E_{2,2}, \cdots, X_{e_{1}+e_{2}-1} E_{2, e_{2}-1} \\
& \left.\cdots, X_{g} E_{r, e_{r}}, \cdots, X_{g-1} E_{r, e_{r}-1}\right)
\end{aligned}
$$

Since each $E_{j, q}$ is a generalized permutation matrix, it follows that the first $f e_{1}$ columns of $X N_{i}$ are, apart from order and possible change of sign, just the first $f e_{1}$ columns of X; the next $f e_{2}$ columns of $X N_{i}$ are, up to order and sign, just the next $f e_{2}$ columns of X; and, in general, columns

$$
\begin{align*}
& f\left(e_{0}+e_{1}+\cdots+e_{s-1}\right)+1, f\left(e_{0}+e \cdots+e_{s-1}\right)+2, \cdots, \tag{7}\\
& \quad f\left(e_{0}+e_{1}+\cdots+e_{s}\right)
\end{align*}
$$

of $X N_{i}$ are, apart from order and sign, just these same columns in X. Here $e_{0}=0$. This holds for $s=1,2, \cdots, r$.

Hence, in $B_{j} R_{i} N_{i}^{v}$ for $1 \leqq v \leqq n_{i}-1$ and fixed j, columns (7) (for a fixed value of s) are just a generalized permutation of columns (7) in $B_{j} R_{i}$. Moreover, the elements appearing in columns (7) and row q of $B_{j} R_{i}$ for $2 \leqq q \leqq f$ are just a permutation of the elements in columns (7) and the first row of $B_{j} R_{i}$, since $B_{j} R_{i}$ is composed of blocks which are circulants of type $\left(n_{0}, n_{1}, \cdots, n_{i-1}\right)$. All this means that the elements in columns (7) (for a fixed value of s) and row q (for $2 \leqq q \leqq m$) of the matrix

$$
\left[\begin{array}{l}
B_{j} R_{i} \tag{8}\\
B_{j} R_{i} N_{i} \\
B_{j} R_{i} N_{i}^{2} \\
\cdots \\
B_{j} R_{i} N_{i}^{n_{i}-1}
\end{array}\right]
$$

are generalized permutations of the elements in columns (7) and the first row of this matrix. Hence the integers in row q (for $2 \leqq q \leqq m$) and columns (7) of the matrix (8) are congruent (modulo 2) to a permutation of the integers in column (7) and the first row of (8).

In the matrix $A_{i-1} R_{i}$ add columns $f\left(e_{0}+e_{1}+\cdots+e_{s-1}\right)+1, f\left(e_{0}+\right.$ $\left.e_{1}+\cdots+e_{s-1}\right)+2, \cdots, f\left(e_{0}+e_{1}+\cdots+e_{s}\right)-1$ to column $f\left(e_{0}+e_{1}+\right.$ $\cdots+e_{s}$) for $s=1,2, \cdots, r$. The integers appearing in rows $m p+2$, $m p+3, \cdots, m(p+1)$ of column $f\left(e_{0}+e_{1}+\cdots+e\right)$ are now congruent (modulo 2) to the integer in row $m p+1$ and column $f\left(e_{0}+e_{1}+\cdots+\right.$ e_{s}). This holds for $p=0,1, \cdots, h-1$, and $s=1,2, \cdots, r$. Now add row $m p+1$ to rows $m p+2, m p+3, \cdots, m(p+1)$ for $p=0,1, \cdots$, $h-1$. The integer in row $m p+q$ and column $f\left(e_{1}+e_{2}+\cdots+e_{s}\right)$ is now congruent to zero (modulo 2), for $2 \leqq q \leqq m ; 0 \leqq p \leqq h-1 ; 1 \leqq s$ $\leqq r$. Hence columns $f\left(e_{1}+e_{2}+\cdots+e_{s}\right)$ for $1 \leqq s \leqq r$ may be regarded as lying in the same vector space of dimension h over the field of two elements. Since $r>h$, these vectors are dependent. Consequently the determinant of $A_{i-1} R_{i}$ is congruent to zero (modulo 2). This is a contradiction as the determinant of $A_{i-1} R_{i}$ is ± 1.

Hence each $e_{j}=n_{i}$. Let Z_{j} be the block diagonal matrix diag $\left(I_{f}, E_{j, 1}, E_{j, 1} E_{j, 2}, \cdots, E_{j, 1} E_{j, 2} \cdots E_{j, n_{i}-1}\right)$. Since $E_{j, 1} E_{j, 2} \cdots E_{j, n_{i}}$ is a diagonal block in $E_{j}^{n_{i}}$ and since $E_{j}^{n_{i}}=I_{m}$, it follows that $E_{j, 1} E_{j, 2} \cdots E_{j, n_{i}}$ $=I_{f}$. From this fact and the fact that the $E_{j, q}$ are generalized permutation matrices we find that $Z_{j} E_{j} Z_{j}^{\prime}=\left[0_{f}, I_{f}, 0_{f}, \cdots, 0_{f}\right]_{n_{i}}$. Hence, if $Z=\operatorname{diag}\left(Z_{1}, Z_{2}, \cdots, Z_{r}\right)$, then $Z N_{i} Z^{\prime}=P_{i}$. Morever, Z is a matrix with g rows and columns in elements which are circulants of type $\left(n_{0}, n_{1}, \cdots, n_{i-1}\right)$. We now have $M_{i}=U_{i}^{\prime} P_{i} U_{i}$ where $U_{i}^{\prime}=R_{i} Z^{\prime}$ is a generalized permutation matrix and a matrix with g rows and columns in elements which are circulants of type $\left(n_{0}, n_{1}, \cdots, n_{i-1}\right)$. Then

$$
A_{i-1}=\left[\begin{array}{l}
B_{1} U_{i}^{\prime} U_{i} \\
B_{1} U_{i}^{\prime} P_{i} U_{i} \\
\cdots \\
B_{1} U_{i}^{\prime} P_{i}^{n_{i}-1} U_{i} \\
\cdots \\
B_{h} U_{i}^{\prime} U_{i} \\
\cdots \\
B_{h} U_{i}^{\prime} P_{i}^{n_{i}-1} U_{i}
\end{array}\right]=\left[\begin{array}{l}
B_{1} U_{i}^{\prime} \\
B_{1} U_{i}^{\prime} P_{i} \\
\cdots \\
B_{1} U_{i}^{\prime} P_{i}^{n_{i}-1} \\
\cdots \\
B_{h} U_{i}^{\prime} \\
\cdots \\
B_{h} U_{i}^{\prime} P_{i}^{n_{i}-1}
\end{array}\right] U_{i}=A_{i} U_{i},
$$

say. Here each $B_{j} U_{i}^{\prime}$ is a vector with g coordinates in elements which are circulants of type ($n_{0}, n_{1}, \cdots, n_{i-1}$). From the form of A_{i} it follows that A_{i} may be partitioned into blocks which are circulants of type ($n_{0}, n_{1}, \cdots, n_{i}$).

The proof is now complete.

References

1. G. Higman, The units of group rings, Proc. London Math. Soc., 46 (1940), 231-248.
2. D. Hilbert, Théorie des corps de nombres algébriques, Paris, (1913), 164.
3. C. C. MacDuffee, The theory of matrices, New York, (1956), 81.
4. M. Newman and O. Taussky, A generalization of the normal basis in abelian algebraic number fields, Comm. Pure Appl. Math., 9 (1956), 85-91.
5. O. Taussky, Unimodular integral circulants, Math. Z., 63 (1955), 286-289.
6. O. Taussky, Matrices of rational integers, Bull. Amer. Math. Soc., 66 (1960), 327-345.

University of British Columbia

[^0]: Received June 15, 1961, and in revised form October 13, 1961.

