BOUNDS IN THE NEUMANN PROBLEM FOR SECOND ORDER UNIFORMLY ELLIPTIC OPERATORS

J. H. Bramble and L. E. Payne

1. Introduction. In this paper we derive certain a priori inequalities which are useful for obtaining bounds in the interior Neumann problem for second order elliptic partial differential equations. In establishing these inequalities by our methods it is necessary to obtain lower bounds for the inverse of the Poincare constant (μ_{2} of eq. 3.3) and the first nonzero Steklov eigenvalue (p_{2} of eq. 3.11). An optimal Poincaré inequality for convex domains in n-dimensions was given by Payne and Weinberger [5], and a method for obtaining lower bounds for p_{2} for n-dimensional star-shaped regions was indicated by Payne and Weinberger [3]. However, to the authors' knowledge, no explicit lower bounds for p_{2} and μ_{2} for general n-dimensional regions have previously been given. Lower bounds for these constants which lead to the above mentioned inequalities in the Neumann problem are of interest in themselves and should prove useful in other applications.

For the special case of the Laplace equation other methods for deriving bounds for the Dirichlet integral in the Neumann problem appear in the literature (see [2], [6]). For starshaped regions a method similar to that proposed here was obtained in [3]. Bounds in exterior Neumann problems were given in [4].
2. Preliminary inequalities. Let R be a simply connected bounded region with boundary C in Euclidean n-space. In R we assume that the operator L given by

$$
\begin{equation*}
L u \equiv\left(a^{i j} u_{, i}\right)_{, j} \tag{2.1}
\end{equation*}
$$

is a uniformly elliptic operator, defined for sufficiently smooth functions u. In (2.1) , i denotes partial differentiation with respect to the coordinate x_{i} and the summation convention is assumed. The coefficient matrix $a^{i j}$ is symmetric and the condition of uniform ellipticity may be stated as follows: There exist positive constants a_{0} and a_{1} such that for every real vector (ξ_{1}, \cdots, ξ_{n}), the relation

$$
\begin{equation*}
a_{0} \sum_{i=1}^{n} \xi_{i} \xi_{i} \leqq a^{i j} \xi_{i} \xi_{j} \leqq a_{1} \sum_{i=1}^{n} \xi_{i} \xi_{i} \tag{2.2}
\end{equation*}
$$

is valid uniformly in R.

[^0]We consider now an arbitrary point of R which we choose to be the origin. Let S_{a} be the interior of a sphere of radius a, with center at the origin and such that $S_{a} \subset R$. The surface of the sphere will be called Σ_{a}. We denote by R_{a} the region $R-\bar{S}_{a}$, where \bar{S}_{a} is the closure of S_{a}.

Let u be any sufficiently smooth function in $R+C$ and let f^{i} be a sufficiently smooth vector field defined in \bar{R}_{a}. Then, by the divergence theorem, we have

$$
\begin{equation*}
\oint_{\sigma} f^{i} n_{i} u^{2} d s=-\oint_{\Sigma_{a}} f^{i} n_{i} u^{2} d s+\int_{R_{a}} f_{{ }_{i}}^{i} u^{2} d v+2 \int_{R_{a}} f^{i} u u,_{i} d v \tag{2.3}
\end{equation*}
$$

where n_{i} is the component of the unit normal directed outward on C. An application of the arithmetic-geometric mean inequality applied to the last term on the right of (2.3) yields

$$
\begin{equation*}
\oint_{\sigma} f^{i} n_{i} u^{2} d s \leqq-\oint_{\Sigma_{a}} f^{i} n_{i} u^{2} d s+\int_{R_{a}}\left(f_{, i}^{i}+\frac{1}{\alpha} f^{i} f^{i}\right) u^{2} d v+\int_{R_{a}} \alpha u_{, i} u_{, i} d v \tag{2.4}
\end{equation*}
$$

where α is some positive function in R_{a}.
We assume now that f^{i} and α have been chosen so that

$$
\begin{align*}
t \equiv f^{i} n_{i} & \geqq K_{1}>0 \text { on } C \\
-f^{i} n_{i} & \leqq K_{2} \text { on } \Sigma_{a} \tag{2.5}\\
f_{, i}^{i}+\frac{1}{\alpha} f^{i} f^{i} & \leqq 0 \text { in } R_{a},
\end{align*}
$$

where K_{1} and K_{2} are constants. (We shall in a subsequent section construct vectors f^{i} satisfying (2.5) for certain domains.) Using conditions (2.5) with (2.4) we have that

$$
\begin{equation*}
\oint_{\sigma} t u^{2} d s \leqq K_{2} \oint_{\Sigma_{a}} u^{2} d s+\bar{\alpha} \int_{R_{a}} u_{, i} u_{, i} d v \tag{2.6}
\end{equation*}
$$

where $\bar{\alpha}$ is an upper bound for α in R_{a}. Suppose that u is normalized such that

$$
\begin{equation*}
\oint_{\Sigma_{a}} u d s=0 . \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\oint_{\Sigma_{a}} u^{2} d s \leqq p_{2} \int_{s_{a}} u_{, i} u_{, i} d v \tag{2.8}
\end{equation*}
$$

where p_{2} is the first nonzero eigenvalue in the Steklov problem for the sphere S_{a}. That is

$$
\begin{equation*}
p_{2}=\min \frac{\int_{s_{a}} \chi_{, i} \chi_{, i} d v}{\oint_{\Sigma_{a}} \chi^{2} d s} \tag{2.9}
\end{equation*}
$$

where the minimum is taken over all sufficiently smooth functions in S_{a} which satisfy (2.7). For the sphere of radius a, p_{2} is explicitly given by

$$
\begin{equation*}
p_{2}=1 / a \tag{2.10}
\end{equation*}
$$

Combining (2.6) and (2.8) it follows that

$$
\begin{equation*}
\oint_{o} t u^{2} d s \leqq K_{3} D(u, u) \equiv K_{3} \int_{R} u_{, i} u_{, i} d v, \tag{2.11}
\end{equation*}
$$

where $K_{3}=\max \left(a K_{2}, \bar{\alpha}\right)$, or using (2.5)

$$
\begin{equation*}
\oint_{\sigma} u^{2} d s \leqq\left(K_{3} / K_{1}\right) D(u, u) . \tag{2.12}
\end{equation*}
$$

Now from the divergence theorem

$$
\begin{equation*}
\oint_{\sigma} x^{i} n_{i} u^{2} d s=n \int_{R} u^{2} d v+2 \int_{R} x^{i} u u_{, i} d v \tag{2.13}
\end{equation*}
$$

Using the arithmetric-geometric mean inequality it follows easily that

$$
\begin{equation*}
\int_{R} u^{2} d v \leqq \frac{2 r_{M}}{n} \oint_{\sigma} u^{2} d s+\frac{4 r_{M}^{2}}{n^{2}} D(u, u) \tag{2.14}
\end{equation*}
$$

where r_{M} is the maximum distance from the origin to C. Inequality (2.12) with (2.14) yields

$$
\begin{equation*}
\int_{R} u^{2} d v \leqq K_{4} D(u, u) \tag{2.15}
\end{equation*}
$$

where

$$
K_{4}=\frac{2 r_{m}}{n}\left[K_{3} / K_{1}+\frac{2 r_{m}}{n}\right]
$$

The preceding inequalities depended entirely on the existence of a vector field f^{i} satisfying (2.5). In certain cases, as will be shown in a subsequent section, such a vector field can be explicitly constructed so as to yield explicit, easily computable constants K_{1}, K_{2} and K_{3}.

In some cases it may be that for the region R the vector field f^{i} is quite difficult to construct. We can make use of an additional inequality to reduce the problem to that of obtaining an inequality of the form (2.12) for a subregion of R.

Let us divide the region R into two disjoint subregions R_{1} and R_{2}.

These regions are to be separated by a surface C^{\prime}. The portion C which is part of the boundary of R_{i} will be denoted by $C_{i}, i=1,2$. Thus the boundary of R_{i} will be $C_{i}+C^{\prime}$. We further assume that the subdivision has been made in such a way that C_{1} is star shaped with respect to some point P not in $R_{1}+C^{\prime}$. We choose P to be the origin and apply the divergence theorem is R_{1} to obtain

$$
\begin{equation*}
\int_{\sigma_{1}+\sigma^{\prime}} x^{i} r^{-(n+1)} n_{i} u^{2} d s=-\int_{R_{1}} r^{-(n+1)} u^{2} d v+2 \int_{R_{1}} x^{i} r^{-(n+1)} u u_{, i} d v \tag{2.16}
\end{equation*}
$$

for any function u sufficiently smooth in R. Defining $\hat{i}=x_{i} n_{i} / r$ and using the arithmetic-geometric mean inequality we obtain

$$
\begin{equation*}
\oint_{\sigma_{1}} u^{2} d s \leqq \frac{1}{\hat{t}_{m}}\left(\frac{r_{M}}{r_{m}}\right)^{n} \oint_{\sigma^{\prime}} u^{2} d s+\frac{r_{m}}{\hat{t}_{m}}\left(\frac{r_{M}}{r_{m}}\right)^{n} D_{1}(u, u) . \tag{2.17}
\end{equation*}
$$

In (2.17) r_{B} and r_{m} denote upper and lower bounds for r in \bar{R}_{1} and \hat{t}_{m} a lower bound for \hat{t} on $C_{1} \cdot D_{1}(u, u)$ denotes the Dirichlet integral over R_{1}.

Now suppose that for R_{2} we could find a vector field f^{i} satisfying (2.5) relative to R_{2} and obtain the inequality

$$
\begin{equation*}
\oint_{\sigma_{2}+\sigma^{\prime}} u^{2} d s \leqq K_{3} / K_{1} D_{2}(u, u) \tag{2.18}
\end{equation*}
$$

Then clearly (2.17), together with (2.18) would yield

$$
\begin{equation*}
\oint_{\sigma} u^{2} d s \leqq K_{5} D(u, u) \tag{2.19}
\end{equation*}
$$

where of course u is assumed normalized with respect to S_{a} in R_{2}, and K_{5} is a constant.

It is now obvious that such a procedure could be repeated a finite number of times, finally reducing the region to one for which the inequality (2.12) may be more easily obtained. In particular if we iterate this procedure until the q th region R_{q} is star shaped, then, as we shall see in $\S 4$, a vector field f^{i} for R_{q} is easily constructed.
3. Lower bounds for eigenvalues. The first nonzero eigenvalue μ_{2} in the free membrane problem for R satisfies

$$
\begin{equation*}
\Delta \widetilde{v}+\mu_{2} \widetilde{v}=0 \text { in } R \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \widetilde{v}}{\partial n}=0 \text { on } C \tag{3.2}
\end{equation*}
$$

where \widetilde{v} is the corresponding eigenfunction. It is well known that μ_{2}
may be characterized by the minimum principle

$$
\begin{equation*}
\mu_{2}=\min \frac{D(\varphi, \varphi)}{\int_{R} \varphi^{2} d v} \tag{3.3}
\end{equation*}
$$

for sufficiently smooth functions φ satisfying

$$
\begin{equation*}
\int_{R} \varphi d v=0 \tag{3.4}
\end{equation*}
$$

and that \widetilde{v} is the minimizing function. That is

$$
\begin{equation*}
\mu_{2}=\frac{D(\tilde{v}, \tilde{v})}{\int_{R} \widetilde{v}^{2} d v} \tag{3.5}
\end{equation*}
$$

Now let $u=\widetilde{v}+c_{1}$ where

$$
\begin{equation*}
c_{1}=-\frac{1}{\omega_{n} a^{n-1}} \int_{\Sigma_{a}} v d s \tag{3.6}
\end{equation*}
$$

ω_{n} denoting the surface area of the n-dimensional unit sphere. Then u satisfies

$$
\begin{equation*}
\int_{\Sigma_{a}} u d s=0 \tag{3.7}
\end{equation*}
$$

and hence by (2.15)

$$
\begin{equation*}
\int_{R} u^{2} d v \leqq K_{4} D(u, u)=K_{4} D(\widetilde{v}, \tilde{v}) \tag{3.8}
\end{equation*}
$$

But

$$
\begin{equation*}
\int_{R} u^{2} d v=\int_{R} \widetilde{v}^{2} d v+c_{1}^{2} \int_{R} d v \geqq \int_{R} \widetilde{v}^{2} d v \tag{3.9}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{1}{K_{4}} \leqq \frac{D(\tilde{v}, \tilde{v})}{\int_{R} \widetilde{v}^{2} d v}=\mu_{2} \tag{3.10}
\end{equation*}
$$

or $1 / K_{4}$ is a lower bound for μ_{2}.
A lower bound is also easily obtained for p_{2}, the first nonzero eigenvalue in the Steklov problem for R. Let w be the corresponding eigenfunction. Then we have that

$$
\begin{equation*}
p_{2}=\frac{D(w, w)}{\oint_{\sigma} w^{2} d s} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\oint_{\sigma} w d s=0 \tag{3.12}
\end{equation*}
$$

Now let $u=w+c_{2}$ where

$$
\begin{equation*}
c_{2}=-\frac{1}{\omega_{n} a^{n-1}} \oint_{\Sigma_{a}} w d s \tag{3.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\oint_{\Sigma_{a}} u d s=0 \tag{3.14}
\end{equation*}
$$

and we may apply (2.12) to u. But by (3.14) we have that

$$
\begin{equation*}
\oint_{\sigma} u^{2} d s=\oint_{\sigma} w^{2} d s+c_{2}^{2} \oint_{\sigma} d s \geqq \oint_{\sigma} w^{2} d s \tag{3.15}
\end{equation*}
$$

Thus from (2.12) and (3.15)

$$
K_{1} / K_{3} \leqq \frac{D(w, w)}{\oint_{\sigma} w^{2} d s}=p_{2}
$$

which gives the desired lower bound for p_{2}.
4. Bounds in the Neumann problem for L. We assume now that ψ is any sufficiently smooth function in $R+C$. We shall obtain bounds for the generalized Dirichlet integral, $A(\psi, \psi)$, given by

$$
\begin{equation*}
A(\psi, \psi)=\int_{R} a^{i j} \psi_{, i} \psi, j d v \tag{4.1}
\end{equation*}
$$

in terms of $L \psi$ in R and

$$
\begin{equation*}
\frac{\partial \psi}{\partial \nu} \equiv a^{i j} n_{i} \psi, j \text { on } C \tag{4.2}
\end{equation*}
$$

We take $u=\psi+c_{3}$ where

$$
\begin{equation*}
c_{3}=-\frac{1}{\omega_{n} a^{n-1}} \oint_{\Sigma_{a}} \psi d s \tag{4.3}
\end{equation*}
$$

As before

$$
\begin{equation*}
\oint_{\Sigma_{a}} u d s=0 \tag{4.4}
\end{equation*}
$$

Now by Green's identity

$$
\begin{equation*}
A(u, u)=\oint_{\sigma} u \frac{\partial \psi}{\partial \nu} d s-\int_{R} u L \psi d v \tag{4.5}
\end{equation*}
$$

We have used the fact that u and ψ differ only by a constant. By Schwarz's inequality we have that

$$
\begin{align*}
A(u, u) \leqq & \left(\oint_{\sigma} t u^{2} d s\right)^{1 / 2}\left(\oint_{\sigma} t^{-1}\left(\frac{\partial \psi}{\partial \nu}\right)^{2} d s\right)^{1 / 2} \tag{4.6}\\
& +\left(\int_{R} u^{2} d v\right)^{1 / 2}\left(\int_{R}(L \psi)^{2} d \nu\right)^{1 / 2} .
\end{align*}
$$

Because of (4.4) inequalities (2.11) and (2.15) are applicable and we obtain that

$$
\begin{equation*}
A(\psi, \psi)^{1 / 2} \leqq\left(\frac{K_{3}}{a_{0}}\right)^{1 / 2}\left(\oint_{0} t^{-1}\left(\frac{\partial \psi}{\partial \nu}\right)^{2} d s\right)^{1 / 2}+\left(\frac{K_{4}}{a_{0}}\right)^{1 / 2}\left(\int_{R}(L \psi)^{2} d v\right)^{1 / 2} \tag{4.7}
\end{equation*}
$$

since

$$
D(u, u) \leqq \frac{1}{a_{0}} A(u, u)=\frac{1}{a_{0}} A(\psi, \psi)
$$

The inequalities of this section and $\S 2$ together with a mean value inequality given in [1] give immediately interior pointwise bounds for $\psi+c_{3}$.

As an application of the results of this section we note here that (4.7) may be used in conjunction with the Rayleigh-Ritz procedure to yield close bounds for the Dirichlet integral in a specific Neumann problem c.f. [1].
5. Construction of the vector field. We shall show in some cases how to construct a vector field satisfying (2.5).
(a) Star shaped regions.

We consider the case where C is star shaped with respect to some point. We choose this point to be the origin. Then if we take

$$
\begin{equation*}
f^{i}=x^{i} r^{-(n+1)} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=r^{-(n-1)} \tag{5.2}
\end{equation*}
$$

We have that

$$
\begin{equation*}
t=f^{i} n_{i}=x^{i} n_{i} r^{-(n+1)} \geqq h_{m} r_{M}^{-(n+1)} \text { on } C \tag{5.3}
\end{equation*}
$$

where $h(P)$ is the distance from the origin to the tangent plane at a point P on C and h_{m} is the minimum of this function. The condițion
of star-shapedness insures that $h_{m}>0$. Since $n_{i}=-x^{i} / a$ on Σ_{a} it follows that

$$
\begin{equation*}
-f^{i} n_{i}=a^{-n} \text { on } \Sigma_{a} \tag{5.4}
\end{equation*}
$$

and

$$
f_{, i}^{i}+\frac{1}{\alpha} f^{i} f^{i}=0 \text { in } R_{a}
$$

In this case, taking $a=r_{m}$, we obtain

$$
\begin{equation*}
\mu_{2} \geqq \frac{n}{2 r_{M}^{2}\left[\left(\frac{r_{M}}{r_{m}}\right)^{n-1} \frac{r_{M}}{h_{m}}+\frac{2}{n}\right]} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2} \geqq \frac{1}{r_{H K}}\left[\left(\frac{r_{m}}{r_{M}}\right)^{n-1} \frac{h_{m}}{r_{M H}}\right] . \tag{5.6}
\end{equation*}
$$

A different method for obtaining a lower bound for p_{2} for star shaped regions has been indicated by Payne and Weinberger [3]. For convex region Payne and Weinberger [5] also obtained the optimal lower bound $\mu_{2} \geqq \pi^{2} d^{-2}$ where d is the diameter of R.
(b) Smooth boundaries.

Let R be a region whose boundary C has continuous curvature. Call the largest principal curvature at a point P of $C, K_{H}(p)$. Let $\rho(p)$ be the radius of a sphere which is tangent to C at P and contained in R. In addition we require $\rho(p)$ to be less than $K_{M L}(p)^{-1}$. Denote by \bar{K} a bound for the maximum of $\rho(p)^{-1}$ for $P \in C$. We consider the family of parallel surfaces

$$
\begin{equation*}
N(x)=N\left(x^{1}, \cdots, x^{n}\right)=\text { constant } \tag{5.7}
\end{equation*}
$$

with C given by

$$
\begin{equation*}
N(x)=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leqq N(x) \leqq 1 / \bar{K} \tag{5.9}
\end{equation*}
$$

The outward normal vector n_{i} is defined in this strip and satisfies

$$
\begin{equation*}
n_{i, i}(x)=J(x) \tag{5.10}
\end{equation*}
$$

where $J(x)$ is the average curvature of the surface given by $N(x)$ at the point $x=\left(x^{1}, \cdots, x^{n}\right)$ c.f. [7, p. 3]. We assume also that \bar{K} is chosen so that

$$
\begin{equation*}
J(x) \leqq \bar{K} \tag{5.11}
\end{equation*}
$$

The above conditions and definitions involve the smoothness of C and essentially the thickness of R. We impose a further condition on the shape of R.

We assume that there is a point, which we choose to be the origin, such that

$$
\begin{equation*}
\frac{x^{i} n_{i}}{r} \geqq-p+\beta>-p>-1 \tag{5.12}
\end{equation*}
$$

for some constants p and $\beta>0$ in the strip $0 \leqq N(x) \leqq 1 / \bar{K}$. In this case f^{i} may be chosen as

$$
f^{i}=\left\{\begin{array}{l}
{\left[p n_{i}(1-\bar{K} N(x))+x^{i} / r\right] r^{-q}, 0 \leqq N(x) \leqq 1 / \bar{K}} \tag{5.13}\\
\quad \frac{x^{i}}{r} r^{-q}, \text { otherwise }
\end{array}\right.
$$

with q to be determined. Condition (5.12) means that there is an open subset Ω of R which has the property that no ray from the boundary in the direction of the outward normal intersects Ω.

Let a now be chosen so that S_{a} does not intersect the boundary strip.

Now on C

$$
\begin{equation*}
f^{i} n_{i}=\left[p+\frac{x^{i} n_{i}}{r}\right] r^{-q} \geqq \beta r_{M}^{-q} \tag{5.14}
\end{equation*}
$$

For $0 \leqq N(x) \leqq 1 / \bar{K}$

$$
\begin{align*}
f_{, i}^{i}=\{p[J(1-\bar{K} N(x))+\bar{K}] r & +n-1-q \tag{5.15}\\
& {\left.\left[p \frac{x_{i} n_{i}}{r}(1-\bar{K} N(x))+1\right]\right\} r^{-(q+1)} }
\end{align*}
$$

since $n_{i}\left(\partial / \partial x_{i}\right) N=-1$. Because of (5.12) and the fact that $0 \leqq 1-$ $\bar{K} N(x) \leqq 1$ we have that

$$
\begin{equation*}
f_{, i}^{i} \leqq\left\{2 \bar{K} r_{m}+n-1-q\left(1-p^{2}\right)\right\} r^{-(q+1)} \tag{5.16}
\end{equation*}
$$

Now if we choose

$$
\begin{equation*}
q=\frac{2 \bar{K} r_{M}+n+3}{1-p^{2}} \tag{5.17}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
f_{, i}^{i} \leqq-4 r^{-(q+1)} \leqq-4 r_{M}^{-(q+1)} \tag{5.18}
\end{equation*}
$$

in the boundary strip. In the remaining part of R_{a} we have, since
$q \geqq n+3$

$$
\begin{equation*}
f_{. i}^{i}=[n-(q+1)] r^{-(q+1)} \leqq-4 r_{M}^{-(q+1)} \tag{5.19}
\end{equation*}
$$

Now choose $\alpha=r^{1-q}$. Then

$$
\begin{equation*}
f_{. i}^{i}+\frac{1}{\alpha} f^{i} f^{i} \leqq 0 \text { in } R_{a} . \tag{5.20}
\end{equation*}
$$

On Σ_{a}

$$
\begin{equation*}
-f^{i} n_{i}=a^{-q} \tag{5.21}
\end{equation*}
$$

In this case we have

$$
\begin{equation*}
\mu_{2} \geqq \frac{n}{2 r_{M}^{2}\left[\frac{1}{\beta}\left(\frac{r_{M}}{a}\right)^{q-1}+\frac{2}{n}\right]} \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2} \geqq \beta\left(\frac{a}{r_{M}}\right)^{q-1} 1 / r_{M} \tag{5.23}
\end{equation*}
$$

(c) Boundaries with star-shaped irregularities.

Suppose now that the boundary C consists of two parts C_{1} and C_{2} where C_{1} is smooth and C_{2} is star-shaped with respect to the chosen origin. We assume that the closure of the interior of C_{2} contains C_{2}. For example, in two dimensions, the components of C_{2} cannot be isolated points. Let \bar{K} now be defined relative to C_{1}. Denote by R_{1} the region consisting of R minus the strip adjacent to C_{1}. We suppose that \bar{K} is large enough (the strip small enough) to make R_{1} connected.

We assume that β is such that on C_{2}

$$
\begin{equation*}
\frac{x^{i} n_{i}}{r} \geqq \beta \tag{5.24}
\end{equation*}
$$

Then in place of (5.13) we have

$$
f^{i}= \begin{cases}{\left[p n_{i}(1-\bar{K} N(x))+\frac{x^{i}}{r}\right] r^{-q},} & \text { in } R-R_{1} \tag{5.25}\\ \frac{x^{i}}{r} r^{-q}, & \text { in } R_{1}\end{cases}
$$

Since in the identity (2.3) it is only necessary that f^{i} have a continuous normal component on the boundaries of subregions of R_{a} this definition of f^{i} has sufficient smoothness properties.

In this case we again have the inequalities (5.22) and (5.23).

Bibliography

1. J. H. Bramble and L. E. Payne, Bounds for solutions of second order elliptic partial differential equations, Contributions to Diff. Eqtns. (to appear).
2. J. B. Diaz and A. Weinstein, Schwarz' inequality and the methods of Rayleigh-Ritz and Trefftz, J. Math. and Physics, 26 (1947), 133-136: see also J. B., Diaz, Upper and lower bounds for quadratic integrals, Collectanea Mathematica, 4 (1951), 3-50.
3. L. E. Payne and H. F. Weinberger, New bounds in harmonic and biharmonic problems, J. Math. Phys. (1955), 291-307.
4. ——, New bounds for solutions of second order elliptic partial differential equations, Pacific. J. Math., 8 (1958), 551-573.
5. —, An optimal Poincaré inequality for convex domains, Arch. Rat. Mech. Analy., 5 (1960), 280-292.
6. J. L. Synge, The method of hypercircle in function-space for boundary value problems, Proc. Roy. Soc. London, A 191 (1947), 447-467; se also J. L. Synge, The hypercircle in mathematical physics, Cambridge Univ. Press (1957).
7. C. E. Weatherburn, Differential geometry in three dimensions, Cambridge Univ. Press, vol. II (1930).

Institute for Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Maryland

[^0]: Received December 4, 1961. This research was supported in part by the United States Air Force through the Air Force Office of Scientific Research of the Air Resarch and Development Command under Contract No. AF 49 (638) 228.

