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l Introduction. In this paper we derive certain a priori in-
equalities which are useful for obtaining bounds in the interior'Neumann
problem for second order elliptic partial differential equations. In es-
tablishing these inequalities by our methods it is necessary to obtain
lower bounds for the inverse of the Poincare constant {μ2 of eq. 3.3)
and the first nonzero Steklov eigenvalue (p2 of eq. 3.11). An optimal
Poincare inequality for convex domains in ^-dimensions was given by
Payne and Weinberger [5], and a method for obtaining lower bounds for
p2 for ^-dimensional star-shaped regions was indicated by Payne and
Weinberger [3]. However, to the authors' knowledge, no explicit lower
bounds for p2 and μ2 for general w-dimensional regions have previously
been given. Lower bounds for these constants which lead to the above
mentioned inequalities in the Neumann problem are of interest in them-
selves and should prove useful in other applications.

For the special case of the Laplace equation other methods for
deriving bounds for the Dirichlet integral in the Neumann problem
appear in the literature (see [2], [6]). For starshaped regions a method
similar to that proposed here was obtained in [3]. Bounds in exterior
Neumann problems were given in [4].

2* Preliminary inequalities. Let R be a simply connected bounded
region with boundary C in Euclidean w-space. In R we assume that
the operator L given by

(2.1) Lu = (ai3'uti)j

is a uniformly elliptic operator, defined for sufficiently smooth functions
u. In (2.1) ,i denotes partial differentiation with respect to the coordi-
nate xi and the summation convention is assumed. The coefficient
matrix aij is symmetric and the condition of uniform ellipticity may be
stated as follows: There exist positive constants a0 and ax such that
for every real vector (ξu , ξn), the relation

(2.2)

is valid uniformly in R.
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We consider now an arbitrary point of R which we choose to be
the origin. Let Sa be the interior of a sphere of radius α, with center
at the origin and such that Sa c R. The surface of the sphere will be
called Σa. We denote by Ra the region R — Sa, where Sa is the closure
of Sa.

Let u be any sufficiently smooth function in R + C and let /* be
a sufficiently smooth vector field defined in Ra. Then, by the divergence
theorem, we have

(2.3) £ f'UiU'ds = - £ f'n^ds + \ fUu2dv + 2ί f*uu9idv ,
J 0 J Σa jEa jRa

where n{ is the component of the unit normal directed outward on C.
An application of the arithmetic-geometric mean inequality applied to
the last term on the right of (2.3) yields

(2.4) <f fn^ds ^ - <ί pn^ds + f (f\ + l fψλtfdv + [ an tu {dv

where a is some positive function in Ra.
We assume now that fι and a have been chosen so that

t = f% ^ Kx > 0 on C

(2.5) - f% ^ K2 on Σa

fU + \fΨ ^ 0 in Ra,

where Kx and K2 are constants. (We shall in a subsequent section
construct vectors fι satisfying (2.5) for certain domains.) Using con-
ditions (2.5) with (2.4) we have that

(2.6) <ί tu2ds ^ K2 <f u2ds + a[ u tu {dv ,
JO J Σa jRa

where a is an upper bound for a in Ra. Suppose that u is normalized
such that

(2.7)

Then

(2.8) φ u2ds ^ pΛ u tu idv
J Σa JSa

where p2 is the first nonzero eigenvalue in the Steklov problem for the
sphere Sa. That is
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(2.9) p2 = min= TYΊ1Π i£α£

f
where the minimum is taken over all sufficiently smooth functions in
Sa which satisfy (2.7). For the sphere of radius α, p2 is explicitly
given by

(2.10) p2 = 1/α .

Combining (2.6) and (2.8) it follows that

(2.11) <f tu2ds ^ KdD(u, u) = KS U tutidv ,
JO JB

where K3 = max (aK2, a), or using (2.5)

(2.12) <f u*ds ̂  (KJKJ D{u, u) .

Now from the divergence theorem

(2.13) f x%u2ds = nί ΐΛfo; + 2ί xluu {dv .

Using the arithme trie-geometric mean inequality it follows easily that

(2.14) u'dv ^ =s- φ u'ds + ^-D(u, u) ,

where ru is the maximum distance from the origin to C. Inequality
(2.12) with (2.14) yields

(2.15) ί u'dv g KJ){μ, u) ,

J R

where

9/v r 2r

Q + —
n

The preceding inequalities depended entirely on the existence of a
vector field /•' satisfying (2.5). In certain cases, as will be shown in a
subsequent section, such a vector field can be explicitly constructed so
as to yield explicit, easily computable constants Ku K2 and iζ$.

In some cases it may be that for the region R the vector field fι

is quite difficult to construct. We can make use of an additional in-
equality to reduce the problem to that of obtaining an inequality of
the form (2.12) for a subregion of R.

Let us divide the region R into two disjoint subregions Rx and R2.
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These regions are to be separated by a surface C\ The portion C
which is part of the boundary of i2< will be denoted by Ci9 i — 1, 2.
Thus the boundary of R{ will be Ct + C. We further assume that the
subdivision has been made in such a way that CΊ is star shaped with
respect to some point P not in Rλ + C". We choose P to be the origin
and apply the divergence theorem is Rλ to obtain

(2.16) \ x'r-^n^ds = -\ r-{n+ )u2dv

for any function u sufficiently smooth in R. Defining i = XiΠjr and
using the arithmetic-geometric mean inequality we obtain

(2.17) <f u2ds ̂  JL(I*.Y ( u2ds + ISJΣMXD^U, U) .

In (2.17) rM and rm denote upper and lower bounds for r in Rλ and tm

a lower bound for t on Cx Dλ{u, u) denotes the Dirichlet integral
over Rlm

Now suppose that for R2 we could find a vector field fι satisfying
(2.5) relative to R2 and obtain the inequality

(2.18) <f u2ds ^ KJK, D2(u, u) .
J c2+c

Then clearly (2.17), together with (2.18) would yield

(2.19) (f u2ds ^ K6D(u, u)
J

where of course u is assumed normalized with respect to Sa in R2, and
K6 is a constant.

It is now obvious that such a procedure could be repeated a finite
number of times, finally reducing the region to one for which the in-
equality (2.12) may be more easily obtained. In particular if we iterate
this procedure until the gth region Rq is star shaped, then, as we shall
see in § 4, a vector field fι for Rq is easily constructed.

3. Lower bounds for eigenvalues* The first nonzero eigenvalue fi3

in the free membrane problem for R satisfies

(3.1) Δv

and

(3.2)
dn

where v is the corresponding eigenfunction. It is well known that μ2



BOUNDS IN THE NEUMANN PROBLEM 827

may be characterized by the minimum principle

(3.3) /*2

φ2dv
R

for sufficiently smooth functions φ satisfying

(3.4)

and that v is the minimizing function. That is

(3.5) ψ*±
v2dv

JR

Now let u = v + Cj where

(3.6) C l = * — ί vds
ωna

n~x ha

ωn denoting the surface area of the %-dimensional unit sphere. Then
u satisfies

(3.7) ( u ds = 0 ,

and hence by (2.15)

(3.8) f u2dv ^ KJ)(u, u) = K,D(vf v) .

But

(3.9) ( u2dv = ( v2dv + c\\ dv^\ v2dv .
JR JR JR JR

Thus

(3.10) ±. £ ψ^l

or l/if4 is a lower bound for μ2.
A lower bound is also easily obtained for p2, the first nonzero

eigenvalue in the Steklov problem for R. Let w be the corresponding
eigenfunction. Then we have that

(3.11) v, = n{W'W)

f w2ds
o
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and

(3.12) <f wds = 0 .
J o

Now let u = w + c2 where

(3.13) c2 = ί wds .
ωan-χ J

Then

(3.14) <f mis = 0

and we may apply (2.12) to u. But by (3.14) we have that

(3.15) <f u2ds = f w2ds + cl ί ds ̂  <ί w2ds .
Jo Jo Jo Jo

Thus from (2.12) and (3.15)

KJK. £ -f^L = ft f

J c

which gives the desired lower bound for p2.

4. Bounds in the Neumann problem for L. We assume now that
ψ is any sufficiently smooth function in R + C. We shall obtain bounds
for the generalized Dirichlet integral, A(φ, ψ), given by

(4.1) A(ψ, ψ) = ί aijf ^ jdv

in terms of Lψ in R and

(4.2) ^ - = a^Utψ j on C .

We take w = ^ + c3 where

(4.3) c3 = — - f ψds .

As before

(4.4) f uds = 0 ,

Now by Green's identity
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(4.5) A(u, u) = I u-^—ds — I uLψdv .

We have used the fact that u and ψ differ only by a constant. By
Schwarz's inequality we have that

Because of (4.4) inequalities (2.11) and (2.15) are applicable and we
obtain that

(4.7) A(f, Ψr * (^T( f t-
α0

since

D(u, u) ^ —A(u, u) = —

The inequalities of this section and §2 together with a mean value
inequality given in [1] give immediately interior pointwise bounds for

Ψ + C3.
As an application of the results of this section we note here that

(4.7) may be used in conjunction with the Rayleigh-Ritz procedure to
yield close bounds for the Dirichlet integral in a specific Neumann
problem c.f. [1].

5. Construction of the vector field. We shall show in some cases
how to construct a vector field satisfying (2.5).

(a) Star shaped regions.
We consider the case where C is star shaped with respect to some

point. We choose this point to be the origin. Then if we take

(5.1) / * = χίr-
{n+1)

and

(5.2) a = r" ( w - υ .

We have that

(5.3) t = f% = £%,r- ( % + 1 ) ^ hmrΰ{n+1) on C

where h(P) is the distance from the origin to the tangent plane at a
point P on C and hm is the minimum of this function. The condition
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of star-shapedness insures that hm > 0. Since n{ = — a?*/α on Σa it
follows that

(5.4) -/% = a~n on J β

and

fU + j-fψ = 0 in Ra .

In this case, taking a = rm, we obtain

(5.5) ft ^

L\r w / hm nλ

and

(5.6) ^

A different method for obtaining a lower bound for p2 for star shaped
regions has been indicated by Payne and Weinberger [3]. For convex
region Payne and Weinberger [5] also obtained the optimal lower bound
μ2 ^ π2d~2 where d is the diameter of R.
(b) Smooth boundaries.

Let R be a region whose boundary C has continuous curvature.
Call the largest principal curvature at a point P of C, KM(p). Let ρ(p)
be the radius of a sphere which is tangent to C at P and contained in
R. In addition we require p(p) to be less than KM{p)~ι. Denote by K
a bound for the maximum of p(p)~λ for PeC. We consider the family
of parallel surfaces

(5.7) N(x) = JVXα?1, , xn) = constant

with C given by

(5.8) tf(α) = 0

and

(5.9) 0 ^ iSΓ(α?) :S 1/Jf .

The outward normal vector % is defined in this strip and satisfies

(5.10) niti{x) = J(x)

where J(x) is the average curvature of the surface given by N(x) at
the point x — (x1, •••, xn) c.f. [7, p. 3]. We assume also that K is
chosen so that
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(5.11) J(x)^K.

The above conditions and definitions involve the smoothness of C and
essentially the thickness of R. We impose a further condition on the
shape of R.

We assume that there is a point, which we choose to be the origin,
such that

(5.12) ^ ^ ^ -v + β > -P > - 1
r

for some constants p and β > 0 in the strip 0 rg N(x) ^ IJK. In this
case /* may be chosen as

([vnil - KN(x)) + x'lφ-% 0 ^ iSΓ(a?) ^ I/if

<5'13) ^ = 1 J ^ 9 otherwise
( r

with # to be determined. Condition (5.12) means that there is an open
subset Ω of R which has the property that no ray from the boundary
in the direction of the outward normal intersects Ω.

Let a now be chosen so that Sa does not intersect the boundary
strip.

Now on C

(5.14) /%, = [p + - ^

For 0 S N(x) ̂  IIK

(5.15) /% - | p [ J ( l - KN(x)) + K]r + n - l - q

Γ^i^(l _ KN{x))

since nld\dx%)N ^ — 1. Because of (5.12) and the fact that 0 ^
KN(x) ^ 1 we have that

(5.16) fU ύ {2KrM + n - 1 - q(l -

Now if we choose

(5.17) q =
1 — v

it follows that

(5.18) fU ^ -4r~ ( g + 1 ) ^ - 4 r ^ (

in the boundary strip. In the remaining part of Ra we have, since
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q ^ n + 3

(5.19) /*< = [n~-(q + l)]r~iq+1) g - 4 ?

Now choose a = r w . Then

(5.20) fU + 1/y* g O i n i ί . .

On Σa

(5.21) - / % , = a'9 .

In this case we have

(5.22) μ2 ^

and

(5.23)

(c) Boundaries with star-shaped irregularities.
Suppose now that the boundary C consists of two parts d and C2

where CΊ is smooth and C2 is star-shaped with respect to the chosen origin.
We assume that the closure of the interior of C2 contains C2. For
example, in two dimensions, the components of C2 cannot be isolated
points. Let K now be defined relative to CΊ. Denote by R± the region
consisting of R minus the strip adjacent to d. We suppose that K is
large enough (the strip small enough) to make R1 connected.

We assume that β is such that on C2

(5.24) J ^ ί - ^ β .

Then in place of (5.13) we have

[pm(l - KN(x)) + —V*, in R - J^
r J

—r~q , in Rx.
r

(5.25) / ' =

Since in the identity (2.3) it is only necessary that /* have a continuous
normal component on the boundaries of subregions of Ra this definition
of f* has sufficient smoothness properties.

In this case we again have the inequalities (5.22) and (5.23),
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