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In a paper to appear, G. Higman has "classified" the finite 2-groups
whose involutions are permuted cyclically by their automorphism groups
[1], He found that such a group is either generalized quaternion,
abelian of type (2TO, « ,2W), or of exponent four and class two. He
also proved that a finite p-group with an automorphism permuting its
subgroups of order p cyclically is abelian if p is odd. We say that a
group is π-automorphic if it has the property that any two of its
elements of order k are conjugate under an automorphism where π is
a set of positive integers and keπ. In this paper we conjucture that
a finite p-automorphic p-group is abelian for odd p, and prove that a
counterexample cannot be generated by fewer than four elements.

We use the following notation. Let pn+1 be the exponent of the
P'gYonp G; Hk(G) denotes the set of elements of G whose orders do not
exceed pk; G' is the commutator subgroup of G; (x, y) — x~Ύy~xxy\ Z(G)
is the center of G and Z2(G) is the preimage of Z(G[Z) in the cannonical
homomorphism of G onto G/Z; Φ(H) is the Frattini subgroup of the
group H; \H\ is the order of H; | x | is the order of the element x.
GL(3, p) is the full linear group of degree three over the prime Galois
field GF(p).

Henceforth let G denote a finite p-automorphic non-abelian p-group
for odd p. Note that Hλ{G) = H,QZ = Z(G), so H, is a subgroup.

LEMMA 1. GjHx is p-automorphic.

Proof. Clearly there exists x e Z2(G) such that | x | = p2 because G
cannot be of exponent p. Consider yeG where | y | == p2. By the
definition of G there exists a e Aut (G) such that (y*)" = xv. Let y* =

wx. Thus (y")p = (wx)p = wpxp(x, wy2' by the choice of x. If Z has an
element of order p2, choose x to be it. Then (x, w) — 1. If Z = Hlf

then (x, w) e Hx and (x, wy2) — 1. In either case (ya)p ~ (yp)a = x* =
wpxp so weH, and (yHJ* = xHτ. Q.E.D.

LEMMA 2. / / G' = fli, ίfce^ Hn(G) = Φ(G) = Z.

Proof. Φ(G) — Φ — G'P where P is the subgroup of G generated
by pth powers. Gr = Hλ implies that G is of class two, so (xp, y) =
(a?, yp) = (a?, 1/)2> = 1. Hence Φ ξ^Z. In the canonical homomorphism of (?
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onto G\G' = K, Hn(G) = Hn is the preimage of Hn^(K) = Φ(K). (Hn is
a subgroup because G is regular; K is abelian and has equal invariants).
If there exists xe Z such that | x | = p%+1 then for any yeG where
|t/ | = p%+1

 W e have (#**)* = x*n for some <xeAut(G). By the same
reasoning used in Lemma 1 it follows that y* = wx where we Hn.
Hence yaeZ so yeZ and G is abelian, a contradiction. Q.E.D.

LEMMA 3. If Gf — Hu then φ:x—>xpn is an isomorphism of G[Z
onto G\

Proof. Since G is of class two, (xy)m = xmym(y, xy2 ' where m — pn.
fm\ (v)

But ^o ) is a multiple of p so {y, x)X2' = 1 and φ is an endomorphism
of G. Clearly Hn = Z is the kernel of φ. At least one nonidentity
element of G' is an mth power, hence every one is and thus G\Z = Gr.
Q.E.D.

THEOREM. A finite non-άbelian p-automorphic p-group G cannot
be generated by fewer than four elements.

Proof. It is easily seen that Ή^^Φ. By repeated application of
Lemma 1 we arrive at a Gλ such that G\ = Hλ{G^) where Gλ has the same
number of generators as G. Since we argue by contradiction we may
assume without loss of generality that Gr — Hλ.

Clearly G cannot be cyclic. If G can be generated by two elements,
the fact that G is of class two implies that G' is cyclic; this contradicts
Lemma 3. Hence we assume G to be a three-generator group, say
G = {uu u2j u3}. Lemma 2 implies the following identities.

( i ) (upupuph, u^uψuψh') = Π < < i * i 5 l ' ' " " a w w h e r e h,h'eZ a n d si3 = (ui9 u3).

(ii) (u?u?uψhγn = Π*?' where t, = uf.

Now every element of G' is a commutator. Thus there exist rela-
tions ti = Siί'̂ iί̂ Sa?'8, i = 1, 2, 3, where | A | = | (α^ ) | =£ 0. Let α be an
automorphism of G, say u* = ul^ul^ul^hi, i — 1, 2, 3, where ^ G ^ and
xί3eGF(p). (i) implies that s?y = Π*<ΪS*?*1 where »Aι = a^α^ - ^ fexα.
Hence

But (ii) implies that

*? =

Equating these two representations of tf and noting that s12, s13, and s2

are independent, we have
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(iii) AX = XA

where A — (αί7 ), X — {xi0)y and X = (a?, , ) are nonsingular 3-square ma-
trices over GF(p). It is clear that X=\X\B~1X-TB where X~τ is
the transpose of X~x and B — {bi3) has the entries δ13 = δ31 = — δ22 = 1
and the remaining δ^ = 0. Thus, substituting for X in (iii), we equate
the determinants of the two sides of (iii) and find that | X | = 1. (iii)
then takes the form:

(iv) CX^C-1 = X where C = AB'1 .

It follows that (iv) holds for all X in some transitive (on the non-
zero vectors of the 3-space V) subgroup T of GL(3, p). Thus | T | is
divisible by p* - 1. | GL(3, p) | = p3(^ - l)(p2 - 1)(^3 - 1). Let q be a
prime divisor of p2 + p + 1 where tf > 3. It is easily shown that such
a tf exists and that q is relatively prime to p — 1 and p + 1. Thus a
Sylow g-subgroup of T is a Sylow g-subgroup GL(3, p). GL(3, p) con-
tains a cyclic transitive subgroup of order j>8 — 1, the multiplicative
group of the right-regular representation of GF(pz) considered as a
vector space over GF(p). Hence a Sylow g-subgroup of GL(3, p) is
cyclic, so an Xe T of order q is conjugate to

(ω \
Y —\ ωp where co" = 1

in GL(3, p3). But F is certainly not conjugate to Y~τ in GL(3, p3)
from which it follows that X will not satisfy (iv), a contradiction.
Q.E.D.

The author is indebted to G. Higman and G. E. Wall for their
suggestions, and to the referee for correcting an error.
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