ON p-AUTOMORPHIC p-GROUPS

J. R. Boen

In a paper to appear, G. Higman has "classified" the finite 2-groups whose involutions are permuted cyclically by their automorphism groups [1]. He found that such a group is either generalized quaternion, abelian of type $\left(2^{n}, \cdots, 2^{n}\right)$, or of exponent four and class two. He also proved that a finite p-group with an automorphism permuting its subgroups of order p cyclically is abelian if p is odd. We say that a group is π-automorphic if it has the property that any two of its elements of order k are conjugate under an automorphism where π is a set of positive integers and $k \in \pi$. In this paper we conjucture that a finite p-automorphic p-group is abelian for odd p, and prove that a counterexample cannot be generated by fewer than four elements.

We use the following notation. Let p^{n+1} be the exponent of the p-group G; $H_{k}(G)$ denotes the set of elements of G whose orders do not exceed $p^{k} ; G^{\prime}$ is the commutator subgroup of $G ;(x, y)=x^{-1} y^{-1} x y ; Z(G)$ is the center of G and $Z_{2}(G)$ is the preimage of $Z(G / Z)$ in the cannonical homomorphism of G onto $G / Z ; \Phi(H)$ is the Frattini subgroup of the group $H ;|H|$ is the order of $H ;|x|$ is the order of the element x. $G L(3, p)$ is the full linear group of degree three over the prime Galois field $G F(p)$.

Henceforth let G denote a finite p-automorphic non-abelian p-group for odd p. Note that $H_{1}(G)=H_{1} \subseteq Z=Z(G)$, so H_{1} is a subgroup.

Lemma 1. G / H_{1} is p-automorphic.
Proof. Clearly there exists $x \in Z_{2}(G)$ such that $|x|=p^{2}$ because G cannot be of exponent p. Consider $y \in G$ where $|y|=p^{2}$. By the definition of G there exists $\alpha \in \operatorname{Aut}(G)$ such that $\left(y^{p}\right)^{\alpha}=x^{p}$. Let $y^{\alpha}=$ $w x$. Thus $\left(y^{\alpha}\right)^{p}=(w x)^{p}=w^{p} x^{p}(x, w)^{\binom{p}{2}}$ by the choice of x. If Z has an element of order p^{2}, choose x to be it. Then $(x, w)=1$. If $Z=H_{1}$, then $(x, w) \in H_{1}$ and $(x, w)^{\binom{p}{2}}=1$. In either case $\left(y^{\alpha}\right)^{p}=\left(y^{p}\right)^{\alpha}=x^{p}=$ $w^{p} x^{p}$ so $w \in H_{1}$ and $\left(y H_{1}\right)^{\alpha}=x H_{1}$. Q.E.D.

Lemma 2. If $G^{\prime}=H_{1}$, then $H_{n}(G)=\Phi(G)=Z$.
Proof. $\Phi(G)=\Phi=G^{\prime} P$ where P is the subgroup of G generated by p th powers. $G^{\prime}=H_{1}$ implies that G is of class two, so $\left(x^{p}, y\right)=$ $\left(x, y^{p}\right)=(x, y)^{p}=1$. Hence $\Phi \subseteq Z$. In the canonical homomorphism of G

[^0]onto $G / G^{\prime}=K, H_{n}(G)=H_{n}$ is the preimage of $H_{n-1}(K)=\Phi(K)$. $\quad\left(H_{n}\right.$ is a subgroup because G is regular; K is abelian and has equal invariants). If there exists $x \in Z$ such that $|x|=p^{n+1}$ then for any $y \in G$ where $|y|=p^{n+1}$ we have $\left(y^{p^{n}}\right)^{\alpha}=x^{p^{n}}$ for some $\alpha \in \operatorname{Aut}(G)$. By the same reasoning used in Lemma 1 it follows that $y^{\infty}=w x$ where $w \in H_{n}$. Hence $y^{\infty} \in Z$ so $y \in Z$ and G is abelian, a contradiction. Q.E.D.

Lemma 3. If $G^{\prime}=H_{1}$, then $\varphi: x \rightarrow x^{p^{n}}$ is an isomorphism of G / Z onto G^{\prime}.

Proof. Since G is of class two, $(x y)^{m}=x^{m} y^{m}(y, x)^{\left(\frac{m}{2}\right)}$ where $m=p^{n}$. But $\binom{m}{2}$ is a multiple of p so $(y, x)^{\left({ }_{2}^{m}\right)}=1$ and φ is an endomorphism of G. Clearly $H_{n}=Z$ is the kernel of φ. At least one nonidentity element of G^{\prime} is an m th power, hence every one is and thus $G / Z \cong G^{\prime}$. Q.E.D.

Theorem. A finite non-abelian p-automorphic p-group G cannot be generated by fewer than four elements.

Proof. It is easily seen that $H_{1} \subseteq \Phi$. By repeated application of Lemma 1 we arrive at a G_{1} such that $G_{1}^{\prime}=H_{1}\left(G_{1}\right)$ where G_{1} has the same number of generators as G. Since we argue by contradiction we may assume without loss of generality that $G^{\prime}=H_{1}$.

Clearly G cannot be cyclic. If G can be generated by two elements, the fact that G is of class two implies that G^{\prime} is cyclic; this contradicts Lemma 3. Hence we assume G to be a three-generator group, say $G=\left\{u_{1}, u_{2}, u_{3}\right\}$. Lemma 2 implies the following identities.
(i) $\left(u_{1}^{x_{1}} u_{2}^{x_{2}} u_{3}^{x_{3}} h, u_{1}^{y_{1}} u_{2}^{y_{2}} u_{3}^{y_{3}} h^{\prime}\right)=\prod_{i<j} s_{i_{1}^{*} y_{j}-x_{j} y_{i}}$ where $h, h^{\prime} \in Z$ and $s_{i j}=\left(u_{i}, u_{j}\right)$.

$$
\begin{equation*}
\left(u_{1}^{x_{1}} u_{2}^{x_{2}} u_{3}^{x_{3}} h\right)^{p^{n}}=\prod t_{i}^{\tau_{i}} \text { where } t_{i}=u_{i}^{p^{n}} \tag{ii}
\end{equation*}
$$

Now every element of G^{\prime} is a commutator. Thus there exist rela-
 automorphism of G, say $u_{i}^{\alpha}=u_{1}^{x_{i 1}} u_{2}^{x_{i 2}} u_{3}^{x_{3}} h_{i}, i=1,2,3$, where $h_{i} \in Z$ and $x_{i j} \in G F(p)$. (i) implies that $s_{i j}^{\alpha}=\prod_{k<l} s_{k l}^{x-\bar{l} l}$ where $\bar{x}_{k l}=x_{i k} x_{j l}-x_{j k} x_{i l}$. Hence

But (ii) implies that

Equating these two representations of t_{i}^{α} and noting that s_{12}, s_{13}, and s_{23} are independent, we have

$$
\begin{equation*}
A \bar{X}=X A \tag{iii}
\end{equation*}
$$

where $A=\left(a_{i j}\right), X=\left(x_{i j}\right)$, and $\bar{X}=\left(\bar{x}_{i j}\right)$ are nonsingular 3 -square matrices over $G F(p)$. It is clear that $\bar{X}=|X| B^{-1} X^{-T} B$ where X^{-T} is the transpose of X^{-1} and $B=\left(b_{i j}\right)$ has the entries $b_{13}=b_{31}=-b_{22}=1$ and the remaining $b_{i j}=0$. Thus, substituting for \bar{X} in (iii), we equate the determinants of the two sides of (iii) and find that $|X|=1$. (iii) then takes the form:

$$
\begin{equation*}
C X^{-T} C^{-1}=X \text { where } C=A B^{-1} \tag{iv}
\end{equation*}
$$

It follows that (iv) holds for all X in some transitive (on the nonzero vectors of the 3 -space V) subgroup T of $G L(3, p)$. Thus $|T|$ is divisible by $p^{3}-1$. $|G L(3, p)|=p^{3}(p-1)\left(p^{2}-1\right)\left(p^{3}-1\right)$. Let q be a prime divisor of $p^{2}+p+1$ where $q>3$. It is easily shown that such a q exists and that q is relatively prime to $p-1$ and $p+1$. Thus a Sylow q-subgroup of T is a Sylow q-subgroup $G L(3, p) . \quad G L(3, p)$ contains a cyclic transitive subgroup of order $p^{3}-1$, the multiplicative group of the right-regular representation of $G F\left(p^{3}\right)$ considered as a vector space over $G F(p)$. Hence a Sylow q-subgroup of $G L(3, p)$ is cyclic, so an $X \in T$ of order q is conjugate to

$$
Y=\left(\begin{array}{ccc}
\omega & & \\
& \omega^{p} & \\
& & \omega^{p^{p}}
\end{array}\right) \text { where } \omega^{q}=1
$$

in $G L\left(3, p^{3}\right)$. But Y is certainly not conjugate to Y^{-r} in $G L\left(3, p^{3}\right)$ from which it follows that X will not satisfy (iv), a contradiction. Q.E.D.

The author is indebted to G. Higman and G. E. Wall for their suggestions, and to the referee for correcting an error.

Reference

1. G. Higman, Suzuki 2-groups, to appear.

University of Chicago

[^0]: Received March 31, 1961, and in revised form August 31, 1961. This paper was sponsored in part by NSF Grant G-9504.

