ON *p*-AUTOMORPHIC *p*-GROUPS

J. R. BOEN

In a paper to appear, G. Higman has "classified" the finite 2-groups whose involutions are permuted cyclically by their automorphism groups [1]. He found that such a group is either generalized quaternion, abelian of type $(2^n, \dots, 2^n)$, or of exponent four and class two. He also proved that a finite *p*-group with an automorphism permuting its subgroups of order *p* cyclically is abelian if *p* is odd. We say that a group is π -automorphic if it has the property that any two of its elements of order *k* are conjugate under an automorphism where π is a set of positive integers and $k \in \pi$. In this paper we conjucture that a finite *p*-automorphic *p*-group is abelian for odd *p*, and prove that a counterexample cannot be generated by fewer than four elements.

We use the following notation. Let p^{n+1} be the exponent of the *p*-group *G*; $H_k(G)$ denotes the set of elements of *G* whose orders do not exceed p^k ; *G'* is the commutator subgroup of *G*; $(x, y) = x^{-1}y^{-1}xy$; Z(G) is the center of *G* and $Z_2(G)$ is the preimage of Z(G/Z) in the cannonical homomorphism of *G* onto G/Z; $\mathcal{O}(H)$ is the Frattini subgroup of the group *H*; |H| is the order of *H*; |x| is the order of the element *x*. GL(3, p) is the full linear group of degree three over the prime Galois field GF'(p).

Henceforth let G denote a finite p-automorphic non-abelian p-group for odd p. Note that $H_1(G) = H_1 \subseteq Z = Z(G)$, so H_1 is a subgroup.

LEMMA 1. G/H_1 is p-automorphic.

Proof. Clearly there exists $x \in Z_2(G)$ such that $|x| = p^2$ because G cannot be of exponent p. Consider $y \in G$ where $|y| = p^2$. By the definition of G there exists $\alpha \in \operatorname{Aut}(G)$ such that $(y^p)^{\alpha} = x^p$. Let $y^{\alpha} = wx$. Thus $(y^{\alpha})^p = (wx)^p = w^p x^p (x, w)^{\binom{p}{2}}$ by the choice of x. If Z has an element of order p^2 , choose x to be it. Then (x, w) = 1. If $Z = H_1$, then $(x, w) \in H_1$ and $(x, w)^{\binom{p}{2}} = 1$. In either case $(y^{\alpha})^p = (y^p)^{\alpha} = x^p = w^p x^p x^p$ so $w \in H_1$ and $(yH_1)^{\alpha} = xH_1$. Q.E.D.

LEMMA 2. If $G' = H_1$, then $H_n(G) = \mathcal{O}(G) = Z$.

Received March 31, 1961, and in revised form August 31, 1961. This paper was sponsored in part by NSF Grant G-9504.

onto G/G' = K, $H_n(G) = H_n$ is the preimage of $H_{n-1}(K) = \mathcal{O}(K)$. $(H_n$ is a subgroup because G is regular; K is abelian and has equal invariants). If there exists $x \in Z$ such that $|x| = p^{n+1}$ then for any $y \in G$ where $|y| = p^{n+1}$ we have $(y^{p^n})^{\alpha} = x^{p^n}$ for some $\alpha \in \operatorname{Aut}(G)$. By the same reasoning used in Lemma 1 it follows that $y^{\alpha} = wx$ where $w \in H_n$. Hence $y^{\alpha} \in Z$ so $y \in Z$ and G is abelian, a contradiction. Q.E.D.

LEMMA 3. If $G' = H_1$, then $\varphi: x \to x^{p^n}$ is an isomorphism of G/Z onto G'.

Proof. Since G is of class two, $(xy)^m = x^m y^m(y, x)^{\binom{m}{2}}$ where $m = p^n$. But $\binom{m}{2}$ is a multiple of p so $(y, x)^{\binom{m}{2}} = 1$ and φ is an endomorphism of G. Clearly $H_n = Z$ is the kernel of φ . At least one nonidentity element of G' is an *m*th power, hence every one is and thus $G/Z \cong G'$. Q.E.D.

THEOREM. A finite non-abelian p-automorphic p-group G cannot be generated by fewer than four elements.

Proof. It is easily seen that $H_1 \subseteq \emptyset$. By repeated application of Lemma 1 we arrive at a G_1 such that $G'_1 = H_1(G_1)$ where G_1 has the same number of generators as G. Since we argue by contradiction we may assume without loss of generality that $G' = H_1$.

Clearly G cannot be cyclic. If G can be generated by two elements, the fact that G is of class two implies that G' is cyclic; this contradicts Lemma 3. Hence we assume G to be a three-generator group, say $G = \{u_1, u_2, u_3\}$. Lemma 2 implies the following identities.

(i)
$$(u_1^{x_1}u_2^{x_2}u_3^{x_3}h, u_1^{y_1}u_2^{y_2}u_3^{y_3}h') = \prod_{i < j} s_{i,i}^{x_iy_j - x_jy_i}$$
 where $h, h' \in Z$ and $s_{ij} = (u_i, u_j)$.
(ii) $(u_1^{x_1}u_2^{x_2}u_3^{x_3}h)^{p^n} = \prod t_i^{x_i}$ where $t_i = u_i^{p^n}$.

Now every element of G' is a commutator. Thus there exist relations $t_i = s_{12}^{a_{i1}} s_{13}^{a_{i2}} s_{23}^{a_{i3}}$, i = 1, 2, 3, where $|A| = |(a_{ij})| \neq 0$. Let α be an automorphism of G, say $u_i^{\alpha} = u_1^{x_{i1}} u_2^{x_{i2}} u_3^{x_{i3}} h_i$, i = 1, 2, 3, where $h_i \in Z$ and $x_{ij} \in GF(p)$. (i) implies that $s_{ij}^{\alpha} = \prod_{k < i} s_{kl}^{x_{kl}} \bar{x}_{kl}$ where $\bar{x}_{kl} = x_{ik} x_{jl} - x_{jk} x_{il}$. Hence

$$t_i^* = (s_{12}^{a\,i1}s_{13}^{a\,i2}s_{23}^{a\,i3})^{\omega} = (s_{12}^{a\,i1})^{\omega}(s_{13}^{a\,i2})^{\omega}(s_{23}^{a\,i3})^{\omega} = s_{12}^{\Sigma a_ij\bar{x}_{j1}}s_{13}^{\Sigma a_ij\bar{x}_{j2}}s_{23}^{\Sigma a_ij\bar{x}_{j3}}$$

But (ii) implies that

$$t^{lpha}_i = \prod t^{x_{ij}}_{j} = s^{\Sigma x_i j a_{j1}}_{12} s^{\Sigma x_i j a_{j2}}_{13} s^{\Sigma x_i j a_{j2}}_{23} s^{\Sigma x_i j a_{j3}}_{23}$$
 .

Equating these two representations of t_i^{α} and noting that s_{12} , s_{13} , and s_{23} are independent, we have

(iii)
$$A\overline{X} = XA$$

where $A = (a_{ii})$, $X = (x_{ij})$, and $\overline{X} = (\overline{x}_{ij})$ are nonsingular 3-square matrices over GF(p). It is clear that $\overline{X} = |X| B^{-1} X^{-T} B$ where X^{-T} is the transpose of X^{-1} and $B = (b_{ij})$ has the entries $b_{13} = b_{31} = -b_{22} = 1$ and the remaining $b_{ij} = 0$. Thus, substituting for \overline{X} in (iii), we equate the determinants of the two sides of (iii) and find that |X| = 1. (iii) then takes the form:

(iv)
$$CX^{-T}C^{-1} = X$$
 where $C = AB^{-1}$.

It follows that (iv) holds for all X in some transitive (on the nonzero vectors of the 3-space V) subgroup T of GL(3, p). Thus |T| is divisible by $p^3 - 1$. $|GL(3, p)| = p^3(p-1)(p^2-1)(p^3-1)$. Let q be a prime divisor of $p^2 + p + 1$ where q > 3. It is easily shown that such a q exists and that q is relatively prime to p-1 and p+1. Thus a Sylow q-subgroup of T is a Sylow q-subgroup GL(3, p). GL(3, p) contains a cyclic transitive subgroup of order $p^3 - 1$, the multiplicative group of the right-regular representation of $GF(p^3)$ considered as a vector space over GF(p). Hence a Sylow q-subgroup of GL(3, p) is cyclic, so an $X \in T$ of order q is conjugate to

$$Y=egin{pmatrix} \omega&\omega^p&\omega^{p^2}\end{pmatrix} ext{ where }\omega^q=1$$

in $GL(3, p^3)$. But Y is certainly not conjugate to Y^{-r} in $GL(3, p^3)$ from which it follows that X will not satisfy (iv), a contradiction. Q.E.D.

The author is indebted to G. Higman and G. E. Wall for their suggestions, and to the referee for correcting an error.

Reference

1. G. Higman, Suzuki 2-groups, to appear.

UNIVERSITY OF CHICAGO