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Introduction* From the function-theoretic point of view, the three-
dimensional boundary of a domain (in the space of two complex variables)
does not play a role analogous to the boundary curve in the theory of
one variable. In order to be able to use methods similar to those in one
variable, Bergman introduces analytic polyhedra, i.e., domains bounded
by finitely many segments of analytic hypersurfaces.1 On the three-
dimensional boundary of an analytic polyhedron lies a two-dimensional
manifold which, from the function-theoretic point of view, plays a role
similar to that of the boundary curve. In studying the value distribution
of holomorphic and meromorphic functions in an analytic polyhedron,
we can distinguish with Bergman two types of problems:

(1) derivation of bounds for a function in terms of values on the
(two-dimensional) distinguished boundary (the so-called Bergman-Silov
boundary),

(2) studies of the relations between the value distribution on the
complementary part of the boundary and in the interior of the domain.
While studies of problems of type (1) proceed along the lines similar to
those in the case of one variable (through repeated use of the Cauchy
and Poisson-Jensen formula, etc.), the investigation of problems of type
(2) has a different character. Bergman and Charzyήski considered the
case of functions f(zl9 z2) which belong to a normal family in every
lamina. For instance, they assume f(zlf z2) to be a Schlicht function in
every lamina. In this case it is possible to obtain bounds for |/ | in
terms of its maximum along a one-dimensional boundary manifold. In
the present paper, the investigation of problems of type (2) is continued,
and we assume that the function / in every lamina is mean multivalent
of order p (see § 1 for details). The order p = p(X) is a function of the
parameter λ2; p(k) is square-integrable.

Let ©2 be a segment of an analytic surface (§>l which intersects the
polyhedron. We obtain bounds for \f(zl9 z2)\, (zlf z2) e©2, in terms of

(a) the minimum and the maximum of | / | on the one-dimensional
manifold mentioned before,

(b) a quantity connected with p(λ),

Received May 16, 1962. This work was done under NSF Grant 10375.
1 An analytic hypersurface is a one-parameter family of analytic surfaces called a laminas.
2 The laminas of a segment of an analytic hypersurface depend on a parameter λ.
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(c) certain constants which depend only upon the domain and the
surface ©?.

O Definitions and notations* We shall consider an arbitrary-
bounded domain 23 lying in the space of two complex variables zlf z2, zk =
%k + Wk, k = 1, 2. We assume that the boundary b3 of this domain
consists of finitely many segments

(0.1) eί, fc = l, .--,*&,

of analytic hyper surf aces. Every such segment is given by a parametric
representation of the form

(0.2) zx = hlk(Zk, Xk) , z2 = h2k(Zk, Xk) ,

where hlk{Zk, Xk) and hak(Zk, Xk) are continuously diίferentiable functions
of Zk, Xk i n t h e s e t {(Zk9 Xk): \Zk\^l90^Xk^ 2π}. F o r a fixed k a n d
Xk the corresponding set of points (0.2) will be called a lamina of e| and
designated $>l(Xk). We assume that

(0.3) 3Ϊ(M) Π SS(λίO = 0 if λ [ ^ λ£',

and that for fixed Xk

(0.4) (^(Zί , \k), hlk(Zl, Xk)) Φ {hlk{Z'k
f, Xk)9 hu{ZΪ Xk)) .

The set g 2 of points (0.2) corresponding to the values \Zk\ = l, k = l, , n,
constitutes the so-called Bergman-Silov boundary surface of 33 on which
the maximum principle holds for functions regular in 33 (see [1]). We
shall also assume that for every \Zk

w\ < 1, λ[0), k = 1, « , n , and for
sufficiently small a > 0, the set of points (0.2) which correspond to the
values

\Zk-Zk

w\<σ, \Xk-Xl0)\<a

of the parameters contain all the points of 63 lying sufficiently near the
point

ΛP(O) L CZ(o) \(o)\ ~(o) z, (7(0

The set of points of four-dimensional space of the form

(0.5) «i

where 5) is a domain in the f-plane, and the expressions on the right-
hand sides of (0.5) are holomorphic functions of ζ in ® and continuous
in ®, is called an analytic surface.

The set of points which corresponds to the values ζed{Ί)f will be

= boundary of
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called the boundary of the surface.
The complement of 35 with respect to the whole space will be called ^Po.

l Bounds for the function f(z19 z2) on the analytic surface* Let
S be a domain described in § 0 and let ©o denote an analytic surface
of the form (0.5). We assume that ©o has common points with 25 and
its whole boundary lies in §β0. Further, let the intersection ©2 with SB
satisfy the following conditions:

1°. The intersection is a segment

© 2 - © 2 n 35 = {(zu z 2 ) : zλ = gi(ξ), z2 = g2(ξ), \ξ\ < 1} .

Here g^ξ), g2(£) are analytic functions which are regular in \ξ\ < 1 and
continuous in \ξ\ ^ 1.

2°. The boundary curve
We assume that

91 =

of ©2 is the intersection ©o with b3.

φ)9 z2 = g2(e*), 0 ^ φ ^ 2π}

can be divided into J parts

2): «i = gi(eiφ), z2 = g2{eiφ), φά^ψ^ φj+ι) ,

, J , φλ < φ2 < < φ J + 1 - <?i + 2TΓ ,

β) =

3 = 1,

so that gj eeϊ , fc i 2 for i 2 and only the points

belong to g2.

3°. Every point of Q) lies in a certain lamina, say

Bkfokj) = {(si, «2): «i = hlkj(Zkj, Xkj), z2 = h2kj(Zkj, Xkj)} .

Hence, by (0.3) and (0.4), functions Xkj — Xkjiψ) and Zkj = Zkj(φ),
ψ S <Pj+i, exist such that

9} = hlkj(Zkj(φ), Xkj(φ)), z2 = h2kj(Zkj(φ), Xkj(φ)),

We assume that Xkj{φ), Zkj(φ), j — 1, , J, are continuous and that
λ^(<p) are also monotone in the intervals ζcph ψj+ϊϊ Therefore, the
derivatives Xkj(φ) exist almost everywhere.

4°. Since Xkj(φ) are monotone in (<Pj9g>j+^f there exist inverse
ίunctions <Pj(Xkj) in the intervals (aj9 βj)=XjCj(((Pj, <Pi+i». The derivatives
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φ'&kj) also exist in ζajy βdy almost everywhere. We shall assume that

l9>}(λfc,)| ^ Q , 3 = 1, •••, J.

5°. The intersection ©o is such that the expressions 1— \Zkj(φ)\
go to zero no faster than some positive power of φ — φό or φ — φj+1 if
φ —• φi + or <p —> 9>i+1 —, respectively.

The hypotheses 1°, 2°, and 3° are the same as hypotheses 1, 2, and
3 in [4], p. 188. Instead of hypothesis 6, [4] we have the weaker
hypothesis 5°.4

We define now a family of functions in a domain 33. The func-
tion f(zl9 z2) defined in 23 will be called the function of the family

o, P), P > 0, if it satisfies the following conditions:

1°°. f(zu z2) is regular in the set S^ = 33\S2 continuous in 332 =
S3i u β1 n g2.

2°°. f(zlfz2)Φ0 in S32.

3°°. On almost every lamina Z$lfokj), <*i = λfĉ  ^ & , the function
/fe, z2) = f(hlkj(Zkj, Xkj), h2kj(Zkj, \kj)) considered as a function of one
variable Zkj in the circle \Zkj\ < 1 is a mean multivalent function of
the order Pj(Xkj) in the sense of Biernacki, see [5], [7].5

4°°. The functions P3 (\>kj) may grow to infinity, but in such a way
that they are square-integrable in <(ajf βdy.

5°°. i

DEFINITION. Every f(zu z2) which belongs to ^ ( © o , P) will be called
a mean multivalent function of the order P with respect to ®l.

We set

(1.1) I = min [1, min |/(fclfc/0, λ f c), ^ (0, λ f c)

(1.1') L = max [1, max | f(hlkj(0, \k.), Λ2fc (0, λ, )) | ] .
»j*H*βj 3 3 3 3

4 From hypothesis 6 it follows that l — \Zjcj(φ) I must go to zero no faster than l/log\ <p — <pj |.
5 A function f(z) regular in \z\ < 1 is called mean multivalent of order p in the sence

of Biernacki if

p(R) = -o— J n(Re'ίθ)dθ ^ p

for every positive number R. Here n(Reίθ) designate the number of Reίθ — points of f(z}
in \z\ < 1.

6 The integrals here are in the sense of Lebesgue.
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THEOREM 1. For every ε > 0 there exists r0, 0 < r0 < 1, so that at
•every point of G\ say at z\ = #i(ξΌ), %\ = #2(£O), the function f(zu z2) e
jβ^(®l, P) satisfies the inequality

for every r ^ r0.

Proof. First, we prove the last inequality in (*). Let ε > 0. By
hypothesis 5° there exist positive numbers a3- and bj such that

lim x~~ \»k5w)\ a n d i i m

are different from zero.7 Hence, there are positive numbers, say A3

and Bj, and a positive number rf such that

'(1.2) l-\Zkj(φ)\ >A,{φ-φsyj

and

<1.2') 1 - I Zkj(φ) I > Bj(φj+1 - φf>

for 0 < φ — ψj < rf or 0 < φj+1 — φ < rf, respectively. Further, since
the functions

ωlά(x) = a; log2 — ^ - + 2αi# log -—— + 2<ήx

and

o)2j(x) = a; log2 —^— + 26,-α; log —^— + 262α;
JDjX 3 lJjX *

go to zero for $-^0 + , there exists an rf9 > 0 such that

(1.3)

for 0 <x < v".

ωu(x) <

If we set

ττε2

8 Q J 2 P 2 '

now

57 = min

st\ (rγ\ •
KΛJ2j\iλj) •

(V, V") ,

8QJ*P2

then the inequalities (1.2), (1.2') and (1.3), respectively, are satisfied for
0 < φ - φά < η, 0 < 9>i+1 - φ <η and 0 < a? < η.

Let («;, «S) 6 ©2. Then z\ = ^(ζΌ), 2' = flra(?O). We consider now the
function f(zlf z2) in the segment ©2, i.e., /(&(£), ft(O) i n l?l ̂  L Con-
sidered as a function of f it is regular in | ξ\ < 1 and continuous in

7 a,j, bj may be infinite.
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I ξ\ <L 1. For ξ = eiφ it has the following bounds

for φ 6 (φi9 φj+1) , j" = 1, , J .

This is a consequence of the fact that f(zu z2) assumes at the point
(9i(eίφ), g*(eiφ)) the values of the multivalent functions f(hlkj(Zkj, Xkj),.
hkjiZjcj, λfcj)) (of order Pjfakj(φ))) at the point Zkj(φ), see [7], p. 116.
We divide the line Q) into two parts 8} and gj as follows

6 <9?if Ψi + η) U

It is easy to see that r0 exists such that for every point (gλ{eiφ)9 g2(eiφ))
the inequality | Zkj(φ) | ^ r0 holds (this follows from the continuity of
the functions Zk {<&)). Therefore, for these points, the inequalities (1.4)
give the following bounds

(1.5) I f(g1(ei% ft(β*)) I 2*

for every r ^ r0 and for φ e ̂ ^ + ^, < î+1 — rjy, j — 1, , J. On the
complementary part of g18 we have the inequalities

2p, (λfc to))

(1.6) ( A ^ ^ ^

for φ € (cp, , φy + η) f

and

for φ e (φj+1 - η, φj+1) .

This follows from (1.4), (1.2) and (1.2').
Applying now the Poisson formula to the function log !/(&(?), &(£))!,

which is harmonic in \ζ\ < 1 and continuous in \ζ\ ^ 1, and using the
inequalities (1.5), (1.6) and (1.6') we obtain

l - r

logL -—) j 3 re

8 Except for the points (gi(ei(f>j),
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Interchanging the variables of integration and applying the Schwarz
inequality to the last two integrals we get

log |/(zϊ, zl)I ^ 4 ^ - Γ+1log L dφ
2

— r

Aά{φ - q>}f
-dφ

+ 2 ^ ι r ^ + ,

Evaluating the integrals

and log2

using hypotheses 4°, 4°° and 5°°9 and inequalities (1.3), we have

log !/(*?, s!)| ̂  l±i|L[logL + Q 21og(l±X) Σ ^ " W ^ S

V2π 2V2VQJP

Therefore, finally

(1.7)

which is the first inequality of (*). We notice now that
9 From 5°° and the Schwarz inequality, we get

Σ ±

* J P •
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1
± g J^Z(®2

0, P) ίf f(%i 22)

Moreover,

maxίl, max

"V ' mir

f{hφ,
1

1
K

,h, λ

min (1, min | f(hlk(0, Xk ), h2k (0, Xk )
OjS^jίβj 3 3 3 3

Applying the inequality (1.7) to the function l/f(zlf z2), we obtain the
inequality

for r ^ ro; r0 is here the same as in (1.7), because it is independent of
the function. From (1.8) we have

2JPQ\ (l+\ζO\) I d-\ζO\)

The inequalities (1.7) and (1.9) give the conclusion of the theorem.

REMARK 1. Modifying the definition of the family ^ζ(©o, P), we
obtain somewhat simpler analogous results. Instead of hypothesis 4°°
we assume that the function Pj(Xkj(φ)) considered as a function of the
variable φ is square-integrable in the interval ζφjf <Pj+1>, and we replace
condition 5°° by the condition

The assumptions that Xk{φ) are continuous and monotonic and that
\φ\Xk)\ S Q are now superfluous. The family of functions which satisfy
these conditions will be called ^<§(®o, P). For functions of that family
we can prove

THEOREM Γ. For every ε > 0 there exists r0, 0 < r0 < 1, such that
for every point (s°, zl) e ®2 and for every f(zu z2) e ^ | ( © o , P) the inequality

10 If f{z) ^ 0 and is mean-multivalent of order p in the sense of Biernacki, then l//(z)

has the same property.
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holds for every r ^ r0.
The number r0 is chosen in the following way. Let ε > 0 be an arbitrary-
number. The number rf is chosen in the same way as in the proof
given above; η" is such that

and Vω2j{%) <

for 0 < x < ψ. We set rj = minO/, η") and for η we choose a number
r0 as previously.

REMARK 2. If the surface ©o intersects only one boundary segment,
say e|, and the line of intersection g1 lies e\rQ, where

eL0 = {(«i, s 2 ): *i = λifc(^*, λ A ) , \Zk\ ^ r 0} ,

then

for every r ^ r0 in the case that f(zu z2) e ^$β\, P) and

if f(zlt z2) e jr*(β>, p).
Indeed, for every φ for which {gι{eiφ), g%{eiφ)) e e|ro, the corresponding

point ^(9?) satisfies the inequality

(1.12) \

and therefore

for <p e <(0, 2τr>. Applying, as previously, the Poisson formula and using
the inequality (1.12), we obtain (1.11) in the first case and (1,11') in
the second.

REMARK 3. The result of Theorems 1 and V can be obtained without
requiring that S3 is an analytic polyhedron. It is sufficient to assume
that the part of the boundary which intersects by ®l is a sum of the
analytic hyper surf aces mentioned in § 0. Concerning the complementary
part of the boundary no special hypotheses are needed.

REMARK 4. The lower and upper bounds of | / | are expressed in
terms of the minimum and the maximum of | / | on the manifold
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U U
3=1 λ ^

(hlkj(0, \k), h2kj(0, Xkj)
^j.βjy 3 3 3 3

We note that analogous bounds can be obtained in term of the minimum
and the maximum of | / | on a manifold

U U (hlk(Zk(Xk), Xk), h2kj(Zkj(Xkj), Xk )) ,
3=1 λkjewj.βp 3 3 3 3 3 3 3 3

where | Zkj(Xkj) | < 1 and Zkj(Xkj) are continuously differentiate functions
of Xkj e ζaj9 βάy. These new bounds are obtained by changing the para-
metric representations of ej^, j = 1, •••,/, as follows:

1 ^ 1, where

Here

^{aό) for Xkj e <0, aό) ,

Zkj{Xk) for Xkj e <μh /9, > ,

kj(βd) for λ*. 6 (ft, 2ττ> .

REMARK 5. Let 0 < R < 1 and let

Then for every (zu z2) e ®2

B and for every f(zu z2) e _̂ (@<>, P) the inequality

holds; here r0 depends only upon S3, ©o and ε.
Let {©2}ro be the set of all segments ©2 of analytic surfaces ©2 for

which the conditions l°-5° are fulfilled and for which the set of the
corresponding numbers r 0 has an upper bound smaller than x0 < 1. We set

©* = u

For every (zl9 z2) e ©Λ the inequality

_ r \2JPQ\(1+R)l(l-R)

holds. Corresponding to {©2}ro we define a sequence of sets {2IJ by
induction as follows:
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2. 31*+! is the set of all points (zlf z2) e $&[(% U U 1.) which
belong to at least one of the analytic surfaces ®l lying in S3 and having
its boundary in 2tx U U 5Ϊ» The sum of all the sets SΪΛ will be denoted
by Slie and called the associated domain corresponding to the set {®2}ϊo

and to the number R. We can prove (similarly to [6], p. 33) that the
inequality (***) holds in the full set Sί̂  and consequently also in its
closure 2ίΛ.

2 The case of a bounded p{X). If we replace the hypotheses 4°°
and 5°° by the condition

(2.1) ps(\kj) ^ P for xhj e <μi9 &>, j = 1, . . . , J ,

the function / which satisfies the hypotheses l o o -3° o and the condition
(2.1) belongs to the family J%(®1, P) and even to the family ^jg(®2, P ) n

For these functions the inequality (*) follows from Theorem Γ. However,
repeating the proof of theorem 1' and using the condition (2,1) yields
a better result.

THEOREM 2. For every ε > 0 there exists r09 0 < r0 < 1, such that
for every point (zl, z°2) e (&2 and for every function / e j ^ | ( © o , P) the
inequalities

(2.2) ( ^ y v p ' ' ' - ™ ^ i/(2o ,o}| ̂

hold for every r ^ r0 iff satisfies condition (2.1).

The proof of Theorem 2 proceeds in a way analogous to that of
Theorem Γ. Let η = min ()/, η"), where rf has the same meaning as in
the proof on p. 8, and rff > 0 is chosen in such a way that for 0 < x < rff

a>lj(x) = x log -f- - aj x log x - a.-a? < ^
A

^ ε ,
t 2JP

ώ2j(x) = a? log - J - - δ, a? log a? - bs x < -£— ε

hold. We choose r0 in the same way as before. If we assume, instead
of hypothesis 5°, that 1 — \Zkj(φ)\ goes to zero no faster than (φ — <ps)

as
or (φj+1 — φyi, where 0 < aj9 bj < 1/2P, when φ-*φj+ or φ-+φj+1—,
respectively (hypothesis 5°'), we can obtain a better inequality.

THEOREM 3. For every sufficiently small ε > 0 there exists rQ9 0 <
r0 < 1 such that for every point (z\9 z°2) e ©2 and for every function

the inequalities

1 1 Indeed, the functions pfak•(&))> ^^^Ψjyψj+jc^y being bounded, are square-integrable.
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for every r ^ r0, if the function f satisfies the condition (2.1) and
if, instead of hypothesis 5°, hypothesis 5°' is fulfilled.

Proof. Let ε > 0 and ε < lβ. It follows from hypothesis 5°' that
there exist numbers As, Bj > 0 and rf > 0 such that

(2.4) 1 - I Zφ) I > Afa - φ3)
aj and 1 - I Zφ) \ > Bά{φj+1 - <pf*

for 0 < ψ — ψi < rf and 0 < φj+1 — ψ < rf, respectively. Let rf9 > 0 be
a number such that, for 0 < x < rf\

(2.5) &Jp) = L (4-) 2 P , χl~ZZ < 4 ε '

and

( O \2P /y,l-2P&ί ^

hold. We set η = min (η'9 ψ). There exists r0, 0 < r0 < 1, such that

(2.6) I Zφ) \^rQ for ψ e {φά + η, φj+1 - η), j = 1, . , J .

Applying the Cauchy formula to the function /(g^ξ), g2(ζ)) which is regular
in |f| < 1 and continuous in \ζ\ ^ 1, dividing the interval of integration
and using the inequalities (2.6), (1.4), (2.4), (2.5), and (2.5'), we obtain

(2.7) dφ

1 - |r,| /=!L27Γ lJ+, \ i - r

J _ L
2J

2τr 3
+jr ; + i

- i-ιr.
If we apply the inequality obtained above to the function llf(zu z2),
which also belongs to ^~fe(($l, P) and for which the condition (2.1) holds,
we have the inequality

12 Here I = min |/(fci*/0, λkj), hΆj{0, λkj))\, L - max |/(/n*/0, χkj), h2kj(0, λkj))\, I may be
larger than 1 or m smaller than 1.
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1 '^τΐ|§t(τ(τΪ7Γ + ε)
•*• bO x ^ \ JL ' / '

13

for r ^ r0. Hence,

1

(Z.8) ]jr(^i^2)

TΛT=~W +

From (2.7) and (2.8), (2.3) follows.

REMARK 1. The inequality on the right hand side of (2.3) is obtained
in the same way as an inequality obtained by Bergman (see [4] p. 190).
Bergman assumes that the function / omits the values 0 and 1 in every
lamina and, instead of the inequality (1.5), he applies an inequality,
which follows from the Schottky theorem.

The case when ©o intersects b3 along only one segment ej so that
the line of the intersection g1 lies in e|ro is of special interest. This case
is considered in remark 2 of § 1. We assume there that the function
/ belongs to the family ^~%(®l, P). However, if we assume in addition
that p(λk)^P (this means that f(hlk(Zk, \k), h2k(Zk, Xk)) is mean multivalent
of at most order P in every lamina 3>i(λfc) for which ^(λj.) n Q1 Φ 0) we
obtain a better result, using, instead of the Poisson formula, the minimum
and maximum principles (see [6], p. 31). This method yields the following
theorem:

THEOREM 4. // g1 c e|ro, fe ^^βl, P) and the additional condition
p(Xk) ^ P is satisfied on every lamina 3\(Xk) which is intersected by g1,
then for every (z°u z°2) e ©2 and for every r ^ r0 the inequality

=

holds. Here,

1= min|/(M0,λ t),M0,λ fc))|

L = max I/(MO, **), MO, λt))|

sk designates the set of \k for which %?k(Xk) Π g1 Φ 0.

REMARK 1. Bergman [2], [3], [4] obtained an upper bound for | / | on
an analytic surface, which intersects b3 along a line lying in ejro, under
the assumption that / is a univalent function in every lamina

18

max 0, λkj)) ^min I MikjΦ, hs), hnjφ, λkj)) I
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The bound is expressed in terms of the maximum of | / | and of the
maximum of the absolute value of the derivate of f(hlk(Zk, Xk), h2k(Zk, Xk))
with respect Zk on a one-dimensional manifold lying on b3.

3 Example* Let Φ be a univalent function in | ί | < 1, continuous
in | ί | ^ 1, \Φ(t)\< 1 for | ί | <, 1 and t Φ exp(ίλϊ), |Φ[exp(iλ?)]| = 1. In
addition we assume that

(3.1)

exists. Let

S3 z2):z

\Jo ( 1 -

i = Z, z2

- 10(eiλi

- Φ(t),

)\y

\z\ 1, | ί | < 1} .

S3 is a domain which is obtained from the bicylinder \Z\ < 1, \t\ < 1 by
pseudo-conformal mapping zλ=Z, z2=Φ(t). Its three-dimensional boundary
ϊ>3 consists of two segments, say e3 and ef>, of analytic hyper surf aces:

eϊ = {(Zi, z>): zx = Zyz2 = Φ(eiλή, \Z\ ̂  1, 0 ^ \ ^ 2ττ}

ê  = {(*!, 2a): ̂  = βίλ% z2 - <P(t), | t | g 1, 0 g λ2 g 2π} .

33 is obviously an analytic polyhedron. The Bergman-Silov boundary of
S3 is a two-dimensional manifold

δ 2 = {(Si, ««): ̂ i = eiλιi ^ = ^ ( β i λ 2 ) , 0 ^ λ x ^ 2ττ, 0 ^ λ2 ^ 2ττ} .

Let ©o be a plane

#! = roe
iθ°, 0 < r0 < 1 , ί0 real number .

The common part @2 = ®l Π S can be represented in the form

^ 2 = {fe, z2): zΎ - τ^\ z2 = Φ(£), \ζ\ ̂  1} .

The intersection g1 = ®l Π b3 has the parametric representation

91 = {fe, «,): «i = rQeiθ°, z2 - <P(β )̂, 0 ^ ^ ^ 2ττ} .

Here, φ = λα and (dφ)l(dX1) = 1. ©o intersects the segment e3. only, and
the line of the intersection g1 lies in cjro. We consider the function

(3.2) f(zu z%) = exp( 1 - l ) .

It is holomorphic in S3; its singularities lie on the line

& = {(zlf z2): zx = e*+, z2 = Φ[exp(iλ?)], 0 ^ ψ ^ 2ττ} ,

which belongs to %2. f(zly z2) is different from zero and holomorphic in
the segment ©2 (®2 has no common points with %2). Now, we shall prove
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that on every lamina

•(3.3) $l(\) - {(z19 z2): Zl = Z,z2 = Φ(e^), ] Z\ S 1} ,

except on lamina 3f?(̂ ?)> the function (3.2) is mean multivalent of order

in the sense of Biernacki.
Let α be an arbitrary complex number such that

<3.4) 1 α I g e~2 or | α | ^ 1 .

We want to estimate the number of α-points of function (2.3) in lamina
(3.3). This number is equal to the number of α-points of the function

(3.5)

in the circle \Z\ < 1. We must estimate the number of roots of the
equation

(3.6)

which lie in \Z\ < 1. From (3.6) we have

1y .
V 1 + log α

As \Z\ < 1,

1
1

V1 + log a

Hence, by hypothesis (3.4)

1 ^ 1 - \Φ(eίλή\

and

(3.7) | l + l o g α | ^ - X

From (3.7) it follows that

1
|argα | ^

( i -

If we set argα = Argα + 2kπ, fc = 0, ± 1 , ±2, , where |Argα| ^ π,
then
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1
2\k\π - |Argα| ^

(21 k I — l)π ^ -

and finally

1 +1 ' — 7Γ V ' 2 ( 1 — I <^(β^i) |;

The number n(a, λx) of α-points of (3.2) in lamina (3.3) cannot exceed
2\k\ + 1; this means that

J π \

for |α | ^ e"2 or |α | ^ 1. For numbers α such that β~2 <£ |α | ^ 1, the
corresponding number p(|α|, λx) is ^ 1. Hence,

= sup

S 2π

392(λ1)cZλ1 exists, as
0

a consequence of (3.1), and
1 Γ2JΓ

(3.8) A - p
2π Jo

9 9 1

7Γ8 7Γ2 2 π

2 3

2τr3Jo (1 -

The function (3.2) belongs to the family %%(®l, P), where S3 and ©ϋ are
the domains and the analytic surface described above. P equals a square
root of the right-hand side of (3.8). Here, Q — 1, J = 1,

I = min (1, min |/(0, Φ{e^)\) = 1

L = max (1, max |/(0, 0(eίλO|) = 1 .

Applying Theorem 1 and remark 1 of § 1, we can say: for every
(z°u z°2) = (roe

iθ°, Φ(ζ0)), \ξQ\ < 1, and for every r ^ r0 the inequalities

hold. The inequality on the right-hand side of (3.9) gives a better
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estimate for r0 and \ζo\ sufficiently near to 1, then the inequality

exp rg exp
Λi-r\ξo\γ

which we may obtain directly.
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