
ON UNIMODULAR MATRICES

I. HELLER AND A. J. HOFFMAN

l Introduction and summary. For the purpose of this note a
matrix is called unimodular if every minor determinant equals 0, 1 or — 1.

I. Heller and C. B. Tompkins [1] have considered a set

S = {Uif V, , Ui + Vjf Ui - Ui*, Vj - Vj*}

where the uuu2, , umf v19 v2, —-,vn are linearly independent vectors
in m + n = fc-dimensional space E, and have shown that in the coordinate
representation of S with respect to an arbitrary basis in E every
nonvanishing determinant of k vectors of S has the same absolute value,
and that, with respect to a basis in S, the vectors of S or of any subset
of S are the columns of a unimodular matrix. For the purpose of this
note the class of unimodular matrices obtained in this fashion shall be
denoted as the class T.

A. J. Hoffman and J. B. Kruskal [4] have considered incidence
matrices A of vertices versus directed paths of an oriented graph G,
and proved that:

(i) if G is alternating, then A is unimodular;
(ii) if the matrix A of all directed paths of G is unimodular, then

G is alternating. The terms are defined as follows. A graph G is
oriented if it has no circular edges, at most one edge between any given
two vertices, and each edge is oriented. A path is a sequence of distinct
vertices vl9 v2, , vk of G such that, for each i from 1 to k — 1, G contains
an edge connecting v{ with vi+1; if the orientation of these edges is from
Vi to vi+1, the path is directed; if the orientation alternates throughout
the sequence, the path is alternating. A loop is a sequence of vertices
Vu V2, , vk9 which is a path except that vk = vx. A loop is alternating
if successive edges are oppositely oriented and the first and last edges
are oppositely oriented. The graph is alternating if every loop is alter-
nating. The incidence matrix A = (ai3) of the vertices v{ of G versus
a set of directed paths pu p2, , pk of G is defined by

1 if Vi is in pj

(0 otherwise .

The class of unimodular matrices thus associated with alternating graphs
shall be denoted by K.

I. Heller [2] and [3] has considered unimodular matrices obtained
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by representing the edges (interpreted as vectors) of an w-simplex in
terms of a basis chosen among the edges (in graph theoretical terms:
the edges and vertices of the simplex form a complete graph G; a basis
is a maximal tree in G9 that is, a tree containing all vertices of G)9 and
has shown that:

(i) the matrix representing all edges of the simplex is unimodular
and maximal (i.e., will not remain unimodular when a new column is
adjoined);

(ii) the columns of every unimodular matrix of n rows and n(n + 1)
columns represent the edges of an ^-simplex.

The class of (unimodular) matrices whose columns are among the
edges of a simplex shall be denoted by H. H can also be defined as a
class of incidence matrices: A matrix A belongs to H if there is some
oriented graph F without loops such that A is the incidence matrix
of the edges of F versus a set of path in F. That is,

1 if edge e{ is in path p3

— 1 if — e{ is in p3

0 otherwise .

In [2] it has further been shown that:
(iii) there exist unimodular matrices which do not belong to H;
(iv) the classes H and T are identical.
The purpose of the present note is to show that the class K is

identical with the set of nonnegative matrices of H.

2. THEOREM. / / a matrix A of n rows and m columns belongs
to K {i.e., A is the incidence matrix of the n vertices of some alternating
graph G versus a set of m directed paths in G), then A belongs to H
{i.ef there is some n-simplex S and a basis B among its edges such that
the columns of A represent edges of S in terms of B). Conversely,
every non-negative matrix of H belongs to K.

3. NOTATION. An oriented graph is viewed as a set

(3.1) R = V U E ,

where V is the set of vertices Al9 A2, , An, and E is the set of oriented
edges ev, that is certain ordered pairs {Ai9 A3) with j Φi of elements
of V, such that at most one of the two pairs (Ai9 A3)9 (Aί9 A{) is in E.

For brevity of notation we define

(3.2) [Aif Aj] = {(Aif A3 ), (Aj, A,)} .

The origin and endpoint of an edge e are denoted by pe and σe:

(3.3) p(A,B) = A, σ(A,B) = B,
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If A and B are vertices of Rf the relation A < B (A is immediate
predecessor of 2?), also written as B > A, is defined by

(3.4) A<B*=>(A,B)eR.

Similarly, if α,6 are edges of R,

(3.5) a < b <=^> σa = pb .

A subset V of vertices of R defines a subgraph of R

(3.6) R{V')= V1 U E'

where (A,B)eE'<=>AeV',BeV',(A,B)eE.

4 Proof. Using the graph-theoretical definition of the class H,
the first half of the theorem shall be proved by showing that to each
alternating graph G there is an oriented loopless graph F such that the
if-matrices associated with G are among the iJ-matrices associated with F.

A column of a if-matrix is the incidence column Kp of the vertices
of G versus a directed path p in G; a column of an iί-matrix is the
incidence column Hq of the edges of F versus a path q in F. For given
G it will therefore be sufficient to show the existence of an F such that

to each directed path p in G there is a path
(4.1)

q = φ(p) in F such that Kp = Hq .

This will be shown by constructing an F and a mapping φ of the
set of vertices of G onto the set of edges of F in such a way that φ
satisfies (4.1), or equivalently, that φ preserves the relation defined in
(3.4) and (3.5), that is, for any two distinct vertices A, B of G,

(4.2) A < B (in G) = > φ(A) •< φ{B) (in ί7) .

The construction of F and <p shall now be carried out under the
assumption that G is connected. If G is not connected, the same con-
struction can be applied to each component of G, yielding an F with
an equal number of components.

If G has n vertices, take as the vertices of F a set of n + 1 distinct
elements Po, Pu •••, Pn.

The n edges el9 e2, , en of F are defined successively as follows.
First, choose an arbitrary vertex Aλ in G, define

(4.3) φ{A±) = β l = (POf PO ,

and note that:
(i) the subgraph Gτ = G{A^), consisting of the one vertex A1 of

G, is, trivially, connected;
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(ii) the graph Fx = {Po, Pu (Po, Px)} is connected;
(iii) with respect to Gx and Fl9 φ trivially satisfies (4.2).
Then, assuming AveG already chosen and ev = φ{Av) defined for

v — 1, 2, , k in such a manner that Gk = G{AU A2, , Ak} and Fk =
{Po, P l f •• , P A , ex, " , e j are each connected and <p satisfies (4.2) with
respect to Gk and Fk, choose Ak+1eG such that

(4.4) [ A i f A k + 1 ] f ] G Φ θ

for some ί ^ k and define

βi, Pk+1) when (A4, Afc+1) e G

[(Pk+u Red when

noting that this definition depends on the choice of i since more than
one i may satisfy (4.4).

Obviously, Gk+1 and Fk+1 are each connected.
To show that ψ satisfies (4.2) with respect to Gk+1 and Fk+U let

Ar < A8 in Gk+1.
If r ^ k and s ^h, (4.2) is satisfied according to the induction's

hypothesis.
For {r, s} = {i, fc + 1}, (4.2) is satisfied by definition (4.5). Namely:

for r = ί, 8 = fc + 1, (4.5) defines βfc+1 = (σβί? P&+1), hence σβί = pek+1,
which by (3.5) means et < ek+1; similarly for s = i, r = k + 1, (4.5) defines
Â +i = (ί*+i> i°ei)> hence σek+1 — peίt which means ek+1 < eim

There remains the case {r, s} = {,/, & + 1}, j" Φ i,j ^ A;, with

(4.6) [Aif Afe+1] Π GΛ+1 Φ 0 ,

that is either As < Ak+1 or Ak+1 < A3- in Gfc+1.
In this case Ak+1, which by (4.4) has an edge in common with Aif

now also has an edge in common with A3 Φ Ai9 thus connecting these
two distinct vertices of Gk by the path

(4.7) A ί f A k + 1 , A 3

in Gk+1 but outside Gk.
On the other hand, by the induction's hypothesis, Gk is connected.

Hence A< and A, are connected by a path in Gk

(4.8) Aif Atl, At29 , Atχ, Aj

(λ = 0 not a priori excluded).
The paths (4.7) and (4.8) combine to the loop

in Gk+1, which is obviously also a loop in G.
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Since G is alternating, the loop (4.9) must be alternating. This
implies that the number of vertices is even, hence λ — 2v + 1, and that
the orientation is either

(4.10) Ak+1 <Ai>Ah<Ah>. -< A2V > Ahv+l < As > Ak+1

or the opposite.
Now assume first

(4.11) Ak+1 < Aj ,

which implies the orientation (4.10), and consider that part of the loop
which is in Gk, namely the path (4.8)

(4.10) and the induction's hypothesis that, relative to Gk and Fk, Ψ
satisfies (4.2), imply

hence

{4.13) ρe{ = σeh = ρeh = σeh = . . . = pehv = σehv+1 = ρe5 .

The definition (4.5) of ek+u in conjunction with Ak+1 < A{ from (4.10),
implies

(4.14) σek+1 = pe, .

This together with (4.13) yields

(4.15) σek+1 = ρe3- , t h a t is ek+1 < ed ,

which proves that assumption (4.11) implies (4.15).
Similarly, the assumption Ak+1 >- Aό yields ek+1 >• ejf by reversing

the relation •< and interchanging p and σ in the above argument.
This completes the proof that to any connected alternating graph

G there exists a connected oriented graph F and a mapping φ satisfying
(4.2)

That F has no loops (and hence is a tree) is obvious from the fact
that its n + 1 vertices are connected by n edges. Hence, the incidence
matrices of F certainly belong to class H.

If G consists of k components, the construction will yield an F
consisting of k trees.

This completes the proof of the theorem's first half, namely that
every iΓ-matrix is an iϊ-matrix.

The second half of the theorem, namely that each nonnegative
ϋ-matrix is a Z-matrix, is due to J. Edmonds. It will be proved by
showing that to each loopless oriented F there is an alternating G and
a mapping ψ of the edges of F onto the vertices of G that preserves
the relation •<, that is, for any two edges α, b of F
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(4.16) a < b ==> f(a) < f(b) .

This is achieved by the following simple construction.
If F has n edges el9 e2 , en9 choose a set of n elements Au A2, , An.

as the vertices of G, define ψ by

(4.17) ψe< = A, ,

and define the edges of G by

(4.18) (^A^eG — β^β,,

that is, G shall have an edge oriented from A{ to As if and only if

Obviously ψ preserves the relation •<, since (4.18) is equivalent to

(4.19) A, < A3 <=^ei< es .

Note that •< is also preserved by the inverse of φ, that is, in the
transition from G to F.

Note further that G is oriented (in the sense of the definition given
in [4] and cited in §1 of present note), that is:

(a) each edge of G is oriented, since the edges of G have been
defined by (4.18) as oriented edges;

(b) G has no circular edge, since (Ai9 Aτ) e G for some i would imply
βi < eif or equivalently σe{ — peif that is, et a circular edge in F, con-
tradicting the assumption on F;

(c) G has at most one edge between any given two vertices:
(Aif Aj) e G and (Ajf A%) e G for some pair i, j, would imply e{ < ed and
βj -< ei9 that is σe{ = pβj and σe3- = peiy hence eζ and βj would form a
2-loop (with the vertices pei9 σe{), again contradicting the assumption on F.

Finally, to show that G is alternating, note that, by (4.17) and (4.19),
(?, F and ψ — ψ~λ satisfy the condition (4.1). Thus the incidence matrices
(of vertices versus directed paths) associated with G are among the
incidence matrices (edges versus paths) associated with F, and hence
unimodular. Especially then, the incidence matrix of the vertices versus
all the directed paths of G is unimodular, which, by the Hoffman-Kruskal
Theorem (Theorem 4 in [4], cited in § 1 of this note), implies that G
is necessarily alternating.

This completes proof of the theorem.
It is worth noting that the last part of the proof (namely that G

is alternating) can easily be established without using the result of [4]
(which contains more than is needed here).
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