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1Φ Introduction. The Arc Theorem usually encountered is the
following: a connected and locally connected Cauchy complete metric1

space is arc-wise connected [10]. The most general Arc Theorem is
Theorem 1 in Chapter II of [14], in which "Cauchy complete metric space"
is replaced by "a space satisfying Moore's Axiom 1"—i.e. a "complete
Moore space" (equivalent to a complete regular developable space [1];
see also [16] and [15]). Wyman Richardson, in one of F. B. Jones'
classes proved the Arc Theorem for strongly complete regular semi-
metric spaces (unpublished though the argument differed considerably
from Moore's argument). This was not, however, a real generalization
because such spaces are Moore spaces (cf. Corollary 4.3 of this paper).

Since most theorems which are true in Moore spaces are true in
regular semi-metric1 spaces, and since the exceptions are "in general
those theorems whose validity depends upon that property of Moore
spaces which forces the equivalence of perfect and hereditary separability"
[7], one might hope that the Arc Theorem could be further generalized
by simply replacing "metric" by "regular semi-metric." This paper
establishes that the Arc Theorem cannot be generalized directly to Cauchy
complete regular semi-metric spaces but can be extended to a somewhat
more general class of regular semi-metric spaces then those satisfying
Moore's Axiom 1. The examples given show that, even in the presence
of such properties as possessing a uniformity and being compactly con-
nected, a regular semi-metric space can be Cauchy complete, connected
and locally connected but not be arc-wise connected. Other possible
means of extending the Arc Theorem are eliminated by establishing
that in the presence of certain topological properties a regular semi-
metric space is a Moore space (e.g. a strongly complete semi-metric
space is a Moore space)—or is even metrizable.

This paper is essentially a dissertation [4] written at the University
of North Carolina under the direction of Professor F. B. Jones. The
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1 A topological space S is said to be semi-metric if there is a distance function d for
S with respect to which the topology of £ is invariant. A distance function d for S is a
function from S X S to the nonnegative numbers such that, if each of x and y is a point
of S, then (1) d(x, y) = 0 only in case x = y and (2) d(x, y) = d(y, x) [11; 18]. The space
is metric if the distance function also satisfies (3) d(x, y) -f d(y, x) ^ d(x, z) for each triple
x, y, z of points of S. Note that every Moore space is regular and semi-metric. The set
Uo(x) = {y> d(x, y) < c} is referred to herein as a c-neighborhood (with respect to d) of x.
Cauchy complete is defined as in [11, p. 316]. Topological space and regular are defined as
in [9, pp. 37 and 113]. Terms not defined herein are used as in [14], [11], or [1].

1301



1302 ROBERT W. HEATH

author wishes to thank Professor Jones for his encouragement and
direction.

2- Cauchy complete semirmetric spaces in which the Arc Theorem,
does not hold true* The following examples and theorems show that a
Cauchy complete regular semi-metric space may be connected and locally
connected (and even compactly connected) without being arc-wise con-
nected. Example 2.2 is such a space, some additional properties of which
are given in Theorem 2.3. Example 2.5 is such a space which is com-
pactly connected. In the remainder of this section some additional
properties of those spaces are pointed out to show that those properties
could not be used to extend the Arc Theorem, and there are described
some other spaces which are practically indistinguishable from the first
two spaces but which are arc-wise connected. The following definition
will be useful since weak completeness is equivalent to Cauchy complete-
ness [11, Theorem 2.3].

D E F I N I T I O N 2 . 1 . A s p a c e S i s s a i d t o b e { L V p U
vided there exists a distance function d such that (1) the topology of S
is invarient with respect to d and (2) if M is a nonincreasing sequence
of closed sets in S such that, for each nf there is a 1/w-neighborhood
of a point p J ϊ! en\ which contains Mn, then Π « = i ^ contains a point.

EXAMPLE 2.2. Let S consist of the points of [0,1] x [0,1] with a
distance function d and a topology defined as follows.

(1) If x e S, d(x, x) = 0, and
(2) if x and y are two points of S and a(x, y) is the smallest non-

negative angle (in radians) formed by the line which contains x and is
parallel to X (the x-axis), or is X, and the line which contains x and
y, then d(x, y) = | x — y \ + a(x, y). For each point p of S and each
positive number c, let the c-neighborhood of p, Ue(p) = {%: d{x, p) < c},
be an element of a basis for the topology of S.

Clearly the semi-metric space S is weakly complete (hence Cauchy
complete), completely regular (hence uniform and, of course, regular;
cf. [9]) and separable. That S is connected and locally connected follows
from the fact that horizontal line segments in [0,1] x [0,1] have the
same relative topology in S as in Euclidean two-space.

Note that, if (6, c) is a point of S, if d > 0, if 0 < a < τr/2, and if
R(b, c; α, d) = [{{x, y):\x — b\ < d, and ei ther | y — c\ < \ x — b\ t a n a

or y = c}] S—i.e. if R(b,c;a,d) is the point set consisting of (6, c)
and all points of S interior to a (horizontally oriented) "bow-tie region"
centered on (6, c) and having (horizontal) length d and central angles
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of magnitude 2α radians—then R(b, c; a, d) is an open set in S. Further-
more, the collection {R(b, c; a, d): (b, c) e S, d > 0 and 0 < a < τr/2} of all
such bow-tie regions in S forms a basis for the topology of S. That
basis is useful in the proof of Theorem 2.3.

The proof of the following lemma, as well as a more detailed proof
of Theorem 2.3, is contained in the proof of Theorem 1 [4, p. 10].

LEMMA. // M is an arc in S with nondegenerate x and y pro-
jections, then there is a subarc M1 of M with nondegenerate x and y
projections and whose x-projection is a subset of the x-projection of
M- Mλ.

THEOREM 2.3. There exists a separable, connected, locally connected,
weakly complete, completely regular, semi-metric space which is not
arc-wise connected.

Proof. Let S be the space of Example 2.2. The space S is not
arc-wise connected. For suppose that there is an arc in S with end-
points (0, 0) and (1,1).

By the above lemma, if M is an arc in S and with endpoints (0, 0)
and (1,1), there is a sequence {M^χ=1 of subarcs of M such that, for
each n, Mn z> Mn+1 and {x: (x, y) e Mn+1} c {x: (x, y) e [Mn - Mn+1]}. Then,

since M is compact, there is a point (p, q) in ΠΓ=i Mi9 and, for each n,
there is a point (p, qn) in Mn such that qn = qm only if n = m. Thus
M contains an infinite subset without a limit point which violates the
compactness of M.

DEFINITION 2.4. A space S is said to be compactly connected pro-
vided that, if a and b are points of S, S contains a compact continuum
which contains both a and b.

There are now two questions to be answered. Is a connected,
locally connected, weakly complete, regular (or completely regular) semi-
metric space compactly connected? Also, is a connected, locally con-
nected, weakly complete, regular (or completely regular) semi-metric
space which is compactly connected necessarily arc-wise connected? The
answer to both questions is no. It can be shown that the space of
Example 2.2 is not compactly connected by an argument in general
following the same outline as the proof of Theorem 2.3—replacing sub-
arc by irreducible subcontinuum and making use of Theorems 32, 39,
and 47 from Chapter I of Moore's Foundations (for a detailed proof see
Theorem 2 [4, p. 13]). Example 2.5 and Theorem 2.6 answer the
second question.

EXAMPLE 2.5. Let K be the "polyhedral sin 1/x curve" in [0,1] x
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[0,1] which is the union of all horizontal line segment of the form

{x: 0 ^ Re [x] g 1 and Im [x] = 0}

or

{x: 0 ^ Re [x] g 1 and Im [x] = l/2w}

for w = 0,1, 2, ,

and of all vertical line segments of the form

\x: Re[x] = 0, - ^ — < Im [x] < - 1 - 1 for m = 0,1, 2,

or

{a?: Re [a?] = 1, — < Im [x] < —1—1 for m = 1, 2, 3, •
^ L J 7 O 2 m 9 2 m ~ 1 J 7 7 7

Let c? be the distance function for [—2, 2] x [0,1] defined as follows:
(1) if x is a point of K and y is a point of [—2, 2] x [0,1], then

d(x,y) = \x-y\;
(2) if x and y are points of ([—2, 2] x [0,1] — K) and α(a?, ?/) is

the smallest nonnegative angle (in radians) formed by the line xy and
the horizontal, then d(x, y) — \ x — y | + a(x, y).

Let S be the topological space consisting of the set [—2, 2] x [0,1]
with the following topology: for each point p of K and each c > 0, the
circular neighborhood {x: x e S, | x — y \ < c} is a region in £, and, if p
is a point of S but not of K, every "bow-tie region" (as defined in
Example 2.2) with center at p is a region in S. Clearly S is a com-
pletely regular semi-metric space which is weakly complete, connected,
locally connected, and separable.

THEOREM 2.6. There is a connected, locally connected, weakly com-
plete, completely regular semi-metric space which is compactly connected
but not arc-wise connected.

Proof. Let S be the space defined in Example 2.5. Since K has
the same relative topology as it would in the usual plane topology, K
is a compact continuum; likewise each horizontal interval contained in
S is a compact continuum. Hence, if a and b are points of S, the point
set [K + {x:xeS and Im [x] = Im [a]} + {x: xeS and Im [x] = Im [6]}]
is a compact continuum which contains a and b and is contained in S.
Thus S is compactly connected.

From the proof of Theorem 2.3, it is clear that any nondegenerate
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compact continuum in S, other than a horizontal interval, must intersect
K. Therefore, a compact continuum L in S which contains the points
(2, 1) and (—2, 0) must contain K; but each point of {z: z e K, 0 < Re [z] < 1
and Im [z] = 0} is a nonseparating point of K and is not a boundary
point of any component of L — K (and therefore a nonseparating point
of L). Hence there is no arc in S which contains (2,1) and (—2, 0).

Returning to the space S of Example 2.2, it is perhaps of interest
whether points of that space are connectable by any type of sets bear-
ing some resemblance to arcs. It will be shown in § VI that, if a and
b are points of S, there is a continuum M in S whose only nonseparating
points are a and b. It can also be shown that, if a and b are points
of S, then either a and b are endpoints of an arc in S (in case a and
b are on the same horizontal line segment), or a and b are the only
nonseparating points of a connected subset M of S which is the graph
of a function, namely M~x — {(x, y): (y, x) e M} is a function. The ex-
istence of the latter can be established by an argument somewhat similar
to the proof of Theorem 5 in [6]. For a detailed proof see [4, pp. 20-24].

Consider now the following two examples each of which is a con-
nected, locally connected, weakly complete, completely regular, semi-
metric space which closely resembles Example 2.2, and each of which
also is neither a Moore space nor strongly complete (nor complete in any
of the "intermediate" senses to be subsequently defined), but each of
which is arc-wise connected.

EXAMPLE 2.7. Define a distance function d for the points of [0,1] x
[0,1] as follows: if x and y are two points of [0, 1] x [0,1], then (1) if
Re [x] = Re [y], d{x, y) = 1, and (2) if Re [x] Ψ Re [y], then d(x, y) =
2(g.l.b. [c: c > 0 and y e {z: \ z - (x + c) \ < c or | z - (x - c) \ < c}]) =
I x — y 171 Re x ~ Re y\ = \x — y\ sec α, where a is the smallest non-
negative angle formed by the line passing through x and y and the
horizontal line through x. Note that neighborhoods of radius less than
1 are "bow-ties" formed by tangent circles (the center of such a neigh-
borhood is the point of tangency, and, if the neighborhood has center
x and radius 2c, the centers of the circles are x — c and x + c and the
radius of each circle is c). The topological space S consisting of the
points of [0,1] x [0,1] and regions which are (all) such neighborhoods
is a connected, locally connected, weakly complete, completely regular
semi-metric space by the same arguments as used in Example 2.2. That
S is neither strongly complete nor a Moore space will be more easily
seen following subsequent theorems. The space S is arc-wise connected
since every nonvertical line segment in [0,1] x [0,1] has the same re-
lative topology in S as it does in the plane topology, and hence is an
arc in S.

The second example is due to L. F. McAuley [11].
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EXAMPLE 2.8. Let X denote the #-axis of the Cartesian plane E\
Define a distance function d for the points of E2 as follows: if each of
p and q is a point of E2, then

(1) if neither p nor q belongs to X or if both belong to X, d{p, q) =
| p - q\, and

(2) if exactly one of p any q belongs to X, d(p, q) — \ p — q \ + a
where a is the nonobtuse angle (measured in radians) between X and
the line L determined by p and q. Thus a neighborhood of a point of
X is a "bow-tie" neighborhood while a neighborhood of a point not on
X is a disc (with some distortion in case the neighborhood intersects
X). The topological space S consisting of the points of E2 and regions
which are cί-neighborhoods is clearly a connected, locally connected,
weakly complete, completely regular semi-metric space that is arc-wise
connected.

Each of the distance functions defined in Examples 2.2, 2.7, and
2.8 has the following continuity property: (in each case d denotes the
distance function for the space S) if x and y are point sequences in S
which have respective sequential limit points p and q such that p φ q,
then lim^oo d(xn, yn) = d(p, q). It is easily shown that, if S is a regular
semi-metric space with a distance function which has the above continuity
property, then neighborhoods with respect to that function are open
sets and the closure of a compact set in S is compact.

Each of the distance functions defined in Examples 2.7 and 2.8 has
in addition the following "convexity" property. If a and b are two
points of S such that d(a, 6) < 1 and n is a natural number, then there
is a point sequence α0, al9 a2, , an in S such that a0 = α, an — b and,
if 0 ^ i < j < k ^ n, d(aif a5) + d(ajf ak) = d(aif ak), and ai+1 is the only
point of S such that d(aif ai+1) = d(ai+1, ai+2) = l/2d(αί, α ί+2). That prop-
erty, plus the properties that neighborhoods are connected open sets
and that the closure of a compact set is compact, is a sufficient con-
dition for the (weakly complete, regular semimetric) spaces of Examples
2.7 and 2.8 to be arc-wise connected.

3«, Conditions for semi'metric, developable, and metric spaces*
Among the open questions about semi-metric spaces are the following.
Is there a "purely topological" characterization of semi-metric spaces
[12], and what "topological" property can be added to a semi-metric
space to get a developable [1, p. 180] (or Moore) space [2, p. 64]? The
answers to those questions, or at least some uniform characterization,
of semi-metric, developable and metric spaces, should be useful in try-
ing to extend Moore's Arc Theorem. The author found the character-
ization given below by the Conditions A, B and C useful not only for
that purpose, but also for easy construction of nondevelopable semi-
metric spaces as well as nonmetric Moore spaces (in trying to generalize
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the Arc Theorem by weakening the completeness part of Moore's Axiom
1). For another application see [5].

A second set of topological conditions, A' and B', is obtained by
weakening Conditions A and B. Condition A' is the topological axiom
used in the Arc Theorem given in § VI; and Theorem 3.5 establishes
that a regular TV-space satisfying Conditions A and B' is a Moore space—
from which it follows (in § IV) that a strongly complete regular semi-
metric space is a Moore space (Theorem 2.2 in [11] is a corollary to this
theorem). Theorem 3.6 establishes that every semi-metric space has a
property analogous to that characterizing property of metric spaces
pointed out in [8] and to the similar characterizing property of Moore
spaces implicit in Moore's Axiom 1.

Throughout this section Z denotes the set of all natural numbers,
and a TVspace (also Γ2, T3, etc.) is as defined in [9, p. 56]. The follow-
ing definition is also used.

DEFINITION 3.1. A sequence x of points in the space S converges
to a point y of S only in case every region which contains y contains
Xi for all but finitely many values of i; y is then called a sequential
limit point of x.

Suppose that S is a TΊ-space. Consider the following three con-
ditions on a function g from Z x S to the collection of all open sets
in S.

CONDITION A. (1) For each point x of S, {gn(%)}n=i is a nonincreasing
sequence which forms a local base for the topology at x. (2) If y is
a point of S and x is a point sequence in S such that, for each natural
number m, y e gm(%m), then x converges to y.

CONDITION B. If y is a point of S and x and z are point sequences
in S such that, for each m, [y + xm] c gm{zm), then x converges to y.

CONDITION C. If each of x and y is a point of S and n is a natural
number such that xegn(y), then yegn{x). [cf. 3, p. 257 and p. 261].

THEOREM 3.2. A necessary and sufficient condition that a T^space
S be semi-metric is that there is a function g, from Z x S to the open
sets of S, such that g satisfies Condition A.

Proof. The condition is sufficient. For suppose that there is a
function g which satisfies Condition A. Define the function m, from
S x S to the natural numbers, as follows: if x and y are two points of
Sf m(xf y) is the smallest natural number p such that y g gp(x). Define
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a distance function d for S as follows: if xe S, d(x, x) = 0; if x and y
are two points of S, d(x, y) = min [l/m(#, y), llm(y, x)] = the reciprocal
of the smallest natural number p such that y g (̂ (cc) and x φ gp{y).
Clearly, if each of x and y is a point of S, d(x, y) = c%, #); and c£(x, #) = 0
only if a> = #. Also limit points are invariant with respect to d (for a
proof see [4, p. 30]).

The condition is necessary. For suppose that S is a semi-metric
space. Define the function g as follows: if x is a point of S and w is
a natural number, flrw(a?) = interior [Ulln(x)] — {y: for some region R,
yeRcz U1{n(x)}. Clearly g satisfies Condition A.

THEOREM 3.3. A necessary and sufficient condition that a Tλspace
S be developable is that there be a function g, from Z x S to the open
sets of S, such that g satisfied Conditions A and B.

Proof. The condition is sufficient. For suppose that there is a
function g satisfying Conditions A and B. For each natural number i,
let Gι = {gj(x)ι x£ S,j Ξ> i}. The coverings Glf G2f G8, constitute a
development (for proof see [4, p. 32]).

Suppose, conversely, that Gu G2, is a development for S. Define
the function g as follows: for each point x of S let ^(a;) be some member
of Gi which contains x, and, if n is a natural number greater than 1,
let gn(x) be a member of Gn such that xeg^dg^x). Clearly g
satisfies Conditions A and B.

THEOREM 3.4. A necessary and sufficient condition that a Tλ-space
S be metric is that there is a function g, from Z x S to the open sets
of S such that g satisfies Conditions A, B, and C.

Proof. The condition is necessary, for suppose that S is a metric
space. Define the function g, from Z x S t o the open sets of S, as
follows: for each point x and natural number n, gn(x) = interior [Ul!n{x)\.
It is clear that g satisfies Conditions A, B, and C.

Conversely, let S be a TV-space, and let g be a function which
satisfies Conditions A, B, and C. For each n, let Gn = {gm{x): xeS,
m ^ n}. By Moore's metrization theorem [11, p. 325], if S is not
metrizable, there are two points p and q and a region R such that,
for each n, Gn contains members h and k such that pe h, h-k Φ 0, and
k [S - (R - q)] Φ 0 (i.e., K>(S - R) Φ 0 since S is Tλ). Thus there are
a point p, a region JB, and point sequences x, y, and z such that, for
each n, pegn(xn),ynegn(xn) gn(zn), and gn(zn) [S- R] φ 0. By Condi-
tion B, [yn + p] agn(xn) (n = 1, 2, 3, •) implies that the sequence y
converges to p. Therefore, there is an increasing natural number
sequence m such that, for each natural number n, ymin) e gn{p), so, that,
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by Condition C, pegn(ym{n)). Also ym{n) e gm{n)(Zm{n)) implies t h a t zm{n) e

gm{n)(ym{n))—hence t h a t zm{n)egn(ym{n)).

Thus, for each n, [p + zm{n)] c gn(ym{n)), so that, by Condition B,
{Zm(n)}n=i converges to p. Therefore there is a subsequence r of m such
that, for each natural number n, zr{n) e gn{p), hence p e gn(zr{n)). But by
supposition there is a point sequence u such that, for each n, une(S — R)
and un e gn(zrin)), so that u converges to p; which leads to the contra-
diction that pe(S — R) while p is contained in the region R. Thus S
must be metrizable.

Consider Conditions A' and B' which are at least formally weaker
than A and B respectively.

CONDITION A'. (1) For each point x of S, {gn(%)}n=i is a nonincreasing
sequence which forms a local base for the topology at x. (2) If y is
a point of S and a; is a point sequence such that, for each natural
number n, yegn(xn) and there is a natural number k such that
gn+k(xn+k) c gn(xn), then the sequence x converges to y.

CONDITION B\ If y is a point of S, R is an open set containing y,
and x is a point sequence such that, for each n, y e gn(xn) and there is
a k such that (7M+A.(#W+A.) c gn(xn), then there is a natural number m such
that gm(xm) c # .

It will be convenient now to have Condition A, A', B, B', and C
translated into corresponding conditions on a basis for the space.

DEFINITION 3.5. Suppose that S is a TV-space and that G is a basis
for S. The basis G satisfies Condition A (A', B, B', or C) means that
there is a function g, from Z x S to the open sets of S, such that
G = {gn(x): xeS,n = 1,2, 3, •} and # satisfies Condition A (A', B, B',
or C).

Theorem 3.6 establishes that the Arc Theorem cannot be generalized
by simply replacing "Moore space" by "a regular semi-metric space
satisfying Condition B ' " since such a space is itself a Moore space;
moreover it will readily follow from this theorem (cf. Corollary 4.3)
that every strongly complete regular semi-metric space is a Moore space,
thus eliminating another means of extending the Arc Theorem as well
as improving upon Theorem 2.2 of [11].

THEOREM 3.6. Suppose that G is a basis for a regular Tλ-space S.
IfG satisfies Condition A and Bf, then S has a basis H which satisfies
Conditions A and B, hence S is a Moore space.

Proof. Suppose that the regular TΊ-space S has a basis G ~
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{gm(x):xε S,m = 1,2,--•} which satisfies Conditions A and B\ Let
<* = {Pif P*f •••} be a well-ordering of the points of S. Define the
functions h (from Z x S to G), r (from a x Z to Z), and n (from <ra
[a subset of Z] to α) as follows. For each pz e S, let h^p,) = grzm(Pz) =

For each p z e S and each natural number i greater than 1:

(Case 1) If there is not a point q of [S — pz] and a natural number
j <i such that pz e hό{q) and hj(q) [S — grzii-iw(pz) Φ 0, then let h^p,) =

or

(Case 2) otherwise, for each (such) j < i, let j>Λβ[Λ be the first

member q of α(g Φ pz) such that p, e hs(q) and Λi(?) [S - grzu-u+i(Pz)] Φ 0;

let r s[ΐ] be the smallest natural number m > r z[ί — 1] such that gm(pz) c

>»βci] ί < if a n ( i i is n ° t covered by Case 1]; and let hi(pz) =

The basis i ϊ = {^(a?): a? e S, i = 1, 2, •} then satisfies Conditions A
and B', since H is a subcollection of G and since, if xegeG, then there
is an h e H such that xehczg.

The basis H satisfies Condition B. For if not, then there is a point
x of a region iϋ such that, for each m, there is a point g such that
x e Λw(g) and frm(g) [S — iϋ] ̂  0. Let y be the point sequence such that,,
for each m, ym is the first point q in a such that xehm(q) and Λm(ϊ)
[S — R] Φ 0. (It will now be shown that, for each natural number %,.

there is an m > i such that hm{ym) c
If i is a natural number there is a natural number Nλ> i such,

that, if m > iVΊ, then ym G [feid/i) — y^\ (since # converges to x and
xzhityi)) and there is an iV2 such that, if m > iV̂ , then r̂(2,m)[m-i]+i(2/m>
does not contain /&*(#<) (otherwise, by Condition A, each point of λ<(y<)
would be a sequential limit point of y, and /̂ (2/i) contains at least two
points, namely, x and a point not in R); thus there is a natural number
m such that

- y j and Λ ^ ) [S - 0 r (2,m)[m-1]+1(2/w)] ^ 0 .

Moreover, there is no point q such that q precedes j/< in α and hm(ym) a
hi(q) (since j / 4 is the first point a in a such that xeh^a) and /^(α)
[ S - i 2 ] ^ 0 , and Kiy^ch^q) would imply that &<(?)• [S - JB] Φ 0);
hence there is no point # such that q precedes yi in α: and ym e h^q}
and hi(q)-[S- gr{ym)im-ii+i(Vn>)] ^ 0 (otherwise h^q) would contain Λm(ym>
by definition of hm(ym)). Therefore hm{ym) c hι{y%) since j/< ̂  ym.

Hence by Condition B', there is a natural number N such that if
m > N, then Λm(̂ /m) c R contrary to the supposition that for each i,
hi(yi)-[S-R]Φ0.

Using the same argument down to the last sentence, which is the
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ϋrst place that Condition B' is used, Theorem 3,7 below also follows.

THEOREM 3.7. Suppose that S is a regular semi-metric space.
Then there is a basis H — {hn(x): x e S, n = 1, 2, •} with the property
that for each p e S and for each closed and compact subset M of S — p
there is a natural number N such that if m > N and p e hm(x) then
hm(x)-M=0.

4. Completeness axioms. Another way to generalize Moore's Arc
Theorem is to weaken the completeness used. Three successively weaker
completeness axioms (1, Γ, and 1") are given below. In a Moore space:
•Completeness Axiom 1 is equivalent to Moore's completeness, which is
known to be weaker than strong completeness [11, Example 3.3]; and
Completeness Axioms V and 1" are both equivalent to the completeness
in Mrs. Rudin's Axiom 1" [16, p. 320], and hence weaker than Moore's
Completeness [16, p. 324], In semi-metric spaces Completeness Axiom
1' is stronger than 1" (all examples in § 11 satisfy Axiom 1" but not
1'; also see Corollary 4.3).

A Cauchy (or weakly) complete semi-metric space satisfies Complete-
ness Axiom 1". In a metric space all of the completenesses mentioned
are equivalent [15].

The theorems listed below (for proofs see [4, pp. 35-43]) give the
relationships between the three completeness axioms and the topological
properties defined in §IΠ. Aside from finding that completeness Axioms
1' and 1", which are used in separate arc theorems, are more general
than Moore's completeness, the main results obtained in this section
are (1) that a strongly complete regular semi-metric space is a Moore
space (2) that Cauchy (or weak) completeness is weaker than Moore's
completeness and (3) a generalization of Theorem 120 in [14] (also
Theorem 6 of [16]).

Suppose that S is a TΊ-space and G = {gn{%Y- % e S, n = 1, 2, 3 •}
is a basis for S which satisfies Condition A'. Consider the following
completeness axioms for G.

Completeness Axiom 1. If M is a nonincreasing sequence of closed
sets such that, for each n, there is a point xn of S such that Mnc
gn(xn), then ΠίU Mn Φ 0.

Completeness Axiom Γ. If M is a nonincreasing sequence of closed
sets and x a point sequence in S such that, for each n, Mn c gn{xn) and
there is a natural number k such that gn+k(xn+k) c flfΛ(»«), than Π»=i Mn ψ 0.

Completeness Axiom 1". If x is a point sequence such that, for
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each n, there is a k such that gn+k(xn+k) c gn(xn), then Π.% 0»O»n) =£ 0.
Theorem 4.1 shows in particular that Axioms 1' and 1" are equivalent

in a developable 2\-space.

THEOREM 4.1. Suppose that S is a Tx-space with a basis G that
satisfies Conditions A! and B'. A necessary and sufficient condition
that G satisfy Completeness Axiom Γ is that G satisfy Completeness
Axiom 1".

An immediate corollary to Theorems 4.2 and 3.6 is that a strongly
complete regular semi-metric space is a Moore space.

THEOREM 4.2. Suppose that the T2-space S has a basis G which
satisfies Condition A!. A necessary and sufficient condition that G
satisfy Condition Br and Completeness Axiom 1" is that G satisfy
Completeness Axiom Γ.

COROLLARY 4.3. If the regular Tλ-space S has a basis G which
satisfies Condition A and Completeness Axiom 1', then S has a basis
which satisfies Conditions A and B. Hence every strongly complete
regular semi-metric space is a complete Moore space.

The following theorem shows that the space having a basis with
some of the completeness properties and another basis with some of the
topological properties has a basis with the combined properties.

THEOREM 4.4. If the Tx-space S has a basis G which satisfies
Condition A! and one of the Completeness Axioms 1, 1', and 1", and
if S has a basis H which satisfies some combination of Conditions A',
A, B', and B, then S has a basis K which satisfies the Completeness
Axiom that G satisfies and the combination of Conditions A'', A, B\
and B that H satisfies.

The next theorem is a generalization of a portion of a theorem due
to Moore [14, p. 83, Theorem 120]. (The other part of the theorem
also holds in any of the same spaces). Essentially the same proof may
be used (see [4, p. 39]).

THEOREM 4.5. Suppose that the Tx-space S has a basis G which
satisfies Condition Af (or A! and A, B\ or B) and one of the Complete-
ness Axioms 1, 1', and 1". If M is an inner limiting subset (i.e. a
Gs set) of S, then there is a basis H for M such that H satisfies the
same combination of Conditions Af, A, Br, and B and the Complete-
ness Axiom that G satisfies.
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The completeness defined in Definition 4.6 is clearly weaker in
general than Axiom Γ; however, Theorem 4.7 shows that replacing the
latter by the former in an arc theorem would not be a real generalization.

DEFINITION 4.6. A basis G for a TΊ-space S which satisfies Con-
dition A' is said to satisfy Completeness Axiom 1' peripherally provided
that, if ReG, M is a nonincreasing sequence of closed subsets of B(R),
the boundary of R, and x is a point sequence in S such that, for each
n, Mn c gn(xn) and there is a k such that gn+k(xn+k) c gn(xn), then

THEOREM 4.7. If G is a basis for a T2-space S, if each member
of G is connected, and if G satisfies Condition A! and satisfies Com-
pleteness Axiom V peripherally, then G satisfies Condition Br.

For a proof see [4, pp. 42-43].

5 Metrization theorems. The metrization theorems below serve
not only to eliminate certain hypotheses from consideration for gener-
alizing the Arc Theorem, but also to show that the spaces described in
§ II, which are not even developable (and in some of which the Arc
Theorem does not hold) are nonetheless very close to being metrizable.

Theorem 5.1 generalizes a well-known theorem which is included in
Theorem 10 [21]. It can also be shown that every semi-metric space
contains a dense metric subspace (but not necessarily one which is an
inner limiting subset).

The proof of the following lemma is exactly analogous to the proof
of Theorem 15 in [14, p. 11].

LEMMA. Suppose that S is a regular Tx-space with a basis G that
satisfies Condition A' and the Completeness Axiom 1". No closed sub-
set M of S is the sum of countably many closed sets each of which is
contained in the boundary of its complement (in M).

THEOREM 5.1. If the regular T^space S has a basis G that satisfies
Condition A! and the Completeness Axiom 1", then S contains a dense
inner limiting subset K which (with the relative topology) is metrizable
and complete.

Proof. Let HΎ be a maximal collection of mutually exclusive regions
each of which belongs to {flf<(«?): x e S, i ^ i}. For each n > 1, let Hn

be a maximal collection of mutually exclusive regions each of which
belongs to {#;(#): x£ S, i ^ n, and there is a region h in Hn-X such that
gi(x)<zh}. Let K = ΠΓ=i [#**]. Since by the above lemma, if R is a
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region in G, R is not the sum of countably many closed sets each
contained in the boundary of its complement (in R), so that R ψ
Σn=Λ(S- H*) R] and R KΦO, it follows that K is dense in S.
Clearly K is an inner limiting set and K (with the relative topology)
is metrizable since (Σjn=iHn)-K forms a basis for the relative topology
of K, and since, for each n, the elements of Hn are pair wise disjoint
and each member of Hn+1 is a subset of a member of Hn. That K is
complete follows from Theorem 4.5.

Theorem 5.2 shows how close the spaces of Examples 2.2, 2.5, 2.7,
and 2.8 are to being metrizable. Note that each of those spaces satisfies
the hypotheses of the theorem except for being locally peripherally
locally compact instead of locally peripherally compact.

THEOREM 5.2. Suppose that the semi-metric space S has a distance
function d such that d-neighborhoods are connected sets and such that,
if p is a sequential limit point of the point sequence x and q is a
sequential limit point of the point sequence y and lim^^ d(xif y{) = 0,
then p — q. If S is locally peripherally compact, then S is metrizable.

Proof. The theorem will be proved by showing that S satisfies
the hypothesis of W. A. Wilson's theorem [20, pp. 361 and 366; also 2,
p. 63] that a semi-metric space is metrizable provided that, for every
pair x, y of sequences, if p is a sequential limit point of x and
lim^oo d(xif y%) — 0, then p is a sequential limit point of y. For suppose
that p is a point of S and x and y are point sequences such that p is
a sequential limit point of x and lim^c* d(xif /̂̂ ) = 0, but p is not a
sequential limit point of y. Then there is a region R with compact
boundary, B(R), and a sequence y[, y[, y\, of y such that R contains
p but contains none of the points y[, yr

2y y[, thus (noting that it
may be assumed, without loss of generality, that, for each i, a?4 e R and
d{Xi, y[) < (1/Ό) each of the connected neighborhoods Z7i(a?i), Ull2{x^,
Ul!3(x3), contains a point of (S — R) and hence contains a point of
B{R). Let z be a point sequence such that, for each n, zn e Ulln{xn)-B(R).
Since B(R) is compact, there is a point q of B(R) such that q is a
sequential limit point of asubsequence of z, which leads to a contradiction
of the hypothesis of the theorem.

By Theorem 5.3 paracompactness (defined along with pointwise para-
compactness in [1. p. 177]) is too restrictive in the presence of a
completeness axiom slightly stronger than that possessed by the spaces
in § II.

THEOREM 5.3. Suppose that the regular Tλ-space S has a basis G
which satisfies Condition A and Completeness Axiom V peripherally
and whose elements are connected sets. If S is pointwise paracompact,
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then S is developable; hence, if S is paracompact, then S is metrizable.

For a proof of this theorem see [4, pp. 47-48].

6. An arc theorem. Theorem 6.2 is more general than R. L. Moore's
Arc Theorem [14, p. 86], to the extent that the completeness axiom
used is known to be less restrictive than that in the hypothesis of
Moore's theorem, and the other properties used are at least formally
more general than those used by Moore. To adapt the proof of Moore's
theorem to Theorem 6.2, however, requires only fairly minor modifications.
Theorem 6.4 establishes that certain semi-metric spaces which are not
arc-wise connected (including Example 2.2) are nontheless connectable
by closed connected sets which closely resemble arcs.

In the following definition, which will be used in the proof of
Theorem 6.2, "simple chain" (or "chain") is as defined in [14, p. 56].

DEFINITION 6.1. Suppose that G = {&(&): x e S, i = 1, 2, 3, •} is a
basis for the TΊ-space S, that A and B are two points of S, and that,
for each n, Cn = {Q[n, 1], Q[n, 2], , Q[n, mn]} is a simple chain from
A to B. The sequence {Cu C2, C3, •••} has property P with respect to

G if

(1) for each i {Q[l + i, j]}^1 is a refinement of {Q[i, j]}^;

(2) for each i and each j such that 1 < j ^ m< there is a if such

that (Σ>p<κQ[i + l,P]) Q[i,j] = 0, and such that ( Σ P > * Q[i + l,P)c
<Σ£i Q[i, «]) and Q[i + 1, k + 1] c Q[i, j - l] Q[i, j]; and

(3) there is a collection of natural numbers {k[i,j]:j^m,i =
1,2,3, •••} and a collection of points ίxi3 \f=i such that, for each i
and each j ^ mif

(a) fe[ί, j] ^ i
(b) Q[i, j] = gk(ij){%ij) and

(c) if xi+1J e Q[i, f\, then Q[i + 1, j] c Q[i, «].

THEOREM 6.2. If the connected regular Tx-space S has a basis G
each of whose elements is connected and which satisfies Condition Af

and Completeness Axiom 1', then S is arc-wise connected.

Proof. Let a and b be two points of S. Moore's proof (in particular
Theorem 77 [14, p. 56]) may be applied with slight alterations to the
sequence G of open coverings of S, such that, for each n, Gn — {gk(x):
xeS and k^n} to obtain a sequence, {C^i = {Q[ί, 1], Q[i, 2], ,
Q[i, mi]}?=1, of chains from α to 6 which has property P with respect
to G.

Let M - ΠΓ=i C? = IL°°=i [ΣΓΛ QFΓίϊ.
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Clearly M is closed.
Also M is compact. For suppose that an infinite subset K of M

has no limit point. Then there exists a sequence {Hn}~=1 of collections
of pointsets such that, for each n:

( i ) each point set in Hn is a link of the chain Cnf

(ii) each set in Hn contains an infinite subset of K,
(iii) Hn+1 is a refinement of Hn, and
(iv) (by the above property 3c of the sequence C) if xeHn+lr

yeHn, and xay, then xay. By theorem 78 [14, p. 56] there is a
sequence h such that, for each n, hn e Hn and hn+1 c hn, so that, by
the above property (iv) of the sequence H, hn+1 c hn. For each i, ht is
a link of the chain Ci9 so that, by property 36 (above) of the sequence
C, there is an increasing natural number sequence d and a point sequence
u such that, for each i, hi = gda)(Ui), hence, for each i, the closed set

(hi-K) is contained in gd{i){n%), (h^K) D (hi+1*K), and gdiί+1)(ui+1) c gdU)(Ui).
Therefore, by Completeness Axiom 1', there is a point p such that
peHT=i[K hi]', hence, peK, and for each ΐ, pegd{i)(Ui)f so that (by
Condition Af) p is a sequential limit point of a subsequence {utii)}?=1 of
the sequence u. Consider then the nonincreasing sequence of closed
sets, {(K — p) ht{i)}T=u which likewise has the property that, for each ί,
[(K — p)'ht{i)](zgditm(ut{i)). Again, there is a point q such that
qe(K — p) and such that q is a sequential limit point of {utiί)}?=1 and
p Φ q. Thus the assumption that M is not compact leads to a con-
tradiction.

That M is connected follows as in Moore's proof with slight alter-
ations (or see [4, pp. 53-54]); and that each point of M— (a + b) is a
separating point of M and that a and b are nonseparating points also
follows as in Moore's proof.

COROLLARY. The connected regular Tλ-space S is arc-wise con-
nected if S satisfies any one of the following conditions:

(a) S has a basis G which satisfies Conditions A' and B' and Com-
pleteness Axiom 1" and each of whose elements is connected;

(b) S has a basis G which satisfies Condition A' and satisfies
Completeness Axiom 1' peripherally and each of whose elements is
connected;

(c) S is locally connected and satisfies Mary Ellen Estill Rudin's
Axiom 1" [16].

(d) S is a locally connected strongly complete semi-metric space.
"Strong ehainability," defined below, is a rather restricted special

case of ehainability but is useful for showing that certain spaces which
are not arc-wise connected are connectable by sets which closely resemble
arcs. Roughly speaking a space is strongly chainable with respect to
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a basis G provided that, for every pair α, b of points of S, there is a
sequence C of chains from a to b such that

(1) C has Property P with respect to b
(2) the "centers" of C(w) are also "centers" of C(n + 1) and
(3) the intersection of two adjacent links of C(ri) with centers p

and q contains a point y such that the subchain from p to q of C(w + 1)
is contained in gn(y) and y is a "center" of C(n + 1). Theorem 6.2
then establishes that the space of Example 2.2 is connectable by sets
having all the properties of an arc but compactness.

DEFINITION 6.3. Suppose that the regular ϊVspace S has a basis,
G = {gn(x): x e S, n = 1, 2, •}, which satisfies Condition A. S is strongly
chaίnable with respect to G provided that, if a and 6 are two points
of S, there is a sequence, C = {Q[ί, 1], Q[i, 2], , Q[i, m$γ=1 of chains
from a to 6 such that:

(1) C has property P with respect to G.
(2) There is a collection, {ί(ί, j ) : i ^ m{, i = 1, 2, •} of natural

numbers such that, for each i and each j ^ mi9 x{j = ^i+i,^,;): and
(3) there is a collection {yi5\ j < mΐ? i — 1, 2, •} of points such

that, for each i and each j < mif (a) 2/ί3 e<2[ί, j] Q[if j + 1] and
Σr(iίu\J) Q[ί + 1, ^] c ^ΐ(^ii) and (b) there is a natural number r such
that i/ij = %i+ι,r. For each i and each j ^miy the point xi5 (from
Definition 6.1 part (3)) will be referred to as the center of the link
Q[i,3] of Ct.

Note that the space of Example 2.2 (§ II), which is not arc-wise
connected, is strongly chainable with respect to the basis consisting of
all 1/n neighborhoods (for n = 1, 2, •).

THEOREM 6.4. Suppose that S is a connected regular Tλ-space
which has a basis, G = {gn(x): x e S, n = 1, 2, •}, that satisfies Condition
A and Completeness Axiom 1" and each of whose elements is connected.
If S is strongly chainable with respect to Gy then, for each pair of
points a and 6, there is a continuum M containing a and b such that
a and b are the only non-separating points of M.

Proof. Let a and 6 be two points of S; let C = {Q[i, 1], Q[i, 2], ,
Q[i, mi\}T=i be a sequence of chains from a to 6 satisfying Definition
6.3 and, for each i and each j ^ mif let xi3 be the center of Q[i, j].
Denote by L the set of all centers Spif.j ^ mif i = 1, 2, •}; and let
M= ΠΓ=i [£<[*- Clearly (a + δ ) c l , M is closed, and a and 6 are the
only nonseparating points of M.

Furthermore, M is connected. For suppose that M — H + K,
H-K — H-K — 0 (where aeH). Because M is closed, each of H and
i£ is a closed set. Also, because L = M, LΉΦ 0 and L-KΦ 0. It
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will now be shown that there is a natural number n, a natural number
sequence u, and point sequences p and q such that, for each i^n,
u(i) ^ m{ and

(1) Q[i + 1, u(i + 1)] c Q[i, u(i)] and
(2) p4 eH^q.e K, and Q[i + 1, %(i + 1)] c gAPiYgfai). Since α e jfff

since L Hφ 0, and since L-Kψ 0, there is a natural number n and a
natural number j < mw such that xnj e H and α;w,i+16 K. If # n i e K, let
%(w) = j ; if ynj G iί, let u(n) = j + 1. In either case there is a natural
number r such that xn+1,r e J3", #»+i,r+i e if, and [Q[^ + 1, r] + Q[n + 1,
r + 1]] c Q[w, u(ri)] gn(ynj); again, if yn+1>reK, let t φ + 1) = r, and if
Vn+i.re fi> let %(n + 1) = r + 1; and the process may be continued to
define sequences u, p, and q which have the stated properties. Then,
by Completeness Axiom 1" there is a point z such that z e ΠΓ=iQ[^ + 1,
u(n + 1)] and z is a sequential limit point of the sequence p in H and
of the sequence q in K; hence zeH-K contrary to the assumption that
H K=0.

7. Summary and questions* Theorem 2.3 establishes that Moore's
Arc Theorem cannot be generalized directly to Cauchy complete regular
semi-metric spaces, while Theorem 6.2 shows that it can be generalized
to a class of semi-metric spaces somewhat more general than complete
Moore spaces—in particular, the completeness axiom used is known to
be weaker than that of Moore's Axiom 1. The examples in § II and
the theorems establishing certain sufficient conditions for a semi-metric
space to be developable or even metrizable given in §§ III, IV and V
show rather clearly the limited nature of the progress that can be made
towards extending the arc Theorem to semi-metric spaces. For example,
Theorems 3.6 and 4.2 establish that every strongly complete regular
semi-metric space is a complete Moore space.

The following questions then are suggested:
(1) Can Moore's Arc Theorem be generalized in another direction,

such as to complete uniform spaces?
(2) Since the class of strongly complete regular semi-metric spaces

properly includes the class of all complete Moore spaces and is properly
included in the class of all complete metric spaces, what is a sufficient
condition for a complete Moore space—or a weakly complete semi-metric
space—to be strongly complete, and what is a sufficient condition for
a strongly complete regular semi-metric space to be metrizable?

(3) Is there any reasonable necessary and sufficient condition for
a connected and locally connected complete regular semi-metric space
to be arc-wise connected?



ARC-WISE CONNECTEDNESS IN SEMI-METRIC SPACES 1319

1. R. H. Bing, Metrization of topological spaces, Canadian J. of Math., 3 (1951), 175-186.
2. Morton Brown, Semi-metric spaces Summer Institute on Set Theoretic Topology, Madi-
son, Wisconsin, Amer. Math. Soc, (1955), 62-64.
3. L. W. Cohen, Uniformity in topological spaces, Lectures in Topology ed. by Wilder
and Ayres, University of Michigan Press, (1941), 255-265.
4. R. W. Heath, Arc-wise connectedness in semi-metric spaces, doctoral dissertation,
University of North Carolina, 1959.
5. , A regular semi-metric space for which there is no semi-metric under which
all spheres are open, Proc. Amer. Math. Soc, 12 (1961), 810-811.
6. F. B. Jones, Connected and disconnected plane sets and the functional equations f(x) +
f(y) = fix + V\ Bull. Amer. Math. Soc, 48 (1942), 115-120.
7. , Introductory remarks on semi-metric spaces, Summer Institute on Set Theoretic
Topology, Madison, Wisconsin, Amer. Math. Soc (1955), 58.
8. , R. L. Moore's Axiom 1 and metrization, Proc Amer. Math. Soc, 9 (1958),
487.
9. J. L. Kelley, General Topology, Princeton: D. Van Nostrand Company, 1955.
10. C. Kuratowski, Topologie II, Warsaw, (1950), 184.
11. L. F. McAuley, A Relation between perfect separability, Completeness, and normality
in semi-metric spaces, Pacific J. Math., 6 (1956), 315-326.
12. , On semi-metric spaces, Summer Institute on Set Theoretic Topology, Madi-
son, Wisconsin, Amer. Math. Soc, (1955), 58-62.
13. R. L. Moore, Abstract sets and foundations of analysis situs, Bull, Amer. Math. Soc,
33 (1927), 141.
14. , Foundations of point set theory, Amer. Math. Soc. Coll. Publ., 13, New
York: Amer. Math. Soc, 1932.
15. J. H. Roberts, A property related to completeness, Bull. Amer. Math. Soc, 38 (1932),
835-838.
16. Mary Ellen Estill Rudin, Concerning abstract spaces, Duke Math. J., 17 (1950), 317-327.
17. A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math., Soc, 54 (1948),
977-982.
18. C. W. Vickery, Moore spaces and metric spaces, Bull. Amer. Math. Soc, 46 (1940),
560-564.
19. G. T. Whyburn, Analytic topology, Amer. Math. Soc Coll. Publ., 28, New York, 1942.
20. W. A. Wilson, On semi-metric spaces, Amer. J. Math., 53 (1931), 361-373.
21. J. N. Younglove, Concerning dense metric subspaces of certain nonmetric spaces,
Fundamenta Mathematicae, 4 8 (1959), 15-25.

THE UNIVERSITY OF NORTH CAROLINA AND

THE UNIVERSITY OF GEORGIA






