RINGS IN WHICH SEMI-PRIMARY IDEALS ARE PRIMARY

Robert W. Gilmer

Every ring considered in this paper will be assumed to be commutative and to have a unit element. An ideal A of a ring R will be called semi-primary if its radical \sqrt{A} is prime. That a semi-primary ideal need not be primary is shown by an example in [3; p. 154]. This paper is a study of rings R satisfying the following condition: (*) Every semi-primary ideal of R is primary. The ring Z of integers clearly satisfies (*). More generally, if A is a semi-primary ideal of a ring R such that $\sqrt{ } \bar{A}$ is a maximal ideal of R, then A is primary. [3; p. 153]. Hence, every ring having only maximal nonzero prime ideals satisfies (*).

An ideal A of a ring R is called P-primary if A is primary and $P=\sqrt{A}$. If ring R satisfies $\left(^{*}\right)$, then A is \sqrt{A}-primary if and only if \sqrt{A} is prime. Some well-known properties of a ring R satisfying (*) are listed below.

Property 1. If R satisfies (${ }^{*}$) and A is an ideal of R, then R / A satisfies (*). [3; p. 148].

Property 2. If R satisfies (*), if A and B are ideals of R such that $A \subseteq B \subseteq \sqrt{A}$, and if A is \sqrt{A}-primary then B is \sqrt{A}-primary. [3; p. 147].

Theorem 1. If ring R satisfies (*) and P, A, and Q are ideals of R such that P is prime, $P \subset A$, and Q is P-primary, then $Q A=Q$.

Proof. Since $\sqrt{Q A}=P, Q A$ is P-primary. Thus $Q \cdot A \subseteq Q A$ and $A \nsubseteq P$ imply that $Q \subseteq Q A \subseteq Q$. Hence $Q A=Q$ as asserted.

THEOREM 2. If P is a nonmaximal prime ideal in a ring R satisfying (*) and if Q is P-primary, then $Q=P$.

Proof. We let P_{1} be a proper maximal ideal properly containing P. If $p_{1} \in P_{1}$ such that $p_{1} \notin P$ and if $p \in P$, then $Q \subseteq Q+\left(p p_{1}\right) \subseteq P$. By property $2, Q+\left(p p_{1}\right)$ is P-primary. Since $p p_{1} \in Q+\left(p p_{1}\right)$ and $p_{1} \notin P$, $p \in Q+\left(p p_{1}\right)$. Then for some $q \in Q, r \in R, p\left(1-r p_{1}\right)=q$. Now $1-r p_{1} \notin P_{1}$ since $P_{1} \subset R$ so that $1-r p_{1} \notin P$. Thus $p \in Q$ and $P \subseteq Q \subseteq P$. Hence $P=Q$ and our proof is complete.

Corollary 2.1. If ring R satisfies $\left(^{*}\right)$, if P_{1} and P_{2} are prime ideals of R with $P_{1} \subset P_{2}$, and if Q is P_{2}-primary, then $P_{1} \subset Q$.

Proof. Since $\sqrt{Q P_{1}}=P_{1}, Q P_{1}$ is P_{1}-primary. By Theorem 2, $P_{1}=$ $Q P_{1} \subseteq Q$. Now Q is P_{2}-primary so that $P_{1} \neq Q$. Hence $P_{1} \subset Q$.

Corollary 2.2. If ring R satisfies (*) and P is a nonmaximal prime ideal of R, then P is idempotent.

Proof. The ideal P^{2} has radical P and is therefore P-primary. By Theorem 2, $P^{2}=P$.

Theorem 3. If R is a ring satisfying (*), if d is not a zero divisor or unit of R, and if P is a minimal prime ideal of (d), then P is maximal in R.

Proof. Suppose that P is not maximal in R. Let M denote the complement of P in R. We define A to be the set of all those elements x of R such that there exists $m \in M$ such that $x m \in(d)$. Since P is prime, A is an ideal and $A \subseteq P$. We wish to show that $P=A$. Thus if $p \in P$ and if N is the set of all elements of R of the form $p^{k} m$ where k is a nonnegative integer and $m \in M$, then N is a multiplicatively closed set containing M and p and hence properly containing M. Because P is a minimal prime ideal of (d), M is a maximal multiplicatively closed subset of R not meeting (d). [2; p. 106]. Therefore $N \cap(d) \neq \phi$ so that there exists an integer $k>0$ and an element m of M such that $p^{k} m \in(d)$. That is, $p^{k} \in A$ so that $p \in \sqrt{\bar{A}}$. Hence $P \subseteq \sqrt{A} \subseteq \sqrt{P}=P$ which implies $P=\sqrt{A}$. This means that A is P-primary. Under the assumption that P is nonmaximal, we conclude that $P=A$ by Theorem 2. Now P is also a minimal prime ideal of $\left(d^{2}\right)$ so that if B is the set of elements y of R such that $y m \in\left(d^{2}\right)$ for some $m \in M$, we likewise have $P=B$. Since $d \in P$, there exist $m \in M$ and $r \in R$ such that $d m=$ $r d^{2}$. The element d is not a zero divisor so that $m=r d \in(d) \subseteq P$ which is a contradiction to our choice of m. Therefore P is maximal as the theorem asserts.

Corollary 3.1. If ring R satisfies (*) and if P is a proper prime ideal of R containing a nonzero divisor d, then P is maximal in R.

Proof. There is a minimal prime ideal P_{1} of (d) contained in P. [1; p. 9]. By Theorem 3, P_{1} is maximal. Hence P is also maximal.

Corollary 3.2. If J is an integral domain satisfying (*), then nonzero proper prime ideals of J are maximal.

Corollary 3.3. If ring R satisfies $\left(^{*}\right)$ and if P is a proper prime ideal of R, then P is either maximal or minimal.

Proof. Suppose that P is not minimal and let P_{1} be a prime ideal properly contained in P. Now R / P_{1} is an integral domain satisfying (*) by property 1. By Corollary $3.2, P / P_{1}$ is maximal in R / P_{1}. Thus P is maximal in R. [3; p. 151].

Theorem 4. If ring R satisfies $\left(^{*}\right)$ and P is a finitely generated nonmaximal prime ideal of R then P is a direct summand of R. If P_{1} is a prime ideal not containing P, then P and P_{1} are relatively prime.

Proof. By Corollary 2.2, $P=P^{2}$. Since P is finitely generated, there exists an element $e \in P$ such that $(1-e) P=(0)$. [3; p. 215]. Evidently $e^{2}=e, P=(e)$ and $R=P \oplus(1-e)$. Now $e(1-e) \in P_{1}$ and $e \notin P_{1}$ so that $1-e \in P_{1}$. Therefore $1=e+(1-e) \in P+P_{1}$ so that P and P_{1} are relatively prime.

Theorem 5. If the Noetherian ring S satisfies (*), S is a finite direct sum of Noetherian primary rings and Noetherian integral domains in which nonzero proper prime ideals are maximal. Conversely if T is a finite direct sum of Noetherian primary rings and Noetherian integral domains in which nonzero proper prime ideals are maximal, then T is a Noetherian ring satisfying (*).

Proof. Since S is Noetherian, every ideal of S is finitely generated. Let (0) $=Q_{1} \cap \cdots \cap Q_{s}$ be an irredundant representation of (0) as an intersection of greatest primary components where $P_{i}=\sqrt{Q_{i}}$. If P_{1}, P_{2}, \cdots, P_{k} are the nonmaximal prime ideals of S in this collection, $P_{i}=$ Q_{i} for $1 \leqq i \leqq k$ by Theorem 2. If $1 \leqq i<j \leqq s, P_{i}+P_{j}=S$. This follows from Theorem 4 if P_{i} and P_{j} are nonmaximal. If P_{j}, say, is maximal, then $P_{j} \not \equiv P_{i}$ by Corollary 2.1, for $Q_{j} \nsupseteq P_{i}$ from the irredundance of the representation. Therefore, $P_{i}+P_{j}=S$. Thus the P_{i} 's, and hence the Q_{i} 's, are pairwise relatively prime. [3; p. 177]. This means that $S \cong S / P_{1} \oplus \cdots \oplus S / P_{k} \oplus S / Q_{k+1} \oplus \cdots \oplus S / Q_{s}$. [3; p. 178]. Each S / P_{i} in this representation is a Noetherian integral domain in which nonzero prime ideals are maximal. Since Q_{j} for $k+1 \leqq j \leqq s$ is P_{j-} primary with P_{j} maximal, S / Q_{j} is a Noetherian primary ring. [3; p. 204].

The converse follows from elementary facts concerning the ideal theory in a finite direct sum since it is apparent that each summand satisfies (*).

We give the following example of ring which is not a finite direct
sum of indecomposable summands and which satisfies (*).
Let $S=\sum_{i=1}^{\infty w} Z_{i}$, where each Z_{i} is the ring of integers and $\sum_{i=1}^{\infty w}$ designates the weak direct sum. Let $R=S+Z$ be the usual extension of S to a ring with unit element. [2; p. 87]. Clearly S is a prime ideal of R, as is $I_{p}=S+p Z$ for every prime p of Z. In fact, each I_{p} is a maximal ideal of R. It is easy to show that there is no prime ideal P between S and I_{p}.

Next, assume that P is a prime ideal of R that does not contain all of S. Then some $e_{k} \notin P$, where e_{k} is the unity of Z_{k}. However, since $e_{j} e_{k}=0$ for every $j \neq k$, evidently $Z_{k} \subset P$ for every $j \neq k$. By the same reasoning, $\left(1-e_{k}\right) R \cong P$. As before, it is easily shown that either $P=\left(1-e_{k}\right) R$ or $P=\left(1-e_{k}\right) R+p e_{k} R$ for some prime p.

Knowing precisely what the prime ideals of R are, it is just a routine matter to check that R satisfies (*).

The author is not able to give necessary and sufficient conditions which he feels are adequate that an arbitrary ring satisfy (*). The condition of Corollary 3.3, while necessary, is not sufficient to imply that a ring satisfy (${ }^{*}$) as is shown by the following example.

If S is the ring of polynomials in two indeterminates X and Y over a field K, then every nonzero proper prime ideal of S has height 1 or 2. [4; p. 193]. Therefore if $A=(X Y)$ and if $R=S / A, R$ is a Noetherian ring in which every prime ideal is maximal as minimal. The nonmaximal prime ideal $(X) / A$ of R, however, is not idempotent so that R does not satisfy (*).

Bibliogaphy

1. W. Krull, Idealtheorie, (New York, 1948).
2. Neal H. McCoy, Rings and Ideals, (Menasha, Wisconsin, 1948).
3. O. Zariski, and Pierre Samuel, Commutative Algebra. V.I. (Princeton, 1958).
4. O. Zariski, and Pierre Samuel, Commutative Algebra. V. II. (Princeton, 1960).
