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Every ring considered in this paper will be assumed to be com-
mutative and to have a unit element. An ideal A of a ring R will be
called semi-primary if its radical V A is prime. That a semi-primary
ideal need not be primary is shown by an example in [3; p. 154], This
paper is a study of rings R satisfying the following condition: (*) Every
semi-primary ideal of R is primary. The ring Z of integers clearly
satisfies (*). More generally, if A is a semi-primary ideal of a ring R
such that V A is a maximal ideal of R, then A is primary. [3; p. 153].
Hence, every ring having only maximal nonzero prime ideals satisfies (*).

An ideal A of a ring R is called P-primary if A is primary and
P = V A. If ring R satisfies (*), then A is V A-primary if and only if
l/A is prime. Some well-known properties of a ring R satisfying (*)
are listed below.

Property 1. If R satisfies (*) and A is an ideal of R, then R\A
satisfies (*). [3; p. 148].

Property 2. If R satisfies (*), if A and B are ideals of R such that
A g B g V A, and if A is V A-primary then B is V A-primary. [3; p.
147].

THEOREM 1. If ring R satisfies (*) and P, A, and Q are ideals of
R such that P is prime, Pa A, and Q is P-primary, then QA — Q.

Proof. Since V~QA = P, QA is P-primary. Thus Q ASQA and
A g P imply that Q S QA g Q. Hence QA = Q as asserted.

THEOREM 2. If P is a nonmaximal prime ideal in a ring R satisfy-
ing (*) ami ΐ/ Q is P-primary, then Q = P.

Proo/. We let Px be a proper maximal ideal properly containing
P. If px G Px such that ^ φ P and if p e P, then Q S Q + ( m ) £ P. By
property 2, Q + ( m ) is P-primary. Since ppx e Q + {ppλ) and px $ P,
peQ + (PPI). Then for some qeQ,reR,p(l — rpλ) == g. Now 1 - rpx 0 Px

since P1 c 22 so that 1 - m 0 P. Thus p e Q and P £ Q £ P. Hence
P — Q and our proof is complete.
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COROLLARY 2.1. If ring R satisfies (*), if P1 and P2 are prime
ideals of R with P1aP2, and if Q is P-primary, then PxcQ.

Proof. Since VQPX = Pu QPX is Pi-primary. By Theorem 2, Px =
QPi S Q. Now Q is P2-primary so that Pλ Φ Q. Hence P1czQ.

COROLLARY 2.2. // ring R satisfies (*) and P is a nonmaximal
prime ideal of R, then P is idempotent.

Proof. The ideal P 2 has radical P and is therefore P-primary. By
Theorem 2, P 2 = P.

THEOREM 3. If R is a ring satisfying (*), if d is not a zero divisor
or unit of R, and if P is a minimal prime ideal of (d), then P is
maximal in R.

Proof. Suppose that P is not maximal in R. Let M denote the
complement of P in R. We define A to be the set of all those elements
x of R such that there exists me M such that xme (d). Since P is
prime, A is an ideal and A <Ξ P. We wish to show that P = A. Thus
if p e P and if N is the set of all elements of R of the form pkm where
k is a nonnegative integer and me M, then Nis a multiplicatively closed
set containing M and p and hence properly containing M. Because P
is a minimal prime ideal of (d), M is a maximal multiplicatively closed
subset of R not meeting (d). [2; p. 106]. Therefore N Π (d) Φ φ so
that there exists an integer k > 0 and an element m of M such that
pkm e (d). That is, pk_e A so that p e V~A. Hence P S V~A S V T = P
which implies P = l/ A. This means that A is P-primary. Under the
assumption that P is nonmaximal, we conclude that P = A by Theorem
2. Now P is also a minimal prime ideal of (d2) so that if B is the set
of elements y of R such that yme (d2) for some me M, we likewise
have P = B. Since d e P, there exist me M and r e i? such that dm —
rd2. The element d is not a zero divisor so that m = rde{d) S P which
is a contradiction to our choice of m. Therefore P is maximal as the
theorem asserts.

COROLLARY 3.1. // ring R satisfies (*) and if P is a proper prime
ideal of R containing a nonzero divisor d, then P is maximal in R.

Proof. There is a minimal prime ideal Px of (d) contained in P.
[1; p. 9]. By Theorem 3, Px is maximal. Hence P is also maximal.

COROLLARY 3.2. // J is an integral domain satisfying (*), then
nonzero proper prime ideals of J are maximal.
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COROLLARY 3.3. If ring R satisfies (*) and if P is a proper prim,e
ideal of R, then P is either maximal or minimal.

Proof. Suppose that P is not minimal and let Px be a prime ideal
properly contained in P. Now i?/Pi is an integral domain satisfying (*)
by property 1. By Corollary 3.2, PjPλ is maximal in RjPλ. Thus P is
maximal in R. [3; p. 151].

THEOREM 4. If ring R satisfies (*) and P is a finitely generated
nonmaximal prime ideal of R then P is a direct summand of R. If
Px is a prime ideal not containing P, then P and Px are relatively prime.

PROOF. By Corollary 2.2, P = P2. Since P is finitely generated,
there exists an element eeP such that (1 — e)P = (0). [3; p. 215],
Evidently e2 = e, P = (e) and R = P 0 (1 - e). Now β(l - e)ePx and
e 0 Px so that 1 - β e Px. Therefore 1 = e + (1 - e) e P + Px so that P
and Pi are relatively prime.

THEOREM 5. If the Noetherian ring S satisfies (*), S is a finite
direct sum of Noetherian primary rings and Noetherian integral do-
mains in which nonzero proper prime ideals are maximal. Conversely
if T is a finite direct sum of Noetherian primary rings and Noetherian
integral domains in which nonzero proper prime ideals are maximal,
then T is a Noetherian ring satisfying (*).

Proof. Since S is Noetherian, every ideal of S is finitely generated.
Let (0) = Qx Π ΠQs be an irredundant representation of (0) as an
intersection of greatest primary components where Pi = VQ{. If Pl9

P21 * *, Pjc are the nonmaximal prime ideals of S in this collection, P { =
Qi for 1 ̂  i ^ k by Theorem 2. If 1 S i < j ύ s, P< + Ps = S. This
follows from Theorem 4 if P{ and P3 are nonmaximal. If Pjf say, is
maximal, then P3 =2 P4 by Corollary 2.1, for Q3 =2 Pi from the irredundance
of the representation. Therefore, P{ + Pό = S. Thus the P/s, and
hence the Q/s, are pairwise relatively prime. [3; p. 177]. This means
that S ~ SIPX 0 © S/P* 0 S/Q4+1 0 . © S/Qs. [3; p. 178]. Each
SI Pi in this representation is a Noetherian integral domain in which
nonzero prime ideals are maximal. Since Q3 for k + 1 ̂  j fj s is P Γ

primary with P, maximal, S/Q, is a Noetherian primary ring. [3; p. 204],

The converse follows from elementary facts concerning the ideal
theory in a finite direct sum since it is apparent that each summand
satisfies (*).

We give the following example of ring which is not a finite direct
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sum of indecomposable summands and which satisfies (*).

Let S = ΣΓ4 Zi, where each Zt is the ring of integers and J^ΓJi
designates the weak direct sum. Let R = S + Z be the usual extension
of S to a ring with unit element. [2; p. 87]. Clearly S is a prime
ideal of R, as is Ip = S + pZ for every prime p of Z. In fact, each Ip

is a maximal ideal of R. It is easy to show that there is no prime ideal
P between S and Ip.

Next, assume that P is a prime ideal of R that does not contain
all of S. Then some ek$P> where ek is the unity of Zk. However
since e3 ek — 0 for every j Φ k, evidently Zka P for every j Φ k. By
the same reasoning, (1 — ek)R £ P. As before, it is easily shown that
either P = (1 — ek)R or P — (1 — efc)J? + pekR for some prime p.

Knowing precisely what the prime ideals of R are, it is just a
routine matter to check that R satisfies (*).

The author is not able to give necessary and sufficient conditions
which he feels are adequate that an arbitrary ring satisfy (*). The
condition of Corollary 3.3, while necessary, is not sufficient to imply that
a ring satisfy (*) as is shown by the following example.

If S is the ring of polynomials in two indeterminates X and Y over
a field K, then every nonzero proper prime ideal of S has height 1 or
2. [4; p. 193]. Therefore if A = (XY) and if R = SI A, J? is a Noetherian
ring in which every prime ideal is maximal as minimal. The nonmaximal
prime ideal (X)IA of R, however, is not idempotent so that R does not
satisfy (*).
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