EQUICONTINUITY OF SOLUTIONS OF A
QUASI-LINEAR EQUATION

S. E. Boun

On a bounded domain 2 of the xy-plane the equicontinuity of a
family of solutions of a linear elliptic partial differential equation is
usually demonstrated by showing that the first partial derivatives of
solutions are uniformly bounded on compact interior subsets of 2. Finn
[2] uses this same method in showing the equicontinuity for a class of
quasi-linear elliptic equations referred to by him as “equations of mini-
mal surface type.” However, Finn cites an example which demonstrates
that in general bounded collections of solutions of elliptic equations do
not have uniformly bounded first partial derivatives on compact interior
subsets.

Here we shall consider the question of the equicontinuity of a
family of solutions of the quasi-linear equation

(1) Llz] = Az, y, p, 9)r + 2B(z, 9, », s + C(x,¥,p, )t =0

where, as usual, p =2, ¢ =2, r =2,, s =2, and t = z,, and where
A, B and C satisfy a growth condition.

Suppose D to be a domain in the xy-plane for which

(i) A>0, AC— B*=1, and A, B, and C are continuous and
have continuous first partial derivatives with respect to p and ¢ on T
defined by T = {(z,¥y,»,9): (z,y)eD and —o < p,q < + o}, and

(i) (A+C)y=@1/125)loglog (p*+ ¢*+ e) + h(x,y) for all (x,y,p,9) e T
where h(x, y) is positive and continuous on D.

Henceforth, we shall assume that conditions (i) and (ii) are satisfied
‘whenever reference is made to the equation (1).

THEOREM 1. Let 2 be a bounded sub-domain of D with boundary
@ such that 2 = Q + wC D. If {fx,y):ve o} is any collection of
Junctions which are continuous and wuniformly bounded on @ and if
corresponding to each f, there exists a function z(x,y; f,) which is of
class C* on 2, is continuous on 2, is a solution of (1) on 2, and is
such that z(x, y; f,) = f.(x, ¥) on w,then the collection {z(x, y; f,) 1 v € 7}
18 equicontinuous on 2.

In proving Theorem 1 we shall employ a modification of the method
used by Serrin [5] and in so doing depend heavily on the following
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principle:

Maximum Principle [3]. Let D be any plane domain and consider
the function F'(x,y, %, », q, 7, s, t) with the following assumptions:

(i) F is continuous in all 8 variables in the region 7T defined by
T={x92m9097r8t):@®yeDand —w <2 p,4q78t< +o}and

Gy F,F,F,F,F,andF, are continuous on 7T, F?— 4F,F, <0,
F.>0,and F, <0 on T.
Let z(x, y) and z,(x, ¥) be continuous in a bounded and closed subdomain
&2 C D and of class C? in the interior of .2°. Furthermore, suppose
z(2, ¥) = 2,(%, y) on the boundary of .2° and suppose that in the interior
of &

F (2, Y, 21, Z1ay Z1ys Rrowy Rrays Z1gy) = 0
and
F(x, Y, 23 2205 Zays Razas Rowys Royy) = 0.
Then, either z,(x, ¥) < 2,2, y) in the interior of .2 or
z(@, ¥) = 2, y) on 27 .

Suppose M > 1 to be a uniform bound of |f,|, v€.% on w. Since
constants are solutions of (1) it follows from the Maximum Principle
that |2z, 9)| = |2(x, ;)| < M for (z,9)e2 and all ve. o7, Also,
suppose {2,(z, ¥):ve Z} = {2z, y) : ve o and z,(z,y) > 0 on 2},

LEMMA 1. Let Py, ¥,) be any point of 2 and suppose {K,}n=r is
a sequence of closed circular disks each having Pyx, y,) as its center
and R, = (1/T)"R, as its radius where B, <1 and K,C 2. Then when-
ever z,(x,y) 1s a positive solution of (1) there exists a constant H,
0 < H< 1, depending only on R,, § = max h(x, y) where (z,y)e 2, and
M such that for all ve &%

z(x, y) > H[d, M, R,|z,(%o, Yo) on 0=|P— PJ|=@A/TR,
and
(%, y) > HI[, M, (1/7)"Ro]z(,, yo) = HId, M, (1/T)RJ(1/n)2.(,, ¥o)
on 0= |P—P|=q/1)"R, n=1,2,3,---.
Proof. Let E denote the component of the set
{(, y) e Ko : 2(w, y) > (1/2) 2(%0, Yo)}

t See Bers and Nirenberg [1] for a proof of a Harnack inequality for solutions of the
uniformly elliptic equation (1).
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which contains Py, ¥,). We can apply the Maximum Principle to
conclude that £ must contain an arc of the circumference of K,. Hence,
there is a Jordan arc /" contained in £ with one end at (%, ¥,) and the
other end at a point (%, %) on the circumference of K, which is such
that with the exception of (¢, ¥, I" is contained in the interior of E.
Let K? and K* be the two closed disks each of which has radius V5/2 R,
and each of which has the points (z,, ¥,) and (x,, %) on its circumfer-
ence. FEach point (z, y¥) € K* N K® satisfies at least one of the following
conditions:
(@) (%, y)el” Ubdry(K* N K3,
(b) (x,y) is in a subdomain of K* the boundary of which consists
of arcs of I' and arcs of the circumference of K32,
(¢) (x,w) is in a subdomain of K* the boundary of which consists
of arcs of I" and arcs of the circumference of K°.
Let K* be the closed disk with center at

(., 92 = <3m02‘ T 3?/0;' y1>

and radius (3/4) R, and let (x,, ,) and (., ¥,) be the respective centers
of K? and K® It is clear that

{(@,9): (@ — 2+ (¥ — ) £V 5/2R)} C comp K, ,
{@,9): (@ —a) + W —y,) < (152 R)} < comp K, ,

and
{(@,9): (@ — 2) + (¥ — 9.)* < %(8/4 R, C interior (K2 N K°)

where ¢ = 1/10.
Consider the function

N(e—wo"l . e—wrz)

v, i &) = =y

defined on the region
SEnpr)={wy:er=d=@—-E+@H—-7=rInkK
where > 0 and N = 1/22,(x,, ¥,). In this region

2 NT2,+2,—2wa2 2 2
v1+vz:4aNae2 §41\2I§J:42
1 — ey o e'r

for all ve &7 .

Furthermore, v < N on S(§, %; 7), v = 0 where ¢ = 7, and v > 0 where
oc<r. If A, B, and C are evaluated at (x,y, 7v,, 7v,), the following
succession of inequalities are valid in S(&, »; ) where v, 0 < v <1, is
any fixed real number.
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LIvv)(1 — e=*?) = 2ayNe=**{2a[A(x — &) + 2B(x — E)(y — 7)
+Cly — 7] — (4 + C)}

e 4a(AC — BY)o* B
= 2arvNe {(A O vaAT o a7 AT 0}

> 2ayNe~*"" {2aer* — (A + C)}

A4+ 0C)
= 2847—1_{\_{‘35)0— {20(627'2 — —11— log log [v*(v} + v3) + e] — h(x, y)}
20y Ne=** { 2.2 [ M? ]
=== 12 — L g1 — 9
="A+0) aer 15ogog + e }

where 0 = max h(z, y) for (z,y) e 2. Now L[vv]}=0 on S(& n; r) if one
chooses

> W{l g 1og[l_”_ + e] + 1255} .
Let
v, Y) = 0(@, Y; ©, Yo; V52 Ry)
and
vy, ¥) = v(, ¥; Ty, Y5, V' B2 Ry) .
Let
a = 45R0 —=_log log [(4M /3¢ R,)* + e] + 1250}

and assume that (z, ¥) is in the interior of K* N K® and either (z, y)eI”
or (z, y) satisfies condition (b), then we can apply the Maximum Princi-
ple to conclude that z,(x,y) > vi(x,y). Similarly, if (x,y) is in the
interior of KN K°® and either (x,y)e " or (x,y) satisfies (c), we can
conclude that z,(x, ¥) > vy(x, y). Thus, for all (x, y) € interior (K* N K?)
it follows that

2%, ¥) > min [vy(z, ¥), vs(z, )] .
Now on the circle (x — 2,)* + (¥ — v.)* = €(3/4 R,)?

exp <-— % xzaR(?) — exp (— —45— aR; >

Yo = min [vz(xy ’.l/), ’Ua(x, y)] =N 5
1 — exp (— v CYROZ)

> N — \) exp (~ % wzeg)
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where A = [(VI7 + 3¢)V/5]/10 < 1. Another application of the Maxi-
mum Principle yields z,(x, ¥) > (v/N)v(x, y) on S(x,, ¥, 3/4 R,) where

v, ¥) = v(, ¥; %, Ys; 3[4 Ry) .

Now the annulus S(z,, ¥.; 3/4 R,) contains the disk with center at (x,, ¥,)
and radius 1/7 R,. On this disk

exp (—— —1% p*aR(?) — exp <_ % aR[,?)

v(@,y) =1 =N ) 9
— exp <— 16 aRo>

2 _ 9 2
> N1 — p)exp( 5T paRo)
where p = 11/21.

Therefore, on the disk with center (x,, %,) and radius 1/7 R,.

VoY 1 5 9
A, L0 s — (1 — AH)(1 — p? — (=N 4+ =0 ¢ R, Yo
z,(x, ¥) > N >2(1 )( ,O)exp[ <4x+16p)aR ]z(x Yo)

1 — 2 . 2 . _ﬁ_ P
> (1= ML - ) exp(— 22 aki)eulan 00
> % (1 — N)(L — ) exp (—1259)

- exp {—log log [(4M[3cR,)* + e]}z.(%o, Y0)
> H[0, M, Ry]z.(%,, ¥o)
on 0= |P— P, |=@7)R, for all ve %
where

H[5, M, R = _;_ (1 — \)(1 — 0% exp (—1250) {1og [( 3‘% ) + e]}_l.

(4

Now by an inductive argument one concludes that
HIo, M, (1Rl = 5 (1 = )L — 07) exp (—1259)

. {k,g [(%‘%3”)% e]}"l > % HIS, M, 1/7 Ry]

and
22, ¥) > ;1; HI[5, M, 1/7 RjJ2(2,, y) on 0 <|P — P,| < (1/T)**'R, ,
n=1238, .- for all ve c#, thus proving the lemma,

LEMMA 2. Using the assumptions of Lemma 1
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1
Hl[o, M, 78 R,]

for 0| P— P,|<1/8R, for all ve &#.

z(z, y) < 2.(Z0, Yo)

Proof. Follows directly from Lemma 1.

It is of interest to note that if z(x,y) is a positive solution of
Az, y, p, ¢)r + 2B(%, ¥, p, ¢)s + C(x, ¥, p, Q)t =0 in a domain 7, then
for any compact Uc T and compact S properly contained in U there
is an H > 0 depending only on the bound of 2(x,y) on U and the
distance from S to the boundary of U such that

= #fan, ) < (@, 1) S Helan, 1)
for any two points (x, ¥,) and (x,, ¥,) in S.

LemMMA 3. If z/(x,¥y) ve<Z is a solution of (1) on the interior of
a closed circular disk K, of radius R, <1 with center Py, ¥,), then
there ewists a continuous decreasing function gp(r), 0 = r < Ry, g»(0) =
1, and a continuous increasing function fp(r), 0 =7 < Ry, fp(0) =1
such that

gPO(’r)zv(xo: Yo) = 22, Y) = fP0(7')zv(xo;ryo)

for 0 £ | P — P)| < r where g and f are independent of v.
Proof. Define

gn(r) = inf inf 2A&Y)
VEg |P—Pyl=r zv(xo; yo)

and
folr) = sup sup 2B
V€ |P—Pylsr Zu(xm Yo)

By Lemma 1, Lemma 2, and an argument similar to that used in
Kellogg [4] (page 263) fr(r) and gp(r) exist for each 0 =1~ < R,.
Using standard arguments it is clear that

(2) lim inf inf ) . inf inf 2%, ¥)
rorg veg IP=Polsr 2%, Yo)  vE IP-Folsry 2%y, Yo)

for 0 < 7, < R, and

(3) lim sup sup EACI%/) I sup sup 2%, ¥)
r—ry veg |P=Polsr 2,(%g, Yo) vep |P-Pylsry 2,(%o, Yo)



EQUICONTINUITY OF SOLUTIONS OF A QUASI-LINEAR EQUATION 1199
for 0 < v, < R,. Also,

(4) lim inf inf 2(%Y)
70t vEZ |P—Polsr 2,(%,, Yo)

This follows by observing that whenever z,(x, ¥) >0 for 0 <|P— P)|=< R,
zv(x; ?/) > H[a, M; Ro]zv(xu; yo) fOI‘ 0 é ;P - Pol é 1/7 Ro
and all ve <#. This latter inequality implies

Zv(x, y) - H[Br M’ RO]zV(xO’ yo)
> H[ay M, 1/7 RO]{ZV(xOJ yo) - H[57 M) Ro]zv(xm yO)}

for 0<|P— P,| < (1/7)?R, and all ve<. Thus, for 0 < |P — P,| <
(1/7YR, and all ve =%

2w, 9) > [1— (L~ HI3, M, R — HI5, M, 17 BDlz(ei, 0)
By induction
w(e,0) > [1 = 11— Hlo, M, (DR [0 1)

) > [1 — (L~ H[5, M, R I (1 — H[5, M, 17 R)] %)] (@0, o)

for 0 =|P— P = @Q/7)""'R, and all ve <&&#. Hence,

1— inf inf @Y

vez |P—Pls ™Ry 2,(1,, Y,)

< exp (—H[a, M, R,) — HI[5, M, 1/7 R,] %%) ,

(4) then follows by the usual argument.

Suppose P is any point in the circle 0 < | P — P,| < (1/T)"R,/[1 + (1/7)"]
and let K be the interior of a closed circular disk of radius 1/[1+ (1/7)*]R,
about P. Since z,(z,%) >0 on 0 <|P— P)| < R, we have z,(z', %) >0
on 0=<|P— P'|<RJ[1+ @7)] for all ve &z. Also

w(af, ) — [1 = (L — HIo, M, T8 R))

T (1 — HI[5, M, 1/8 R l)] 2z, y) >0
i=1 7
on
0=|P—P =" —2L R for all ve 7 .
1+ @7y

Now Py, v,) is such a point P’(x’,y’); therefore, for all ve.c# and
0= |P— P|=A/n)"[1/A + /MR,
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B, 90) > [1— (L~ HI, M, 78 )
10

i=1

(1 — H[5, M, 1/8 R,] —})] %@, ) ,

2\
sup sup 2@ y) 1
V€ |P—Pols NP1/ 1+ /1 ™)1Ry 25(%o, Yo)

< exp (—H[B, M,7/8 R) — H[3, M, 1/8 Rj] 3 %)
1=1
and we may conclude that

(6) lim sup sup _Z,,((E—,y) =
r0t Y 1P—Polsr 2,(2,, Y,)

We will now show that

(7) lim sSup sup _le = sup sup zv(x! y)
'r—»r“)" VEZ |P—Pylsr zy(xo, yo) vE€Eg |P—Pyl=r zv(xo, yo)

for 0 = r, < R,.

Suppose the contrary, then since fp(r) is increasing lim, .+ f (1) >
Sfrp(r). Hence, there exists an ¢ >0 and a decreasing sequence {r,}
converging to 7, such that for all positive integers n f5(7,) — fz (1) > €.
By the definition of supremum there exists for the above ¢ and each
n a function z,(x, y) such that

sup sup &Y . qp A@Y) €
VE  |P—Pylsry, zy(oco, yo) |P—Pylsry zn(xﬂ) yo) 2

A

and thus,

sup @Y _qup sup Ty S €

1P—PyIs s 2,(%y, Yo) Ve |P=Pylsry 2,(Zg, Yo) 2

By the Maximum Principle

sup (%Y
1P=Polsry 2,(%y, Yo)

is assumed at some point P,(x,,y,) on |P— P,|=r, Hence, there
exists a sequence of points {P,(x,,¥.} which contains a convergent
subsequence which converges to a point Pj(x), y})e|P — P,| = r,. Sup-
pose our sequence is such without relabeling. Let

., = E/wp sup &Y
veg |P—Polsry 2,(24, Yo)

Therefore,
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20T Ya) _ 20 Y1) > Za(Bar Un) _ g (@, ¥)

zn(xm yo) zn(xoy yO) zn(xor yo) v€z IP—Pylsry zv(xO, yo)

>& gup sup ALY
VER |P—Pylsry zv(xoy yo)

Let us center our attention on the point P;(x}, v;). Then, using (6),
there exists a 9, > 0 such that

sup sup M_lgi if r<o,.

V€ |P—Pjlsr zv(x(’): y{,) T2

Also, by (4) there exists a 0, > 0 such that if » < d,

1—inf inf 2&Y &
ve 1p—pjisr (X0, Y0) 2

Thus, if |P— P;| < min[é,, §,]

G I Y for all ve &7 .

(%5, Y5) — 2
It then follows that if |P, — Py | < min [d,, §,]

-6—1 sup su z"(x’ y) zn(xm yn) —_ zn(x(')y y(’))
2 vez 1P-polsny 2,(%, Yo) 2.(%0, Yo)
< 2@y Yu) = 2(%0, Y1) | Za(0, o)
Zn(w‘;’ xg) zn(ww yo)

_ '
< zn(xny yn) - zn(xo’ yo) . Sup Sup Z.,(x, y)
zn(xOr y{)) vE€P |P~Pylsry zv(xm yo)

<Sgup sup ATY)
Y€z |P—Pglsrg zv(xoy yo)

a contradiction. By a similar argument we may conclude

(8) Lim inf inf 2®&% _ inf inf &Y
ot VER |P—Pylsr z,,(xo, yo) VE g |P—Pyl<rg zv(yo, xo)

Hence, by (2), (8), (7), and (8) our lemma is true.

Proof of Theorem 1. Recall that for ve o |f,| < M on ® and
|2, )| < M on 2. Also, for all ve .o, z(,y) + M satisfies (1) and
2(x,y)+ M >0 on 2.

Let Py(xy, ¥;) be any point of 2 and assume K is a closed circular
disk whose center is P,(x,, %,) and such that K — 2. Hence, by Lemma
3 there exists positive continuous functions f,(r) and g,(r) (independent
of v) such that lim, ,fp () =1, lim,_, g, (r) =1, and on the interior of K

Ir (M2, Yo) + M] = 2(®, y) + M < fr ()220, %) + M]
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and

— |20, Yo) + M| |gp,(r) — 1| = 2@, ¥) — 220, Y0)

[ (20, Yo) + M| lfPo("') — 1|
for all ve 7. It then follows that since {z,(x,y):ve o7} is uniformly

bounded on 2 that {z,(z, y) : ve &} is equicontinuous on 2 thus proving
Theorem 1.

A 1A
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