
EQUICONTINUITY OF SOLUTIONS OF A
QUASI-LINEAR EQUATION

S. E. BOHN

On a bounded domain Ω of the cπ/-plane the equicontinuity of a
family of solutions of a linear elliptic partial differential equation is
usually demonstrated by showing that the first partial derivatives of
solutions are uniformly bounded on compact interior subsets of Ω. Finn
,[2] uses this same method in showing the equicontinuity for a class of
quasi-linear elliptic equations referred to by him as "equations of mini-
mal surface type." However, Finn cites an example which demonstrates
that in general bounded collections of solutions of elliptic equations do
not have uniformly bounded first partial derivatives on compact interior
.subsets.

Here we shall consider the question of the equicontinuity of a
family of solutions of the quasi-linear equation

( 1) L[z] = A(x, y, p, Q)r + 2B(x, y, p, q)s + C(x, y, p, q)t = 0

where, as usual, p = zx, q = zy, r = zxx, s = zxy, and t — zyy and where
A, B and C satisfy a growth condition.

Suppose D to be a domain in the ίπ/-plane for which
(i) A > 0, AC — B2 = 1, and A, B, and C are continuous and

have continuous first partial derivatives with respect to p and q on T
defined by T = {(x, y, p, q): (x, y)eD and — oo < p, q < + oo}, and

(i i) (A + CfS (1/125) l o g l o g (p2 + q2 + e) + h ( x , y) f o r a l l (x, y , p , q ) e T
where h(x, y) is positive and continuous on D.

Henceforth, we shall assume that conditions (i) and (ii) are satisfied
whenever reference is made to the equation (1).

THEOREM 1. Let Ω be a bounded sub-domain of D with boundary
ω such that Ω — Ω + ω c D. If {fv(x, y):ve J^} is any collection of
functions which are continuous and uniformly bounded on co and if
corresponding to each /v there exists a function z(x, y; fv) which is of
class C2 on Ω, is continuous on Ω, is a solution of (1) on Ω, and is
such that z{x, y; /v) = fv(x, y) on ω,then the collection {z(x, y; / v ) : v e S/\
is equicontinuous on Ω.

In proving Theorem 1 we shall employ a modification of the method
used by Serrin [5] and in so doing depend heavily on the following

Received December 20, 1961. This result is contained in the author's doctoral dis-
sertation presented to the University of Nebraska. Sincerest appreciation is expressed to
Professor Lloyd K. Jackson for his direction.

1193



1194 S. E. BOHN

principle:

Maximum Principle [3]. Let D be any plane domain and consider
the function F(x, y, z, p, q, r, s, t) with the following assumptions:

( i ) F is continuous in all 8 variables in the region T defined by
T = {(x, y, z, p, q, r, s, t): (x, y)eD and - c o < z, p, q, r, s, t < + co} and

(ii) Fa, Fp, Fq, Fr, Fs, and Ft are continuous on Γ, F? - 4FrFt < 0,
Fr > 0, and Fz ^ 0 on T.
Let Zχ(x, y) and z2(xf y) be continuous in a bounded and closed subdomain
^ c D and of class C2 in the interior of Jΐf. Furthermore, suppose
3i(#, y) S z2(xf y) on the boundary of <%f and suppose that in the interior
of

.r \Xj y, zlf zlx, zly, zlxx9 Zιxy, zlyy) ^ 0

and
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Then, either zλ(x, y) < z2{x, y) in the interior of <%f or

zλ(x, y) = z2(x, y) on

Suppose M > 1 to be a uniform bound of | / v | , veszf on ω. Since
constants are solutions of (1) it follows from the Maximum Principle
that \zv(x,y)\ = \z(x,y;fv)\ < M for (x,y)eΩ and all v e j / . Also,
suppose {z^(x, y): v e ^} = {zv(x, y): v e s%? and zv{x, y) > 0 on Ω).

LEMMA 1. Let P0(x0, y0) be any point of Ω and suppose {Kn}lz~ is
a sequence of closed circular disks each having P0(x0, y0) as its center
and Rn — {ljl)nRQ as its radius where RQ ^1 and Ko c Ω. Then when-
ever zy{x, y) is a positive solution of (1) there exists a constant H,
0 < H < 1, depending only on Ro, 8 = max h(x, y) where (x, y) e Ω, and
M such that for all v e &

zv(x, y) > H[δ, M, RoMxo, y0) on 0 ^ | P - Po |

and

zv(x, y) > H[δ, M, (1I7)»R0]Z,(X0, y0) ^ H[δ, M, (l/7)i?0](l/^K(^0, yQ)

on 0 S I P - Pol ^ (l/7)w+1i?o, n = 1, 2, 3, - -,1

Proof. Let £7 denote the component of the set

{(x, y)eKQ: z,(x, y) > (1/2) zv{xQ, y0)}

1 See Bers and Nirenberg [1] for a proof of a Harnack inequality for solutions of the
uniformly elliptic equation (1).
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which contains PQ(x0, y0). We can apply the Maximum Principle to
conclude that E must contain an arc of the circumference of Ko. Hence,
there is a Jordan arc Γ contained in E with one end at (a?0, y0) and the
other end at a point (xu yx) on the circumference of Ko which is such
that with the exception of (xu yλ) Γ is contained in the interior of E.
Let K2 and K* be the two closed disks each of which has radius Ί / 5 / 2 RO

and each of which has the points (xOy yQ) and (xl9 yj on its circumfer-
ence. Each point (x, y) e K2 Γ) K* satisfies at least one of the following
conditions:

(a) (a?, y)eΓU bdry(K2 n K3),
(b) (x, y) is in a subdomain of K2 the boundary of which consists

of arcs of Γ and arcs of the circumference of K2,
(c) (a?, y) is in a subdomain of K* the boundary of which consists

of arcs of Γ and arcs of the circumference of K3.
Let KA be the closed disk with center at

*, Vύ Ξ Vl

and radius (3/4) Ro and let (x2, y2) and (x3, y3) be the respective centers
of K2 and if3. It is clear that

{(x, y):(x- x2f + {y- y*Y ύ εa(τ/5/2 R0)
2} c comp if0,

{(a?, j / ) : ( a ? - ^ 3 ) 2 + (1/ - ^/3)
2 ^ 6»(i/5/2 ̂ 0)

2} c comp Ko ,

and

{(a?, y): (a? - ^ 4 ) 2 + (» - τ/4)
2 ̂  ε2(3/4 i?0)

2} c interior (K2 f] K*)

where ε = 1/10.
Consider the function

defined on the region

S(ξ, η; r) = {(a?, y): eV £ σ2 - (x - | ) 2 + (y - )?)2 g r2} Π Ko

where a > 0 and JV= l/2^v(α?0, ̂ /0). In this region

x " (1 - e-Λr2)2 " σ2 "" εV

Furthermore, t; < JV on S(f, 57; r), v = 0 where σ = r, and v > 0 where
σ < r. If A, S, and C are evaluated at (a?, y, jvx, jvy), the following
succession of inequalities are valid in S(ξ, τj; r) where 7, 0 < 7 < 1, is
any fixed real number.
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L[yv](l - e-ar<t) = 2ayNe-aσl{2a[A(x - ξf + 2B{x - ξ)(y - η)

+ C(y - Vf] -(A + C)}

4a(AC - B*)σ* - (A + C)\
(A + C) + V{A + CY - A(AC - B%) V 'ί

(A + C)
2a-fNe-°ύσ2

l o g l o g M v l + v l ) + e ] ~ h { x >

where δ = max h(x, y) for (x, y) e Ω. Now Z/[ry]!^ 0 on S(ξ, y]\ r) if one
chooses

a >̂ \ log log h e + 1255 \ .

250εV2 I L ε2r2 J i

Let

v2(x, y) = v(x, y; x2, y2; τ/5/2 RQ)

and

Let

and assume that (x9 y) is in the interior of K2 Π K3 and either {x, y)e Γ
or (xf y) satisfies condition (b), then we can apply the Maximum Princi-
ple to conclude that zy(x, y) > v2(x, y). Similarly, if (x, y) is in the
interior of K2 Π K3 and either (x, y)e Γ or (x, y) satisfies (c), we can
conclude that zv(x, y) > vz(x, y). Thus, for all (x,y)e interior (K2 Π K3)
it follows that

z»(x, y) > min [v2(x, y), vB(x, y)] .

Now on the circle (x - x4)
2 + (y - y,)2 = ε2(3/4 RQ)2

( 5 \ / 5
exp ( — — X2aR2 ) — exp ( aR2

V 4 / V 4
70 = min [v2(x, y), vz(x, y)] = N

1 — exp ( — —
\ 4

-λ2)exp(-A;
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where λ = [(VΊ7 + 3s)VTΓ]/10 < 1. Another application of the Maxi-
mum Principle yields zv(x, y) > (τ0/JV)tf4(ίB, y) on S(x4, y4, 3/4 Ro) where

v4(x, y) = v(x, y; x49 y4; 3/4 Ro) .

Now the annulus S(x4, y4; 3/4 Ro) contains the disk with center at (x0, y0)
and radius 1/7 Ro. On this disk

vA(x, y) ^ 7i ΞΞ iV

exp ( - -^ p2aRή - exp ( - A-

± e x p i ——-
1b

16

where p = 11/21.
Therefore, on the disk with center (xo,yQ) and radius 1/7 i?0.

- p>)exp[- (-|λ2 + A

> -1 (1 - λ2)(l - p>) exp ( - i | aRήzχx0, y0)

> i - (1 - λ2)(l - ^ ) exp (-1255)

• exp {-log log [(4M/3εi?0)
2 + β]}«v(a?0, l/o)

> H[δ, My R0]z,(x0, y0)

on 0 ^ I P - PoI ^ (1/7) -β0 for all v

where

«, M, Ro] = Y (1 - ^2)(1 - ^2) exp (-125δ) {log

Now by an inductive argument one concludes that

H[δ, M, (l/7) Λ0] = - ί (1 - λ2)(l - />2) exp (-1253)

and

z»(x, y)>- H[δ, M, 1/7 iZoKfe y0) on 0 ^ I P - Po I ^
n

= 1, 2, 3, for all y e ^ , thus proving the lemma.

LEMMA 2. £7sm# ί/tβ assumptions of Lemma 1
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for 0 ^ I P - Po I ̂  1/8 Ro for all v e &.

Proof. Follows directly from Lemma 1.

It is of interest to note that if z(x, y) is a positive solution of
A(x, y, p, q)r + 2B(x, y, p, q)s + C{x, y, p, q)t = 0 in a domain T, then
for any compact U a T and compact S properly contained in U there
is an H > 0 depending only on the bound of z(x, y) on U and the
distance from S to the boundary of U such that

~ : Φ 2 , 2/2) ̂  «(»i, l/i) ^ # Φ 2 , 2/2)

for any two points (xl9 yλ) and (x2, y2) in S.

LEMMA 3. / / zv(x, y) ve^ is a solution of (1) on the interior of
a closed circular disk Ko of radius Ro ^ 1 with center P0(x0, y0), then
there exists a continuous decreasing function gPo(r), 0 ^ r < Ro, gPo(O) =
1, αm£ α continuous increasing function / P o (r), 0 ^ r < i?0, /po(O) = 1

that

gPQ(r)z,(xQ, y0) ^ js;v(αj, y) ^ fPo(r)z,(xOf

ryo)

for 0 ^ I P — Po I ̂  r where g and f are independent of v.

Proof. Define

ffPo(r) EE inf inf J i ί ^ L

and

/ ( ) sup z»jP>V) .
^ )

By Lemma 1, Lemma 2, and an argument similar to that used in
Kellogg [4] (page 263) /P o(r) and gPo(r) exist for each 0 ^ r < Ro.
Using standard arguments it is clear that

( 2 ) lim inf inf * v ( x ' v ) = inf inf z^X v)

- 6 l P P | ^ ^ ( α ; 7/) € | P P ! ^

for 0 < r0 < Ro and

( 3 ) lim sup sup z^Xf y) = sup sup
€ \P-P0\Sτ ZV(X0, y0) V€^ |P-Pol^



EQUICONTINUITY OF SOLUTIONS OF A QUASI-LINEAR EQUATION 1199

for 0 < r 0 < Ro. Also,

( 4 ) lira inf inf Z v ( x > v > ) = 1 .
+ e ^ | P ι s 2 v ( χ 0 , y0)

This follows by observing that whenever z.,(x, y) > 0 for 0 g | P — Po\ £Ξ Ro

zv(x, y) > H[δ, M, R0]zv(x0, y0) for 0 S I P - P o I ^ 1/7 # 0

and all ve^P*. This latter inequality implies

zv(a;, y) — H[δ, M, R0]z^(x0, y0)

> H[δ, M, 1/7 R,]{zy(xa, y0) - H[δ, M, R0Mxa, y0)}

for 0 ^ I P - Po I ^ (l/7)2i?0 and all y e j * . Thus, for 0 ^ | P - Po | <
<l/7)2i?0 and all v e ^

Zvfo 2/) > [1 - (1 - fl-[5, AT, Λ0])(l - H[δ, M, 1/7 i2 0])]^

By induction

«v(«, 1/) > Γl - Π (1 - H[δ, M, (ll7){RΛ])\φt, y0)
<5) L t=° J

> [ l - (1 - H[δ, M, Ro]) Π ( l - H[δ, M, 1/7 22O] j

for 0 ^ I P - Po I ̂  (Il7)n+1RO and all v e < f . Hence,

1 - inf inf ' y)

v[Xm y0)

< exp (-H[δ, M, Ro] - H[δ, M, 1/7 Ro] Σ 4 ) .

<4) then follows by the usual argument.
Suppose P is any point in the circle 0 S I P - Po I ̂  (l/7)nβ0/[l +

and let K be the interior of a closed circular disk of radius 1/[1 + (l/7)w]i?0

about P. Since sv(α, j/) > 0 on 0 ^ | P - Po | ^ Ro we have ^(ajf, 2/') > 0
on 0 ^ I P - P'\ ^ Λ0/[l + (l/7)%] for all v e &. Also

2V(OJ', yf) - [ l - (1 - H[δ, M, 7/8 jβ,])1

• Π (1 - iί[S, Jlf, 1/8 Bo] 4 ) 1 3vO», 1/) > 0

on

0 < I P - P Ί < ( l / 7 ) w + 1 Ro for all
~ 1 + (l/7)w

N o w P o (^ o , y0) is s u c h a p o i n t P'(x', y')\ t h e r e f o r e , for al l ve^ a n d
0 ^ I P - Po I ^ ( l / 7 r + 1 [ l / ( l +
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(Xo, Vo) > [ l - (1 - H[δ, M, 7/8 Ro])

• Π ( l - H[δ, M, 1/8 RAj)\ *Φ>, v),

sup sup z^x>v) - 1
+ R 0 Zy,(xOf y 0 )

< exp ( - # [ § , M, 7/8 Ro] - H[δ, M, 1/8 i?0] g 4

and we may conclude that

(6) lim sup sup z^Xf y) = 1 .
r-»0+ v e ^ \ Z(X y)

We will now show that

(7) lim sup sup *v(a?' y )

x = sup sup

for 0 ^ r0 < Ro.
Suppose the contrary, then since fPo(r) is increasing limr_r+/P()(r)>

fPo(r). Hence, there exists an ε > 0 and a decreasing sequence {rj
converging to r0 such that for all positive integers n fPo(rn) — fPQ(r0) > ε.
By the definition of supremum there exists for the above ε and each
n a function zn(x, y) such that

/y (/y» 01 \ Φ ίSY* ilΛ ,C

sup sup v v '"' — sup rn zn(x0, y0) 2

and thus,

sup z*}x' y\ — sup sup z^Xf y' > —

By the Maximum Principle

s»0», 1/)
sup

is assumed at some point Pn(xn9 yn) on \P — PQ\ — rn. Hence, there
exists a sequence of points {Pn(xn, yn)} which contains a convergent
subsequence which converges to a point P&x[9 y'0)e\P — Po\ = rQ. Sup-
pose our sequence is such without relabeling. Let

sup
(x0, y0)

Therefore,
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g»(S», Vn) _ Z n « Vo) ^ Zn(Xnf Vn) _ s u p s u p gy(g, V)

Zn(Xθf l/o) «n(«0, 2/θ) «»(»<>, 2/0)
 V 6 ^ l*-*ol£*O ZV(#0, VO)

> f L s u p s u p g(^y)
2 v e ^ | p p !

Let us center our attention on the point P0'(a?ί, 2/ί) Then, using (6),
there exists a δλ > 0 such that

sup sup * f r y> - 1 ̂  *L if r < δx.
€ J ^v(a?;, y'o) 2

Also, by (4) there exists a δ2 > 0 such that if r < <52

1-inf inf *»foy> ^ ^ ,

Thus, if I P - Pi\ ^ min [ί lf δJ

- 1
4 y'o)

It then follows that if \Pn- Po' | g min [δu δ2]

for all y e

i i S Up sup
2 € ^ | P P l ^SUp sup <
2 v€^. |P-P0l^r0 ^v(^0 , y 0 ) ί2;n(ajo> yQ)

zn(x'Q, x'o) zn(xOf y0)

zn(xn, y n ) - zn(x'o, y'p) zv(x, y)
—— — b u y bUp —

Zn(Xθf Vo)

iL S Up SUP
2 ve& \

a contradiction. By a similar argument we may conclude

(8) Limίnf inf **<*'»> = inf inf z ^ y

r-*r+ V€^ IP-Pol^r ^ Q , yQ) v 6 ^ |P-P 0 |^r 0 «v(j/0 , ^

Hence, by (2), (3), (7), and (8) our lemma is true.

Proof of Theorem 1. Recall that for vessf | / v | < M on ω and
I zv(x, y) I < M on β. _ Also, for all y e j / , zv(α, ̂ /) + M satisfies (1) and
tax, V) + M > 0 on Ω.

Let P0(x0, y0) be any point of Ω and assume K is a closed circular
disk whose center is P0(x0, Vo) and such that KcΩ. Hence, by Lemma
3 there exists positive continuous functions /Po(r) and gPo(r) (independent
of v) such that limr_0/p0(r) = 1, \imr_>0 gPo(r) = 1, and on the interior of K

9P$X)[zv(x0, y0) + M] g z*(x, y) + M^ fPir)[zv{xQ, y0) + M]
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and

- 1 SVOBO, yo) + M\ |flfpo(r) - 11 ^ zv(x, y) - zv(x0, y0)

£\*v(Xo,Vo) + M\\fPQ(r) - 1\

for all v e sf. It then follows that since {zv(x, y): v e sf) is uniformly
bounded on Ω that {zv{x, y) : v e Ssf) is equicontinuous on Ω thus proving
Theorem 1.
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