ANALYTIC FUNCTIONS WITH VALUES
IN A FRECHET SPACE

ERRETT BISHOP

We wish to extend certain results in the theory of analytic functions
of several complex variables to the case of analytic functions with values
in a Frechet space F. To do this, we prove (Theorem 1 below) that
such a function @ has an expansion of the form

(%) ¢=21Pno¢,

where {P,} is a sequence of continuous mutually annihilating projections
on F' whose ranges are all one-dimensional subspaces of F. This repre-
sentation reduces the study of @, for many purposes, to the study of
the functions P,o®, which are essentially scalar-valued analytic functions.
We actually prove the stronger (and more useful) result that if {®,} is
a sequence of analytic functions with values in F' then a single sequence
{P,} can be found to give an expansion (*) for every ¢,. Expansions
of vector-valued functions of a different type have been considered by
Grothendick [6].

Theorem 1 is applied to generalize Theorem B of H. Cartan [3].
We consider a coherent analytic sheaf S on a Stein manifold M and
introduce the notion of the wvectorization S, of S (relative to a given
Frechet space F').

If 0 denotes the sheaf of locally-defined analytic functions and 0,
denotes the sheaf of locally-defined analytic functions with values in
F, then S, is defined to be the tensor product S & 0, of the 0-modules
S and 0,. For the important case of a coherent analytic subsheaf S
of the sheaf 0* of locally-defined k-tuples of analytic functions, S; turns
out to be canonically isomorphic to the sheaf S, determined by assigning
to each open set U the module of all k-tuples (fi, -+, fx) of analytic
functions from U to F which have the property that for each u in F'*
the k-tuple (wof, - -+, wof,) is a cross-section of S over U. For instance,
if S is the sheaf of all locally-defined analytic functions which vanish
on a given analytic set A then it is evident that S, is the sheaf of
all locally-defined analytic functions with values in F' which vanish on A,

One of the main results, an extension of Theorem B of [3], will be
that the cohomology groups H¥(M, S;) vanish in all dimensions N =1,
where S, is the vectorization of a coherent analytic sheaf S on a Stein
manifold M. Using this theorem and the isomorphism of S, to the
sheaf S, defined above one could show, for instance, that the usual
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sheaf—theoretic solutions to Cousin’s problems carry over to the case of
analytic functions with values in a Frechet space. Special cases were
treated by totally different methods in [2], but the techniques of that
paper seem to be inadequate to obtain general results.

The proofs are all Banach-space theoretic. That is, only Banach
space theory is necessary to obtain the above extension of Theorem B
and to prove the necessary facts about vectorizations. We begin with
a theorem which is given without proof on p. 278 of Banach [1], who
attributes it to H. Auerbach. A proof can be found in Taylor [7]. Since
complex Banach spaces are considered here, we give the proof.

THEOREM (Auerbach). An n-dimensional Banach space B has a
basis of unit vectors whose dual basis also consists of unit vectors.

Proof. Choose a basis (b, +++,b") of B and for any 2 in B let
(2, +++, x,) be the coordinates of x relative to the chosen basis. Let
T be the set of all n-tuples (x, +--, ") of unit vectors in B. For each
(«, «--,2") in T let a(x, -+, ") be the absolute value of the determi-
nant det (¢i). Thus «a is a continuous function on the compact space
T. Now a(z, ---,2") = 0 if and only if (x', ---,2") is a basis. Thus
a attains its maximum for T at some point (¥, ---, ") in T which is
a basis of unit vectors. Let (', ---, ") be the dual basis in B*. Now
[lu*|| =1 because <{y’,u’) =1. Assume [|u’||>1 for some 7. Thus
there exists ¢ in B with ||¢{||=1and {¢,u*) =¢>1. Thus {t —cy’,u’) =
0, so that t — cy® is a linear combination of the vectors of the basis
(¥, -+, y") other than y*. If welet (2!, ---,2") be the basis (¥, ---, ¥")
with %' replaced by ¢ it follows that «a(z', ---, 2") = ca(y*, -+, ¥*). Since
the basis (¢!, - -+, 2") consists of unit vectors this contradicts the choice
of (%, --+,¥"). Thus ||u’]| =1 for all ¢, and the theorem is proved.

COROLLARY. If B, is a finite-dimensional subspace of dimension
n of a Banach space B there exist n mutually annihilating projections
(tdempotent continuous linear operators) on B, each of morm 1, whose
ranges are one-dimensional subspaces of B, and whose sum is a projec-
tion of B onto B, of morm at most n.

Proof. Let (¥, -+, y") be a basis of unit vectors of B, such that
the dual basis (u', ---, u") of B,* also consists of unit vectors. Let o°
be an extension of u' to a linear functional on B of norm 1. The
operators P, ---, P, on B defined by

P = x, vyt

are the desired projections.
We recall that a Frechet space is a locally convex topological linear
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space F' which admits a countable family {|| [} of continuous semi-
norms such that a basis for the neighborhoods of 0 in F is given by
the sets

feeF x|, <1}.

If || || is any continuous semi-norm on F' it follows that for some k&
el < |lo]|l, for all « in F. If necessary it may be assumed that
{II' 1l:} is a monotonely nondecreasing sequence of semi-norms, in which
case we shall call it a defining sequence of semi-norms for F.

LEMMA 1. Let F be a Frechet space with a defining sequence
{I llx} of semi-norms. Let {a,} be a sequence of wvectors in F, {6,} &
sequence of monnegative real numbers, and {k;} a strictly increasing
sequence of positive integers. Then there exists a sequence {P,} of
mutually annihilating continuous projections on F, whose ranges are
subspaces of F of dimensions at most 1, and a sequence {e.}, with
0< ¢ <3, for all k, with the following properties. For each positive
integer j the operator

kj
Qﬂzzzllpn

28 a projection on the subspace B; of F spanned by the vectors a,, «--, a, 5
For each positive integer m the sum

fall = Sellall

18 finite for a=a,. For each positive integer j and all n=k; we
have || Py = (1 + k) -+ (1 + k%), where

| P llo=sup{[| Pbllo:b e F, [[bl]l,=1}.

Proof. We may assume the 0, to be so small that >, 0., ||, < o
for all ». By induction we construct a sequence {P,} of mutually anni-
hilating continuous projections, a sequence {¢,} of positive real numbers,
and an increasing sequence {N,} of positive integers such that

(a) 0 < &k < Bk’

(b) For each j the operator Q; is a projection onto B,

© PP <@Q@+k)---Q+Fk)forl<n=k and all 1 < 7.

We explain what is meant by (c¢). First of all, || ||’ is the continuous
semi-norm on F' defined by

1617 = Sellb L.
Secondly, || P, ||’ is defined by
Pl =sup{l| PoIP:[[b] =1}.
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Assuming that P, ---, P,,j and N,:--, N;, and ¢, ---, €y, have been
found with the relevant properties, we show how to continue to the
next stage j + 1. First choose N;,, > N; so large that || || s is @
norm (and not merely a semi-norm) on B;,,. Choose then ¢;, N; < ¢ =
Ny, so small that 0<e; < 0; and ||P. PP <@ +k)--- 1+ k) for
n=k; and all ¢ <j. To see that this can be done, notice that be-
cause || |lx, is a norm on B, there exists » > 0 so that »||a [’ > [l a |
for all @ in B; and all m < N;,,. Thus

1P, < sup (| oI ¥ =1 = @+ 5 e IRV

Now use (c).

Now let @) be the restriction of @; to B;;, and let I;;, be the
identity operator on B;;. Thus I;,, — Q} is a projection of B;.; onto
a subspace S;,;. Clearly B; and S;,,; are complementary subspaces of
B;.,, so that dim S;;, < k;, — k;. By the above corollary there exists
a projection E;,, with || E;.,|/** < k;i, of F onto B,,;. Also by the
above corollary there exist mutually annihilating projections R,, k; < n <
k;i1, of S;,, onto subspaces of dimensions at most 1 such that || R, [ =1
for all » and such that YR, is the identity projection of S;,, onto itself.
For k; < n < k;+;, we define

Pn = Rn(Ij—H - Q;’)Ej+1 .

Thus the P, are mutually annihilating projections for 1=n < k;,,.
Also Q,., is a projection onto B;,,. Finally for k; < n < k;,, we have

P = 1R 17 1 Ty — @) 1% | B [
= (L 1P s

<D+ EQ+E) - QA+ kN
=S@+E)---Q+EL).

The same is true for n < k;, by the above construction. Thus the con-
struction has been continued another step. By induction it follows
that sequences {P,}, {N;}, and {¢,} can be chosen satisfying properties
(a), (b), and (¢). It is immediate that the sequences {P,} and {¢,} satisfy
the requirements of the lemma.

LEMMA 2. Let {a,} be a sequence of elements of a Frechet space
F, {| |} a defining sequence of semi-norms on F, and {0,} a sequence
of positive real numbers. Then there exist a sequence {e,} of positive
real numbers and a sequence {P,} of mutually annihilating projections
on F whose ranges are subspaces of F of dimensions at most 1 having
the following properties.
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(i) 0<e, <0, for all k,

(ii) For a = a, the norm ||all, = S e l|a|l: 98 fintte for all n,

(iii) R,o, = a, for all positive integers m and n with m = 2n,
where R, = >, P;,

(vi) For all t>1 and ¢ >0 the sum S, || Pl t™ converges,
where || P, ||, is defined as above.

Proof. Define the sequence {k;} by k; = 2. Choose the sequences
{P,} and {¢,} as in lemma 1. Clearly (i) and (ii) are satisfied. Now for
each positive integer n there is a positive integer j with 277 < n < 27,
It follows that a,e€ B;. Thus R;a, = Q;a, = a,, so that R,a, = a, for
all m = 2’ and therefore for all m = 2n. This proves (iii).

Now for each n choose 5 with 27 < n < 2/, Thus

1Pl = (1 4 E)Y = (1 + 27
= (5n?y = (5n?)”

where & =1 + log,n. From this it follows from elementary calculus
that (iv) holds, thereby proving the lemma.

LEMMA 3. Let

Z ai(/nl, “es, ’l’bw)ZT'l AR
n1Z0,++r, 0y 20
where a =«a;, and 1 =<1 < o, be a sequence of formal power series
with coefficients in a Frechet space F. Let {0,} be a sequence of positive
real mumbers. Then there exists a sequence {¢,} with 0 < ¢, <9, for
all k and a sequence {P,} of mutually annihilating continuous pro-
Jections of F onto subspaces of dimenstons at most 1 such that

(@) R,o/(n, ---,n,) = an, -, n,) whenever m = 2"n®, where
a=aa, n="n~+ -+ n, and R, = >, P,

() P,an, ---,n,) = 0 whenever m > 22,

) S| Pullet™ < o for all ¢ >1 and ¢ >0, where || ||, s
defined as above.

Proof. For each’t order the coefficients a,(n,, - - -, n,) into a sequence
{al}r., according to the size of n. We now define a sequence {a,} of
elements of F' which is an ordering of the totality of the a;(n,, - - -, n,).
For & given let 2¢ be the largest power of 2 dividing k¥ and let j =
1/2(k27* + 1). Let a, = ai. Now choose the sequences {¢,} and {P,} as
in Lemma 2. Clearly (c) holds. Since (b) is a consequence of (a) we
need only check (a). To this end consider a fixed a;(n,, «--, #,). Now
there exists j < n® with a,(n, ---,%,) = @i. In turn o = a, for some
k < 2+'n®, By (iii) of Lemma 2 it follows that R,a, = a, for m = 2k
and therefore for m = 2**n®, as was to be proved.
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We are now prepared to prove a series representation for analytic
functions with values in a Frechet space which will be the principal
tool in subsequent proofs.

THEOREM 1. Let F be a Frechet space and let {M} be a sequence
of complex analytic manifolds. For each i let @; be an analytic function
on M; with values in F. Then there exists a sequence of wvectors {b,}
in F and a sequence {P,} of continuous mutually annihilating pro-
jections of F onto one-dimensional subspaces having the following pro-
perties. For each © the series X5, P, o, converges to @; on M;,. For
each n we have P,b,=0b,, so that P,op, = @'b,, for some analytic
Sfunction @* on M;. For each i the series Sy, @F converges absolutely
and uniformly on all compact subsets of M;. For each continuous
semi-norm || || on F the sequence {||b, ]|} is bounded.

Proof. For each ¢ let dim M; = a = «;, so that M, is coverable by
a countable family of analytic homeomorphs I" of the unit polyeylinder

Ur={=(2, ", 2):|2;|<1,1 =27 = a}.

Thus in the proof of the theorem we may replace the sequence {M}
by the totality of all such I". There is therefore no loss of generality
in assuming that each M, is a polyeylinder U® of dimension a = «,.
Let {|| ||} be a defining sequence of semi-norms on F. Now for each
1 the analytic function @, has a power series expansion

Pi= 20 (M, e, MR R
720,050, 14,20

on the polycylinder M; = U®. This expansion converges absolutely and’
uniformly on each compact subset of M, in each semi-norm || |[|,. By
the diagonal process there therefore exist constants 6, > 0 such that
the power series for each @, converges absolutely and uniformly on each
compact subset of M; in the norm >,0,.]| ||, so that in particular
this norm is finite for each coefficient a;(n, ---, n,). Now choose the
sequences {¢;} and {P,} as in Lemma 3 relative to the power series
expansions of the @, and to the J, just obtained. Thus the power
series for @; converges absolutely and uniformly on compact subsets
of M; in the norm || ||, defined above. If some of the projections P,
are zero, these may be omitted from the sequence. Thus for each »
there is a vector b, in F' with ||b,||, = 1 spanning the range of P,.
To show that the sequences {P,} and {b,} have the desired properties,
consider a fixed compact subset 7 of a fixed M,. For each n write

Y = > max{l|a;m, -, m)et e 2ol rze T) .

nytecetng=n
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By the usual convergence criteria we see that there exist r > 1 and
¢ > 0 such that ™y, < ¢ for all n.

If 7 is any positive integer let k£ be the largest integer such that
2t < 4, Thus for each z in T we have

1 Pspi(2) lo

le Z ai(nly tt ’}’LM)ZILI SRR il
%+ o

e tng=l

= 1Pl 27w = el Pillo 2577

w2k

=c(l — r )| Psllor .

Thus
4 = max {i‘, | Pipi(2) |lo: 2 € T}
J=1
< ol — ) S| Pyl

Now by the definition of k& we see that k is the integral part of (j2-"-%),
so that k = 7Y% for all j sufficiently large. Thus 4 is finite if the sum
S || P;|l, converges, where ¢ = (2a)™*. By the choice of the
sequence {P;} this series converges so that 4 is finite. Now since ||b,]|,=1,

max {| p7(2) | : 2 T} = max {|| P,p:(?) |p:2€ T} .

Therefore the series >\, () converges absolutely and uniformly on
T. If || || is a continucus semi-norm on F' then || || =< K| ||, for
some K > 0, so that {||b,]|} is bounded by K. Finally, we must show
that >, P,o®; actually converges to ¢; (and not to something else).
To see this, note by (a) and (b) of Lemma 3 that K, o®; and ¢; have
power series expansions in the coordinates z,, - -+, 2, which agree up to
terms of total order n, whenever m = 2n®. This completes the proof
of Theorem 1,

Before giving the definition of the vectorization of an analytic
sheaf, we indicate the terminology to be used, following Godement [5].
A presheaf S on a topological space X assigns to each open UcC X a
set S(U) and to each open set Vc Uc X a map 7., :S(U)— S(V)
satisfying 7,07y = 75y for W< Vc U. In particular the same
terminology will be used if S is a sheaf, that is, a presheaf satisfying
axioms (F1) and (F2) on page 109 of [5]. To any presheaf S is canoni-
cally associated a sheaf S’, and each element f in S(U) gives rise to
a unique element in S’(U) which will also be denoted by f. If X is
a complex analytic manifold a sheaf S on X is called analytic if it is
a module over the sheaf 0 of locally defined analytic funections, that is,
if for each U the set S(U) is an 0(U)-module, and if the usual com-
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mutation relations between module multiplication’and the restriction
maps S(U)— S(V) and 0(U)— 0(V) hold.

DEFINITION 1. Let S be an analytic sheaf on a complex analytic
manifold M and let F be a Frechet space. Let 0 be the sheaf of
locally-defined analytic functions on M and let 0, be the sheaf of locally-
defined analytic functions on M with values in ¥, where by definition
a continuous function f from an open set U M to F'is called analytic
if uof is analytic for all v in F'*. Clearly 0, is an 0-module, i.e., an
analytic sheaf. The vectorization S; of S (relative to F') is defined to
be the sheaf S 0, the tensor product of the 0-modules S and 0,.
This is defined in [5] as the sheaf determined by the presheaf data

U—8(U)®0:(U),

where S(U) and 0,(U) are considered as 0(U)-modules, together with
the obvious restriction maps.

Note that if T is a continuous linear operator from a Frechet space
Finto a Frechet space G then the natural homomorphism 7, of 0, into
0, induced by T gives rise to a homomorphism 7" =1 T, of S, into
Ss;. In particular, if # is an element of F'* (and o a continuous linear
operator from F' into C) then % induces a homomorphism of S, into
Sy;. But S, is canonically isomorphic to S, in virtue of the canonical
isomorphism between the 0(U)-modules S(U) X O(U) and S(U). (See
[5] p. 8.) If we identify S, with S it follows that each w in F'* induces
a homomorphism #’ of S, onto S.

DEFINITION 2. If S is an analytic subsheaf of the Cartesian product.
0" we define

Sy(U) ={fe,(U)":uofecS(U) for all u in F*} .,

Clearly S, so defined is an analytic subsheaf of the Cartesian product
(07)".

THEOREM 2. If S is a coherent analytic subsheaf of 0" then to each
p in Uc M and each f in S,(U) there exists a neighborhood V of p,
functions H,, «--, H, in S(V) and functions G, -+, G, n 0,(V) such
that

k
,rVUf = %}GmHm .

Proof. Since S is coherent, there exists a neighborhood V,C U of
p and functions H,, ---, H, in S(V,) which generate S at each point of
V,. We may assume that V, is a compact subset of U. Let V\D V., D V,D- .-
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be a basis for the neighborhoods of p. Let 2 be the subset of S(V,)
consisting of all elements in S(V,) which as elements of (0(V,)" are
bounded on V,. Thus to each % in 2 there exists G = (G, -+, G;) in
(0(V)))* for some ¢ such that the restriction of ~ to V; has the form

=3 G.H, .

By choosing 7 large enough we may assume that
IG|l; =sup{|G(q)|:qe V;,1 =7 <k}

is finite. Thus if for each pair (i, N) of positive integers we let 2,y
be the family of all 2 in 2 such that G can be chosen in (0(V;))* with
[|G|l: < N, we see that 2 = |J 2,y and that each 2,, is a closed subset
of 2, where 2 has the norm defined by

[kl =sup{lh(@)|:1=9=mn,qeVy}

for each h = (hy, -+, h,) €2 C (0(V,))". By the Baire category theorem
there exists (¢, N) such that 2, has a nonvoid interior. From this it
follows as usual that there exists a constant K > 0 such that for each
h in Q there exists G in (0(V;))* as above with ||G|; < K||h|l,, Now
consider f as in the statement of the theorem, so that fe S;(U)c(0,(U))".
By Theorem 1 there exists a sequence of vectors {b;} in F which is
bounded in each continuous semi-norm on F' and a sequence {P;} of
continuous projections on F' having one-dimensional ranges such that
S Pijof converges uniformly to f on all compact subsets of U and
such that for each j we have P;of = f;b; with f;e(0(U))", where
S| fi| converges uniformly on all compact subsets of U. Thus
Sl fille is finite, since V,c U.
Now for each j there exists # in F'* with <b;, u> = 1. Thus

fi=uo(f3b) = uo(Piof) = (uoPyof

is in S(U) because f€ S;(U) and uoP;e F*. Thus f;€S(U) for all j.
By the above for each j there exists G/ = (Gi, ---, Gi) in (0(V;))* such
that on V; we have

k .
fi= X GLH,,

with ||G?||; £ K||fill. It follows that the series 3 7, G, converges
uniformly and absolutely on V; in each continuous semi-norm on F.
Thus the sum of this series is an element G = (G, ---, G,) in (0,(V)))".
Thus in the topology of uniform and absolute convergence on compact
subsets of V; in each continuous semi-norm on F' we have
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F=lim 3 £3b,
—lim 3} zk_;G H,b,

k £
ZmZ:Il(It—»ooE::‘G )

— 3\G.H,,

as was to be proved.
The following consequence of Theorem 2 will be useful later.

LEMMA 4. If the element f of S,(U) has the property that w'f is
the zero element of S(U) for all w in F'™* then f = 0.

Proof. By taking a covering of U by small open sets we reduce
to the case in which f has a representation

f=Sh®g,

with %; in S(U) and ¢; in 0,(U). Let R be the sheaf on U of relations
of hy «+-, h,. Thus for each u in F'* we see that

k
0 :u'f: ;hw®<gwu’>
k
= ; <4, uyh; .
Thus by Definition 2 we see that g = (g,, - -+, 9:) € R;(U). By Theorem
2 it follows that each p» in U has a neighborhood V < U such that
there exist H,, ---, H, in B(V) and G,, ---, G, in 05(V) with
1
Tyrd = g‘ﬂGjHj .
Thus for each ¢ with 1 <4 <k we have
Pprd; = 21 G,;H},

where H; = (H}, -+, H}). Therefore on V we have

Sh®g = 5@ (3 6

=1

f h;
> (3 ® (G.H))
(k

<.
-

Jj=1

S(sH

h) ®Gs =0

=1

.,
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since H;e R(V) for all j. This proves Lemma 4.
We next give an important characterization of S, in case S is a
coherent analytic subsheaf of 0" for some positive integer n.

THEOREM 3. Let M be a Stein mantifold and S a coherent analytic
subsheaf of 0~. Let F be a Frechet space. For each open U C M there
is @ mapping t(U) from S(U)Q 0,(U) into (0,(U))* which for each
h=(hy -+, h,)im S(U) and g tn 0,(U) maps hQ g onto gh = (ghy, - -+, gh,)
wm (0(U))". For each such g and h the image gh of h® g actually
lies in the subset S;p(U) of (0,(U))*. The family of such mappings
T(U) induces an tsomorphism T of the sheaf S, (which was defined
above to be the sheaf determined by the presheaf data U— S(U) Q 0,(U))
onto the sheaf S;. Thus S; and S, are isomorphic.

Proof. Clearly the map of the Cartesian product S(U) x 0,(U)
into (07(U))" defined by (k, g) — gh induces a group homomorphism of
(S(U), 0,(U))—the free abelian group generated by the elements of the
Cartesian product S(U) x 0,(U)—into (0,(U))". It is trivial to check
that N(S(U), 0,(U)): belongs to the kernel of this map, where
N(S(U), 0(U)) is defined as in [5] p. 8 to be the subgroup of (S(U), 0,(U))
generated by elements of the forms

(i) @+ 2,9 — (@, y) — (@ Y)

(i) @ %+ 9) — @ 9) — (x, )

(i) (ax, y) — (z, ay)
where z, x,, and «, are in S(U), v, ¥, and ¥, are in 0,(U), and a € 0(U).
Thus this map induces a homomorphism 7(U) of the quotient
(S(U), 0(U))/N(S(U), 0,(U)) = S(U) R 0,(U) into (0,(U))*. It is trivial
to check that z(U) is an 0(U)-homomorphism. Now with g and % as
above and u in F'* we have

uwot(U)h ® g) = uo(gh) = (wog)h e S(U) .

Thus 7(U)(h Q g) € S;(U). It follows that the range of 7(U) is a subset
of S;(U). It is now clear that the family of mappings ¢(U) induces
an 0-homomorphism 7 of S, into S;. To show that 7 is one-to-one we
must prove

@) Ifc(OHCX h,Rg) =0 then each p in U has a neighborhood
V such that »,,(3 . h; @ g;) = 0.
To show that 7 is onto we must prove

(b) If £eS/(U) then each p in U has a neighborhood V such that
Porf = (VI h; @ g;) for some elements h; in S(V) and g; in 0,(V).
We first prove (a). If we let R be the sheaf of relations on U of
Ry +++, hy by the coherence of R there exists a neighborhood V; of p
and elements 7, = (%, -+, 7F), ++e, 1, = (rh, +++,ry) of R(V,) which
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generate R at each point of V,. Now
N N
S ghi = 7(U)( S 1 @) = 0
Thus for each % in F'* we have
N
; (uogi)h; =0

so that (uog,, --+,u0gy)e R(U) for all w in F*. By definition this
means that (g, «--, g5) € Rz(U). Therefore by Theorem 2 we see that
there exists a neighborhood V of » and G = (G, --+,G,) in (0(V))*
such that (g, -+, 95) =Gr, + -+ + G,r,. Thus on V we have

;,:h¢®g¢ = éht(g; <JZ:1G].7-;Z)

=% (2 0h))®6 =0

=1

since ;€ R(V) for each j. This proves (a).

To prove (b) notice by Theorem 2 that there exists a neighborhood
V of p, elements Ay, +--, hy in S(V), and elements g, -+, gy in 0,(V)
such that on V we have

F=S0h = (S k@)

This completes the proof of Theorem 3.
We state for future reference a version of a theorem of Banach,
first giving a definition.

DerINITION 8. If {g,} is a sequence of vectors in a Frechet space
F. the series >.7.,9g, is called absolutely convergent if the series
S 1l 9. 1] converges for each continuous semi-norm || || on F.

Notice that a continuous linear transformation from a Frechet space
F to a Frechet space G takes absolutely convergent sequences into
absolutely convergent sequences.

LEMMA 5. Let 0 be a continuous linear map of a Frechet space
F onto a Frechet space G. Let {g;} be an absolutely convergent sequence
from G. Then there exists an absolutely convergent sequence {f;} in
F such that o(f;) = g; for all 1.

Proof. Let {|| ||} be a defining sequence of semi-norms on F.
Since the map o is continuous, we see ([1] p. 40) that for each k the
set o{f:||flls = 1} contains a neighborhood {g:|lg]|li =1} of 0 in G,

where || ||; is some continuous semi-norm on G. Thus for each ¢ in
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G and each k there exists f in F with o(f) = g and ||f ]|, < || 9|, Now
for each & choose 7 = j(k) such that

2 g lls < 27%,
n=y

so that
> 3 N galli < oo
k=1 n=75(k)

We may assume that j(1) <j(2) < ---. For each n with j(k) =n <j(k + 1)
choose f, in F' with o(f,) = ¢, and ||f. |l = 1| 9.1l;. If for each n we
let k(n) be the smallest value of & for which » < j(k + 1), it follows
that

g-l”fn“k(n) < oo,

Since for each ¢ we have || f,|]; = ||f.]ls for all & = ¢ it follows that

Sl
is finite for all ¢. This proves the lemma.

THEOREM 4. If S is a coherent analytic sheaf on a Stein manifold
M and if F is a Frechet space then HY(M, S;) = 0 for all N= 1.

Proof. Let f be an element of H¥(M, S,). Consider a locally finite
covering {U,;} of M by holomorphically convex open sets U, so fine that
f is represented by an element of H¥({U;}, Sy). For each finite sequence
K = (i, -++,1;) of positive integers let Uy = U; N ---N U,. The
element f of H¥(M, S;) can be considered to belong to H¥({U;}, Sr) and
therefore can be represented by a cocycle f = {f;} of Z¥({U,;}, Sy). Here
I is any sequence of N + 1 positive integers, and, for each I, f; is an
element of S,(U,). Also df =0, where ¢ is the coboundary operator
from C*{U}, Sy) into C**({U;}, S;) and Z¥({U;}, S;) is the kernel of
0. By choosing the covering {U;} fine enough we may assume that for
each K there exist elements A, -, hue, With a depending on K, in
S(Ux) which generate S at each point of Ug. This implies ([3], expose
XVIII, p. 9) that every k in S(Ug) has a representation of the form
h = >\, g:hie, with g,€0(Ug). We may also choose the covering {U;}
so fine that, for each I, f; can be represented in the form

i :¢=21h“®9“

with h;; as above and with g,; in 0-(U;).
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By Theorem 1 there exists a sequence {P,} of continuous mutually
annihilating projections on F whose ranges are one dimensional and a
sequence {b,} of vectors in F' bounded in each continuous semi-norm on
F having the following properties. For each I and ¢ the series >im-i P00,
converges to g;,; on U,. For each I and ¢ we have P,og,; = g%b,, where
9% €0(U,). For each I and ¢ the series >\7., g% converges absolutely
in the Frechet space 0(U,). Now since for each n the projection P,
induces a homomorphism of the sheaf S, onto itself, the element {P,f;}
of C*({U}, Sp) is in Z¥({U}, Sp). Also

Pufr = 3 bt ® Pag
= Sy @ g1, = (55 91 @b

If for each n and I we let f? be the element >%,g%h; of S(U,) it
follows that for each » the element f» = {f7}*=* of C*({U;}, S) belongs
to Z*({U}, S). It is also clear that fb, = P,f.

Now there exists a natural Frechet space topology on each S(U),
described in [4], expose XVII. This topology has the property that
for each %2 in S(U) the map g — gh of 0(U) into S(U) is continuous.
We therefore see that for each I the series

Z_sz” = 2_. (Z g?zhu>
n=1 n=1 \1=1

converges absolutely in S(U,) because for each I and ¢ the series
S 9% converges absolutely in 0(U;). Now the space C*({Uj}, S) is
the Cartesian product of the Frechet spaces S(U;), and therefore
possesses a Frechet space structure. Moreover Z¥({U;}, S) is closed in
CY¥{U}, S) and is therefore also a Frechet space. Since for each I the
series >'r., f converges absolutely in S(U,) it follows that >,/
converges absolutely in Z¥({U;}, S). By Theorem B of [3] and Leray’s
theorem (see [5] p. 213) we see that the coboundary map é of the Frechet
space C**({U}, S) into Z¥({U;}, S) is onto. From [4] we also see that
0 is continuous.

Let J stand for an arbitrary N-tuple of positive integers. Thus
for each J, by the above, there is a continuous homomorphism.

Tyt (Gly ctty Gw) - éGihiJ

of the Frechet space (0(U;))* onto the Frechet space S(U;). These
maps induce a continuous homomorphism 7 of the Frechet space @ onto
the Frechet space C**({U;}, S), where @ is defined to be the product

11, (0(U;))*, with « depending as above on J, of the Frechet spaces (0(U,))".
Thus
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0 =00T

is a continuous homomorphism of @ onto Z¥({U}, S). Since >, f”
converges absolutely in Z¥({U;}, S) it follows from Lemma 5 that there
exists an absolutely convergent sequence {G"} in @ with ¢(G") = f" for
all n. For each n write G* = {G%}, where

G; = (G, -+, Gay) € (0(UR)” .

Thus for each J we see that the series Y7, G* converges absolutely
and uniformly on every compact subset of U,, so that the series
S Gb, converges absolutely in (0,(U;))* to an element

G.r = (Guy 0y ch.T)
in (0,(U;))*. Thus for each 7 and J we have G;; = >\, G4b,.
For each J let ¢; be the element
6y = ;la his @ Giy

of Si(U,). Thus e = {e;) e C**({U;}, Sr). We shall_finish the proof by
showing that de = f. To this end it is sufficient by-Lemma 4 to show
u'(0e) = w'(f) for all w in F'*, We compute:

w(es) = 33 <Gis, Whis

i G?me u>kz.r

n=1

(5 6aha )bu, w

1=

(@ (GN)bay %

Il

Il

Il

absolutely in S(U,). Thus
w(e) = 3 (7(G*)<b,
absolutely in C**({U}, S). Thus
w(96) = d(w(@)) = 3, (0.01)(G")<by, u>
= 5,0(GKby, > = 3o ud

Also for each I we have

W(F) = 3 <ary Whiy
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I

=1

5 (5 0000 )b w5 = 572 1) -

1=1

i 2{ g:tlbm u>hil

Il

Therefore u'(f) = S5, f"<b,, u>. It follows that «'(f) = u'(de) for all
«# in F'*, so that f = de. This completes the proof of Theorem 4.
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