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1Φ Introduction* Normed vector lattices have been investigated
from various angles (see [1] Chap. 15 and [7] Chap. 6). On the contrary,
it seems that there remain several problems unsolved in the theory of
general normed spaces with a cone since the pioneer works of Riesz and
Krein, though recently Namioka [8], Schaefer [9] and others made many
efforts in analysing and extending the results of Riesz and Krein. In
this paper we shall discuss two among them. Let E be a Banach space
with a closed cone K (for the terminologies see § 2);

(A) What condition on the dual E* is necessary and sufficient for
that E= K- KΊ

(B) What condition on the dual is necessary and sufficient for the
interpolation property of El

Grosberg and Krein [3] dealt with (A) in a reversed form;
(A') What condition on E is necessary and sufficient for that E* —

K* - K* where K* is the dual cone?
Schaefer ([9], Th. 1.6) obtained a complete answer to (A') within a

scope of locally convex spaces. A result of Riesz gives a half of an
answer to (B), while Krein [6] obtained a complete answer only under
the assumption that the cone has an inner point.

The purpose of this paper is to give answers to both (A) and (B)
in natural settings. Our starting assumptions consist of the complete-
ness of E and of the closedness of the cone K.

After several comments on order properties in § 2, Lemmas in § 3
present algebraic forms to both the property named normality by Krein
[5] and that named (l?ϋΓ)-property by Schaefer [9], supported by Banach's
open mapping theorem. Then Theorem 1 will produce an answer to (A)
via these Lemmas. §4 is devoted to an answer to (B) under the con-
dition that E is an ordered Banach space. It should be remarked that
our main theorems are also valid for (F) spaces, that is, metrisable
complete locally convex spaces.

2. Definitions and consequences* Let E1 be a real normed space and
let K be a cone, that is, a subset of E with the following properties:

(1) K+KczK,
(2) aKcK for all a ^ 0, and

Received February 8, 1962.
1 Elements of E are denoted by xf y, α, •••, e, and those of the dual E* by /, g, h.

Scalars are denoted by Greek letters, 0 is reserved for the zero element.
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(3) KΠ (—K) = {θ}. Then the natural partial ordering ^ is as-
sociated with the cone K, i.e. a ^ b in case a — be K. A subset of the
form {x; a ^ x ^ 6} will be called an interval. The dual 2£* of ΐ7 is
also partially ordered by the dual cone K* = {feE*;f(x) ^ 0 for all
x e K}, though K* does not always satisfy the condition (3).2

The cone K is said to generate E or to be a generating cone in
case every element in E can be written as difference of two in Ky that
is, E — K — K. E is said to have the interpolation property with res-
pect to ^ in case a,b ^ c, d implies the existence of x such that
α, b ^ x ^ c, d. This property is equivalent to the following one named
the decomposition property: whenever a,b, xe K and a + b Ξg x, there
exist c, de K such that x — c -\- d, a ^ c and b ^ d. When for any pair
a, be E there exists the supremum a V ί>, i? is called a vector lattice.
A vector lattice has the interpolation property and its cone is generating.

There are several notions connected with the so-called order topology.
E is said to be (o)-complete in case any upward directed subset with an
upper bound (with respect to ^ ) has the supremum. When the directed
subset in question is restricted to that consisting of countable members,
E is said to be σ-(o)-complete. As a less restrictive completeness, E is
said to be quasi-(o)-complete in case any sequence {αj, such that θ ^
αx 5Ξ; α2 5Ξ; <L a and ai+ί — ai ^ ε{a with ε̂  \ 0, has the supremum. In
many cases (o)-completeness can be derived from tf-(o)-completeness. It
is clear that if E with the generating cone is (o)-complete and has the
interpolation property, it is a vector lattice (cf. [9] Th. 13.2).

Usually a complete normed vector lattice is called a Banach lattice
in case its norm satisfies the following condition: | a \ < \ b \ implies
|| a || ^ | | b || where | α | = αV(—α). The cone in a Banach lattice is
obviously closed. In general, order topology is connected with the norm
topology through the closedness of the cone in the following way: if
α i ^ α i = l,2, and lim^ai = x then x f^ a, in particular, if aλ ^
α2 ^ and lim ĉoC^ = a then a is the supremum of {α*}. Thus a Banach
lattice is quasi-(o)-complete. In this connection a quasi-(o)-complete
Banach space with a closed generating cone will be called an ordered
Banach space.

3Φ Generating cone. In this section E is a Banach space with a
closed cone K. First on the ground of Klee's theorem [4] it will be
proved that the generating property is equivalent to the stronger one
named strict (BZ)-property in Schaefer [9] ((3) in Lemma 1 below).

LEMMA 1. The following conditions are mutually equivalent, where
a, β and p are positive constants and U denotes the unit ball of E:

2 iΓ* satisfies the condition (3), if and only if K — K is dense in E.
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( 1 ) K generates E,
( 2 ) (if Π U — KΠ U)~ZDaΐl where ( )~ denotes the closure,
(3) (ϊn u-κn u) Dβu,
( 4 ) any x e E admits a decomposition x == a — b such that a,b e K

and || α ||, || δ || ^ p || » | |.

Proof. (1) ==> (2) follows from the second category of E, because
E =K~ K= \Jn^n(K nU-KΠ U)". In order to see ( 2 ) « (3), let
V=Kp[ U — Kf\ U and let F be the subspace generated by V. Then
on the basis of completeness of K, Klee ([4] and [8] Th. 5.5) shows that
F is complete under the norm defined by || x \\v = inf {| λ |; x e XV}.
Then (2) shows that under the natural injection of F into E the closure
of the image of the unit ball V is a neighborhood of the origin in E.
A modification of Banach's open mapping theorem (see [2] Chap. I, § 3)
yields (3). (3) => (4) and (4) => (1) are trivial.

In the next place quasi-(o)-completeness will be connected with the
property named normality in Krein [5] ((3) in Lemma 2 below).

LEMMA 2. The following conditions are mutually equivalent, where
p is a positive constant:

( 1 ) E is quasi-{o)-complete,
( 2 ) every interval is bounded in norm,
(3) a S% ^b implies \\ x \\ g p-max (|| a ||, || b | |),

( 4 ) (U+K)n(U-K)c:pU.

Proof. In order to see (1) => (2), for each a e K let

α = {x: —a ^ x ^ a}

and let Fa be the subspace generated by Va. Fa is complete under the
norm defined by || x \\a = inf {λ: — λα ^ x ̂  λα}. In fact, if

II * ί + i - » < II. < 1/2* ( i - 1 , 2 , . . . ) ,

by the definition of the norm θ ̂  yi ^ α/2 ί - 1 where j/ 4 = a?i+1 — ^ + α / 2 \
Then quasi-(o)-completeness implies the existence of the supremum # of
the sequence {ΣΓ=i2/;}w. Put a? = 2/ + #i — α, then a? — «?< is the supre-
mum of the sequence {xn — xt — α/2w~1}?ι^ί hence a? — ̂  ^ a/2 i -1, and
similarly » — xt ̂  — a/2 i - 1. This means that

hence lim^co^i = x. Since i ί is closed, as remarked in §2, the natural
injection of Fa into E is a closed linear mapping, hence on account of
Banach's closed graph theorem (see [2] Chap. I, §3) it is bounded, i.e.
Va is bounded in E. Now every interval is readily proved to be bounded.
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(3) follows from (2) via a standard argument (see [8] p. 32). (3) ==> (4)
is trivial. (4) => (1) follows from the closedness of an interval and the
completeness of K.

Before going into the first theorem, let us recall the definition of
polar sets. The polar set A0 of Ac£7(resp. czE*) is defined by A0 =
{feE*;f(x)^l for all cceA}(resp. - {x e E; f(x) S 1 f or all/eA}).
For example, U° is the unit ball of E* and K° = - K*. The bipolar
theorem (see [2] Chap. IV, § 1) asserts that (1) Γ(A, B)° = A0 n B°
where Γ(A, B) denotes the convex hull of A\JB, and (2) if ABΘ and
BBΘ are closed convex sets in E (resp. weakly3, i.e. σ(E*,E), closed
convex sets in E*)(A Π B)° = Γ{A\ Bύ)w~(resp. = Γ(A°, Bo)~) where ( )w~
denotes the weak closure, and (3) if A contains θ and is a closed convex
set in E (resp. weakly closed convex set in E*), A00 — A. By the way,
remark that the weak compactness of Z7° and the weak closedness of
imply that both U° + if* and U° — K* are weakly closed.

THEOREM 1. (1) K generates E if andjmly if E* is quasi-(o)-com-
plete.

(2) K* generates E* if and only if E is quasi-(o)-complete.

Proof. (1) First remark the formula: 4 + B D Γ(A, B)z>iA + iB
for any convex sets ABΘ and BBΘ. NOW the following chain of
equivalences is valid, where a, β, y and p are positive constants:

K generates E
<=> (Uf]K- Un Ky ΏctU by Lemma 1
<=> Γ(Un K, -UΓ\ K)- ZDβU by the above remark
<=> Γ(U\ - K*)w~ n Γ(U°, Kηw~ ajU° by the bipolar theorem
<=- (U° - K*)w~ n (J7° + K*)w- (zpU° by the above remark
<=* (U°- K*)Γi(U° + K*)(ZpU° by the weak closedness of

u°±κ*
<==> £7* is quasi-(o)-complete by Lemma 2. A proof of (2) is similar

and is omitted.
The "only if" part of (1) is essentially known (see [8] p. 46), while

(2) is a restatement of Grosberg-Krein's theorem [3] in terms of order
properties4.

If 1?* is quasi-(o)-complete, in view of Lemma 2 every interval of
£7* is bounded in norm and weakly closed, hence weakly compact.
Therefore it is readily shown that all the three notions of completeness
are the same thing on E*.

4 Interpolation property* In this section E is an ordered Banach
space. Then Theorem 1 guarantees that E* is also an ordered Banach

3 The weak topology always refers to the topology σ(E*, E).
4 Grosberg-Krein's proof differs essentially from ours.
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space. A result of Riesz can be stated as follows (see [8] Th. 6.1): if
E is an ordered Banach space with the interpolation property, the dual
has the same property, hence by the remark at the end of § 3 it is a
vector lattice. In this section the converse will be proved.

LEMMA 3. Let E be an ordered Banach space. Then the interpo-
lation property can be derived from the following less restrictive one:
for any ε > 0 and α; ̂  bό in E (i, j — 1, 2, , n) there exist xe E and
yeK such that a^x — y and x ^ 6<(i = 1, 2, , n) and \\y\\<L ε.

Proof. Let α, b ̂  c, d. We can successively find x{ e E and y{e K
(x0 and y0 being disregarded) such that α, 6, x^x ^ Xi—yi and x^c, d,
x^x — y^ and \\Vi\\ ^ 1/2*. Then —y^ ^ x{ — x{-x ^ yi9 hence by
Lemma 2 \\Xi — Xi-X || ^ ρ/21 (i — 1, 2, •). The completeness of E im-
plies that lim^oo î = x exists. Since l i m ^ ^ = θ and K is closed, we
can conclude that α, b Ξ> x ^ c, d.

Before going into the second theorem, in order to simplify the no-
tations, for each A c # ( r e s p . aE*) define A* = {feK*\f{x) ^ 1 for
all x 6 A}(resp. = {x e K: f(x) ^ 1 for all/6 A}). Since K is closed con-
vex, on account of the separation theorem (see [2] Chap. II § 3), for
ae K {x\ x ^ a) = a + K = {a}u.

THEOREM 2. An ordered Banach space E has the interpolation
property, if (and only if) the dual E* has the same property.

Proof. Suppose that E* has the interpolation property. It suffices
to prove the less restrictive form of the interpolation property for E
in Lemma 3. Let a{ ^ bj (i, j = 1, 2, , n). All b5 may be assumed to
be in K because K generates E. For any ε > 0 and 7 > 0

is disjoint from

B = ma, - Kγ Π ΎU°; i - 1, 2, , n) .
Otherwise, since E* is an ordered Banach space with the interpolation
property, in view of Riesz result stated above the second dual i?** has
the same property, therefore there exists Xei?** such that a^X^bi
(i = 1, 2, , n) where E is imbedded into i?** in the natural, linear-
order preserving way, then X(f) ^ 1 and X(f) ^ 1 + ε for / e A f] B,
because, for example, / can be represented as / — Σ?=iα:<flri s u c ^
g{ e {biY and a{ ^ 0, Σt^ai = 1 + ε, hence

t g: ±ai9iψi) ^ Σα, = 1 + e ,
i l i l
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This contradiction proves the expected disjointness. Next we shall prove
that A is weakly closed and B is weakly compact. Take, for example,
the former and suppose n = 2 for the simplicity sake. On account of
Banach's theorem (see [2] Chap. IV, §2) it suffices to prove that

is weakly closed for all p > 0. Suppose that a net {cxλfλ + (1 — aλ)gλ}λ

converges weakly to some h in E* where / λ e {b^}*, gλe {62}*, 0 ̂  ocλ ^ 1
and || aλfλ + (1 — aλ)gk || g p. Since E* is quasi-(0)-complete, by Lem-
ma 2 || aλfλ || and || (1 — aλ)gκ || are uniformly bounded. We may assume
that {aλ}λ converges to some α. If 0 < a < 1, | | / λ || and \\gλ\\ are uni-
formly bounded, hence we may even assume that {/λ}λ and {gλ}λ con-
verge weakly to some / and to some g respectively because of the weak
compactness of U°. Since both {6J* and {62}

# are weakly closed, it fol-
lows that h = af + (1 — a)g is in Γ{{b^y {&2}

#) If OL — 1, say, we may
assume that {/λ}λ converges weakly to some / in {b^\ therefore h ^ /,
hence h e {bxγ by the definition of {6J*. Thus the proof of the weak
closedness is over.

Now since A is convex, weakly closed and is disjoint from the con-
vex weakly compact set B, by the separation theorem (see [2] Chap. II,
§ 3) there exists ceE such that f(c) ^ 1 > g(c) for all fe A and geB.
From the remark preceding the theorem and by the bipolar theorem it
follows that (1 + e)c ^ b^i = 1, 2, , n) and c e ΠΓ(^ — K + 1/y U)~.
Therefore there exist {cJΓ such that c + ct ^ α< and || c{ || ^ 2/7 (ί —
1,2, « ,w). Since the cone of E is generating, by Lemma 1 each ct

admits a decomposition c{ = di — e% with d{, e{ e K such that

where px is a positive constant. Finally let x = (1 + ε)c and

2/ = εc + ]>>; ,

then x — y <£ α̂  and a; ̂  6< (i = 1, 2, w) and, for some ft > 0,

II V II ̂  e II c II + Σ II et \\ g ε(ft || α, || + 4/7) + 2ftn/7.

Since ε > 0 and 7 > 0 are arbitrary, the expected conclusion has been
obtained.
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