
ANALYTIC METHODS IN THE STUDY OF

ZEROS OF POLYNOMIALS

ZALMAN RUBINSTEIN

Several analytic methods are used to obtain estimates for part
or all zeros of a polynomial with complex coefficients and for linear
combinations of polynomials. Some results of Biernacki, Montel and
Specht are strengthened or generalized. Some results about the
location of zeros of linear combinations of polynomials are also
obtained.

l Cauchy type estimates*

THEOREM 1. Let P(z) — zn + aγz
n"x + + an be a polynomial

with complex coefficients. Let β[ ̂  β[ ̂  ^ β'n be the ordered
positive numbers \ b{ | = | a{r~l |, 7 > 0, i = 2, , n, then all the zeros
of the polynomial P(z) are in the union of the two circles:

I z I < 7(1 + tfi) and \ z + aλ | ^ 7

where

σ i = β>% - _ A _ - g3 ^ y . ^

with

δ'i — β'i — β'i+u β'n+l = 0 .

Proof. It is well known (See e.g. [4]), that all zeros of the
polynomial P(z) are in the union of the two circles | z + a1 \ ̂ 7 and
\z\ ^ 7(1 + /SJ). Let ξ be a zero of the polynomial P{z). We may
assume that \ξ\ = yr, where 1 < r ^ 1 + β'2. The inequality

yields

(1) r—11 r + αx I ̂  τ(| 621 r—2 + . . . + 16 J ) ^ 7(/3^"2 + . . . + β'n) ,

since β'u i — 2, , n, are decreasing and r > 1. Multiplying both
sides of the inequality (1) by (r — l)r~(w~1) we get

(r -
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Since r ^ 1 + ft and δ\ ̂  0,

1 + Ά (1 + ΆY'1

Suppose I ζ + ax | > 7, then

and

(2) | f I = ry < 7
1 + β'2 (1 + β)

Consequently all the zeros of the polynomial P(z) which are outside
the circle | ζ + a1 | ^ 7 lie inside the circle (2).

One notes that this result can be repeatedly improved replacing
Ά by σx ^ β[ in the proof of Theorem 1. The last result improves
the known estimate used. As an immediate consequence from Theorem
1 we obtain that all the zeros of the polynomial P(z) are in the
region

[\z\ < 7 ( 1 + σ)] Π ([\z + a,\ £ 7 ] U [\z\ < 7 ( 1 + σj\) .

(See remark following the proof of theorem 2).

THEOREM 2. Let P(z) = zn +,a1z
n~1 + + an, be a polynomial

with complex coefficients. Let 7 > 0, b{ — α/Γ"\ i — 1, , n. Assume
furthermore that βif i = 1, , n, βx ^ β2 ^ ^ /3n, are ίfce ordered
numbers \bi\.

Define

0 ^ α = max ^ ^ 1 ,

where the maximum is taken over all i such that &_! ^ 0. Denote

(3) σ% = βτ- —^ 22 £2
' 1 + A (1 + βif (1 + A)%

where

δ{' = α/5, - A+i ^ 0, i = 1, , n, βn+ί - 0

then all the zeros of the polynomial P(z) are in the circle

1 z I ̂  max (y(a + cr2), 7) .

Proof. Let f be a zero of P(z). We may assume that
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(4) Ύ(a + σ2) ^ I ξ\ = yr < 7(1 + A) , r ^ 1 .

The equality ζn = — a^"1 — — an implies

Trn ^ I a, I 7»-V—1 + + | an | = r ( | δx | r*"1 + + | δn |) .

Hence,

rw ^ Arn" x + /52r
Λ-2 + . . . + βn .

Also since r ^ a, we have

(5) r*(r - a) ^ βλr« - r

?„_! - βn) - aβn = ftr - dϊr"-1 δΊ-i - K .

Since a + σ2^ r, (5) implies

/ r*\ 0\ I i Oγi ^* /O I <<*' /O

-y» ^»^ ~ 1 = 1 2

Taking into account (3) and (6) we get

Since δ ' ^ 0 it follows now that r ^ 1 + βx which contradicts the
assumption made in (4). Hence | ξ\ ^ 7(1 + σ2). If however, r < 1
then I ξ\ < 7. Theorem 2 strengthens a result due to Specht [6],
j z I < 7(1 + σ), where

σ = β1l — ^ — + ^ +
(1 + A)2 (1 + βxf

One verifies easily that a + σ2 ^ 1 + σ.

2. Estimates of at least p zeros (1 ^ p ^ n) for a polynomial of
degree n. I t is known, [2] p. 110, that is the coefficients ao,alf •••,
dp_!, α p + λ are fixed, then p zeros of the polynomial

<7) Q(z) - anz
n + + a0

are bounded. Various bounds for at least p zeros of Q(z), as func-
tions of these coefficients, were obtained by different authors ([2]
Chap. VIII).

LEMMA 1. (Montel) [2] p. 111-112. Let the polynomial Q(z),
defined in (7), have zeros zl9 " ,znf such that \ z1\ Ξ> | z2 \ ^ ^

\zn\. Let
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Z1 Z) [Zn—p Z) 3=0

Define rp = \zn-p+1\. Then

(8) I ak

p) I g rp

{n~p) Σ C(n - p + i - 1, j) | α w | r ^ , fc = 0,1,

THEOREM 3. Lβί Q(2;) δe α complex polynomial of degree n defined
in (7), an Φ 0,1 ̂  p ^ n. Let r(p) be the greatest positive root of
the equation

(9) (z - p)(z - \γ~p - S(p, q\ p) = 0

where 0 < p ^ 1 and

t. q'\ilq'

i=o\ an

αί Zeαsί p zeros of the polynomial Q(z) are in the circle

(10) \z\^r(p).

Proof. We apply the Holder inequality to (8) and after some
simple transformations we obtain

(11) I α</> I ̂  r ^ - ' f s (C(» - p + j - 1,
A? Γ fc ~μ/g'

i=o Li=o J

W + W = i

Since r(p) ̂  1, without loss of generality we may assume that rv > 1.
We replace the first sum in the right hand side of (11) by

(12) ±C(n-p + j-l, JW = (l " J-
i=o \ rP

By (11) and (12) we get

(13) I (4W I ̂  (r, - 1 ) - « - « Γ Σ I αy I5 '?"' .
Li=o J

It is known (See e.g. [4]) that all the zeros of Qv(z), and in particular
sn-p+i> satisfy the inequality

(14) rp - K_p + 1 | g max
o£k£ ap

p

 p k p k

for any x{ > 0, i — 1, , p, xp+1 = 0. Taking into account that ap

p>
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= (~l)n~pan and using (13) and (14), with x{ = ρ\ i = 1, , p, 0 <
P ^ 1, we obtain

(15) rp ^ max (rp - l)-<-*>( Σ -^- 1 /9-f-*-" + p .

Using the definition of S(p, g', />), the equivalent to (15) is

(rp - p){rp - I)—* ^ S(p, q', p) .

It follows now easily that rp ^

COROLLARY 1. Theorem 3 includes, as particular cases, a result
due to Marden ([2] p. 113) for p = 1, cmd α result due to Montel
([2] Th. 32,1) /or 4 '-* 00, p = 1.

Proceeding as in the proof of Theorem 3, using this time the
estimate

a ±ypi p

" (1 + Np)(rp - l)n-p -

for all k, rp > 1 and

- max
-i a

due to Montel (See [2] p. 115), one obtains:

THEOREM 4. Let Q(z) be the polynomial defined in (7). At least
p zeros of Q(z) are in the circle \ z \ rg r^p), where rx{p) is the posi-
tive root of the equation

1 +
1

Np / z + ρι~v — p

1 \n-p
_ _L) - 1 = 0 .

z I

For p = 1, Theorem 4 gives an estimate due to Montel (See [2] p.
115). We remark that by a minimum argument it follows, that for
(p — 1)NP ^ 1 and p — [(p — l)Np]

llP, Theorem 4 yields results better
than those obtained by the classical formula.

Using estimates which involve a number of arbitrary parameters
we obtain bounds for at least p zeros for lacunary polynomials. We
quote first a lemma.

LEMMA 2. At least p zeros, 1 ^ p <g n, of the polynomial Q(z)
— anz

n + + a0, an Φ 0, lie in or on the circle \ z \ — pf where p'
is the positive root of either of the two equations:



242 ZALMAN RUBINSTEIN

(16) I an I zn - ΣC(n - k - 1, p - k - 1) | ak \ z" = 0

and

(17) I ap I zp - Σ Φ - fc, p - fc) | akz
k = 0 .

Λ0
Λ=0

(16) is due to Montel, (17) is due to Van Vleck. A simultaneous
proof of (16) and (17) was given by Markovitch [3]. We prove now
the following:

THEOREM 5. Let Q(z) = anz
n + - + α0, apan φ 0,1 <; p <; w. Lei

r ami s 6e £wo numbers having the properties: r ^ n — p + 1 is the
smallest number such that an_r Φ 0; s, 1 ^ s ^ p, is the smallest
number such that ap^s Φ 0. Then at least p zeros of the polynomial
Q(z) lie in, either of the two circles:

(18) I z I ̂  max \p\ (± C(j - 1, p - n + j - l)/tr«- " ' ' ^

(19) I 2 I ̂  max |V, ( Σ C(n - p + j , j)ρ~{j~
L \i=β

for any p > 0.

Proo/. Denote cfc = — C(fc - 1, p - n + k - 1) | αΛ_fc/αn |. The left
hand side of (16) can be written as

(20) zn + cqz
n'q + ... + cn, q = n- p+ 1 .

By our assumption, (20) is equivalent to

(21) z* + cχ~r + + cn, cr Φ 0 .

It follows from the result proved in [5], with Xi — p\ i = 1, , n,
p > 0, that all the zeros of the polynomial (21) are in the union of
the circle and the lemniscate defined by the inequalities

and

The inequality (18) follows applying (16) and the last result. To
prove (19), we define cp-k = — C(n — k,p — k)\ ak\ap \ and proceed as
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before, using this time equality (17).

COROLLARY 2. Let Q(z) = anz
n + . . . + apz

p + α0, aQapanΦQ, l^p
^ n. At least p zeros of Q{z) are in or on, either of the two circles:

I z I = (C(n - 1, p - 1)

and

\z\ = (c(n,p) -SL

These results are obtained from Theorem 5, with r — n and r — p
respectively. Both results are due to Van Vleck. (See [2]).

3* Linear combinations of polynomials.

LEMMA 3. Let the polynomials R(z) = zn + + an and S(z) —
zk + + bk, anbk Φ 0, have zeros zi9 i = 1, , n, and ζh j — 1, ,
k respectively.

Let F(z) λ) = R(z) + \S(z) have zeros ft(λ), , η^X), \ηx\^\η2\
^ ••• ̂  \Vι\ If ^he circle | 2 | ^ τ contains all the zeros of the
polynomials R(z) and S(z) and m zeros, 0 ̂  m < Z, of F(z; λ), then

/OO\ T T y i ( \ \ \ ^ I r[(l+(|λl/μ))u-([λ|/μ)fc-m]

where C(λ) equals | l + λ | , | λ | , or 1 according to whether k — n,
k > n, or k < n respectively, provided

- 1 > 0 .

Proof. Applying Jensen's formula to the polynomials R(z), S(z)
and F(z; λ) we obtain (Omitting the parameter λ in the notation
for F):

n log τ - - i _ Γ log | jB(τβίθ) | dθ
2π Jo

(23) A; log τ = - * - (" log | S(τeίθ) \ dθ
2TΓ Jo

log (| C(λ) I Π I %(λ) l) + m log r = -A- Γ log | i^(τeiβ) | dθ .
\ i=m+l / 2TΓ Jθ
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Using the formulas (23) and the inequality log (ax± + βx2) ^ a log xt

+ β log x2 with xx = IRI + | λS|, α?a = | S| and

α _ \R\ — \S\ a+β-Λ

after a few transformations we deduce the inequalities

£ log I f(z) I d(? ̂  J* log (I i2(z) I + I \S(z) \)dθ

< riog|^(^)|°-log|g(τO| f- b i β ), d ,
~ Jo α:(5,λ) Jo

On the other hand, by the assumption of the theorem it follows that

a(θ, λ) μ

Hence

(24) Γ l o g I Fix) \ d θ ^ ( l + J A L ) \2* l o g I B(τeie) \dθ - ^ i ["
Jo \ μ /Jo j« Joμ

log I S(τeί0) | d^ .

Dividing (24) by 2π and substituting the values from (23), we deduce
the inequality

log(|C(λ)| Π Itt(λ)f) + mlogτ ^ ( l +
μ / μ

The desired follows now after simple transformations. We remark
that in case μ < 0, Lemma 3 is true interchanging R and S, λ and
1/λ. As a consequence of the lemma we have:

THEOREM 6. Under the assumptions of Lemma 3 all the zeros
of the polynomial F(z; λ) are in the disc

I Z I <

Proo/.

max I ft(λ) I = Π I ft(λ) | ( Π I V
w + l ^ i^i i = m + l i^ίmax

1 ,r [(l+iλ|/μ)w-(iλ|/μ)fe-t+l3

since | %(λ) | ^ τ for m + 1 ̂  i ^ I. Some estimates for the zeros
of linear combinations of polynomials can be derived by a con-
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tinuity argument. We denote by D(k,n — k) the open domain in
the extended complex λ-plane, for which the polynomial F(z; λ) =
R(z) + XS(z) has exactly k zeros with negative real part (n — k zeros
with positive real part), where R(z) and S(z) are fixed and deg (R + λS)
= n, k = 0,1, * ' ,n. Some of the domains D(k,n — k) may be empty.
We quote two results to be used later.

LEMMA 4. (Marden [2] p. 54). The zeros of the linear com-
bination

where λ, Φ 0, i = 1, 2, , p, lie in the locus Γ of the roots of the
equation

\(z - αθ n i + + λ,(s - <*„)** = 0

when the au , ap vary independently over the circular regions
Clf , Cp and where C, contains all the zeros of the polynomial fj(z).
The following result is due to Walsh (see [2] p. 55).

LEMMA 5. / / the points au , av vary independently over the

closed interiors of the circles Cl9 •••, Cp respectively, then the locus

of the point.

P
a = Σ mjWj

3=1

where the m$ are arbitrary complex numbers, will be the closed
interior of a circle C of center c and radius r, where

c = Σ> i»Λ, r = Σi\mj\ rά
3=1 3=1

and Cj and r5 denote respectively the center and radius of the circle
Cj. We prove a preliminary result.

LEMMA 6. Let

(25) f(z, λ) = (z + a)n + Xzv, I Re a \ ^ 1, arg a = a, p ^ n .

Then for all λ, | λ | ^ | cosp a |, the polynomial f{z, λ) has all its zeros

in the same right, or left, half plane as the polynomial (z + a)n.

Proof. By the remarks made following the proof of Theorem 6
it is sufficient to prove that the domain D(k, n — k), k = 0 or n,
which contains the origin, contains also the circle about the origin
with radius |cos p α|. Substituting z — iy in (25) and solving for λ
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in the equation f(iy, X) = 0 we get

= \iy + a<-> j/y + a-
V y

Since by elementary geometric considerations \i + a/y\ Ξ> | i?eα|/αj,
we get | λ | i> I Rea\nl\a\p, hence the region Z> which contains the
origin contains also the circle | λ | < cosp a || Re a \n~p. Taking into
account the conditions (25) the desired result follows.

THEOREM 7. Let R{z) = z* + + an, S(z) = zk + - + bk, k ^

n. Let the zeros of R(z) and S(z) lie in the discs d: \ z — c< | ^ ri9

i = 1,2 respectively, such that one of the following conditions holds:

(a) Re [(c2 - Cl)] - (n + r2) ̂  1

(b) Re [(c2 - c,)] + n + r2 ^ - 1 .

Denote the circle \ z — (c2 — cx) | ^ rx + r 2 6̂ / C3 and let min2 e ( 7 31 cos

argz\ — A. Then in case (a) all the zeros of the polynomial R(z) +
\S(z) for I λ I 5g A*, are m ίfeβ region Re z ^ r2 + Re c2, a^d m case
(b)—in the region Re z ^ Re c2 — r2.

Proof. By Lemma 4 all the zeros of the polynomial R(z) + XS(z)
are in the locus of the zeros of the polynomial g(z) = (z — αj 9 1 +
λ(z — α2)*, where aifi = l,2 vary independently in C<. By Lemma
5, α2 — aλ e C3 for any a^d. We may apply therefore Lemma 6 to
the polynomial g(ζ + a2) = [ξ + (oc2 — aλ)]n + Xζk. It results that in
case (a) all the zeros of the polynomial g(ζ + α2) are in the region
Re ζ ^ 0 for | λ | ^ A\ and i2e z = Re ζ + Re a2 ^ i?e 6̂ 2 g r2 + i?e c2.

Similarly, in case (b), the zeros of g{ζ + a2) are in the region
Re ζ ^ 0. It is clear that if k > n, similar results can be obtained
replacing a2 by alf X by 1/λ and R by S.

Combining the last result with a similar result for the imaginary
part of the zeros of R(z) + xS(z) we obtain:

COROLLARY 3. With the notations and assumptions of Theorem
7 suppose that one of the following holds

(a') Re [(c2 - cjl - (n + r2) ^ 1

(b') I m ί f o - c O l - f o + r O ^ l .

j = min (min | cos arg z |, min | sin arg z\) ,
26(73 z6(73
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Then for | λ | g A%, in case (a') all the zeros of the polynomial R(z) +
XS(z) are in the quadrant Re z ^ r2 + Re c2, Im z ^ r2 + Im c2, and in
case (b') all the zeros of the above polynomial are in the quadrant
Rez ^ Rec2 — r2, Imz ^ Imc2 — r2.

The estimates based on the continuity argument can be further
developed and it is possible to obtain bounded regions for the zeros
under suitable restrictions upon the parameter λ.

We prove finally a result concerning the location of at least p
zeros of linear combinations of polynomials.

THEOREM 8. Let R(z) and S(z) be two polynomials of degree n
and k with zeros z{ and ξ3- respectively, i = 1, , n, j = 1 , k.
Let the numbers a, r, ru r2, r3, nlf n2, klf k2; nλ + n2 — n, kλ + k2 — k
satisfy the following conditions:

(a) The polynomial R(z) has nx zeros in the disc Cx:\z — a\ ^ rτ

< r and n2 zeros outside the disc d which are in the disc \ z [ ^ r.

(b) The polynomial S(z) has kλ zeros in the disc C2; \ z — a \ ^ r2

< r which are also in the disc \ z \ ̂  r and k2 zeros outside the disc
C2 which are also outside the disc \ z — a \ ^ r3 > r.

Suppose furthermore that one of the following conditions is
satisfied:

\ ^ Λ r + α 0 l r — aQ ^ i r — a0 , i r -{- a0

cλ) r<a0 and nλ —°- + n2 — ^ kλ - + k2 °-
r — rλ 2r + α0 r r — r3

r + α0 , ^ r - a0 ^ h r - a0 , , r + α0
(c2) r > α0 and nλ

 r + α° + n2

 r ~~ a° ^ ktr r 2r/̂» /γ* 2r r ~\~ r r — r

then the polynomial F(z; λ) = R(z) + \S(z) has at least nx zeros in
the disc \ z — a \ ^ r , for any complex number λ.

Proof. A straightforward calculation yields the following results:
(1) Let z = a + reίθ, then

M = max Re
z \ _ r2 — I a21. + Re (au) ± r \ u

z — u I r2 — \u — a

m = i i ? f
u

according to | u — a \ $ r respectively.
(2) Let a — aoe

ίφ, z — a = reiθ, u — a = peiφ, t h e n
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M1 — max Re
Z — U

r — p
T + a,

r — p

(3)

^ for p < r

for jO > r, I u \ < r

~~ ̂ ^ for p > r,
r 2 —

( r - an

m1 — min
O0

z \
) =

r + p
for r > p, \u\ < r

r2-aoρ-r\ao- ρ\ f Q r

α ° f or r < jo .
r - p

(4) Let the polynomial R(z) satisfy condition (a) of Theorem 8, then

A α° + TO
 r ~ α°Λf, = max -A_ arg R(z) ^ %
2r

° for r

M2 £ nλ
r — an for r > α0 .

r - n 2r

(5) Let the polynomial S(s) satisfy condition (b) of Theorem 8, then

m 2 = arg

^ k1

r~a°

^ fc, r " α° + fc2

 r + α° for r < α0r r — r3

+ α° for r > α0 .
2 0

r + r2 r — r2

By the results (4) and (5), the condition (cj or (c2) implies that

max A- arg
l»-o|=r ασ

^ max Λ - arg Λ(2) - min -A- arg S(«) ^ 0 .
| Cίθ \ C

Hence the arg R{z)jS{z), as | z — a j = r and z makes one turn in the
positive direction, decreases monotonically.

It follows now that

^IΔ ( a r g •

for any complex number λ. Hence

|«-αl=r
arg (R(z) ! = 2πn1
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This completes the proof.
In the particular case a = 0, n2 = k2 = 0, at least n zeros of the

polynomial F(z; λ) are in the disc | z | ^ max {{nr2 + kr^Kk — ri), r2) for
k > n. The last result is due to Biernacki (See. [1]). If a = 0 and
the zeros of R(z) and S(z) are in the discs \z — Ci\ ^ dif it results
from Theorem 8, with rt = \Ci\ + difi = 19 2, that in the case k > n,
at least w zeros of the polynomial F(z; λ) are in the disc

k — n k — n

This result is due to Jankowski [1].
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