CENTERS OF PURITY IN ABELIAN GROUPS

R. S. PIERCE

This note is a supplement to the paper $[5]^1$ of J. D. Reid "On subgroups of an abelian group maximal disjoint from a given subgroup." Our main result is based on the observation that in the case of primary groups, a bit of extra information can be gleaned from Reid's Theorem 2.1. We are led to the following characterization of the "centers of purity" in a *p*-group.

THEOREM 1. Let G be a p-group. For each integer $k \ge 0$, define $P_k = G[p] \cap p^k G$. Let $P_{\infty} = G[p] \cap G^1$, and $P_{\omega+1} = P_{\omega+2} = 0$. Let H be a subgroup of G. Then H is a center of purity in G (that is, every subgroup of G which is maximal with respect to disjointness from H is pure) if and only if there exists k with $0 \le k \le \infty$ such that

$$P_k \supseteq H[p] \supseteq P_{k+2}.$$

It is easy to see that if G is a torsion group and H is a subgroup of G, then H is a center of purity in G if and only if every *p*-component H_p of H is a center of purity in the corresponding *p*component G_p of G. Thus, Theorem 1 can be used to determine the centers of purity in torsion groups. The following result shows that the centers of purity in arbitrary groups can also be characterized.

THEOREM 2. A subgroup H of an abelian group G is a center of purity in G if and only if the following two conditions are satisfied:

(i) the torsion subgroup H_i of H is a center of purity in the torsion subgroup G_i of G;

(ii) either G/H is a torsion group, or else, for all primes p,

$$H[p]\subseteq \bigcap_{n=0}^{\infty} p^n G$$
.

The problem of characterizing centers of purity in p-groups was first posed by J. M. Irwin in [2]. Irwin showed that any subgroup of a p-group G which is maximal disjoint from G^1 is pure in G. In [3], Irwin and Walker extended this result to arbitrary abelian groups. They also showed that if G is a torsion group and H is a subgroup

Received May 16, 1962, and in revised form July 12, 1962. This paper was written while the author was a Senior Postdoctoral Fellow of the National Science Foundation at the University of California, Berkeley.

¹ In this issue.

of G^1 , then H is a center of purity in G. Charles pointed out that the proof given in [1] of Erdélyi's theorem (see p. 81) shows that the subgroups pG, p^2G , p^3G , \cdots of a p-group G are centers of purity. Khabbaz (in [4]) showed how the proof of Erdélyi's theorem could be modified to obtain a short proof of Irwin and Walker's result. Finally, Reid established the general sufficient condition 2.1 of [5] for a subgroup H of an arbitrary group G to be a center of purity. It was Reid who introduced the term "center of purity." In the lemma below, we show that Reid's condition is necessary as well as sufficient for H to be a center of purity in a p-group G. This lemma is then used to prove Theorem 1, from which Theorem 2 follows easily. The author is indebted to Professor Reid for sending him a pre-print of the paper [5]. It was the reading of this paper which inspired the present work.

The notation and terminology of [5] will be used in this paper. In addition, we let O(x) denote the order of the element x.

LEMMA. Let G be a p-group, and suppose that H is a subgroup of G. Then there is a subgroup M of G such that M is maximal with respect to disjointness from H, and M is not pure in G, if and only if the following conditon is satisfied.

- (*) There exists $h \in H$ and $m \in G$ such that
- (i) O(m) > O(h) = p;
- (ii) $h_p(m) = h_p(h) < h_p(m+h);$
- (iii) $\{m\} \cap H = 0.$

Proof. Suppose that M is a subgroup of G which is maximal disjoint from H and not pure in G. Using the fact that two subgroups of a p-group are disjoint if and only if their p-layers are disjoint, it is easy to see that M is maximal disjoint from H[p]. Therefore (*) is satisfied by Theorem 2.1 of [5]. (It is clear from the proof of 2.1 that $pm \neq 0$, so that O(m) > O(h).)

Assume conversely that the condition (*) is satisfied. Let r be a natural number such that $h_p(m) < r \leq h_p(m+h)$. Define $P_r = p^r G \cap G[p]$. Let $O(m) = p^j$, where, by (i), j > 1. Then by (i), $n = p^{j-1}m = p^{j-1}(m+h)$ has height $\geq r+1$. Thus, $n \in P_r$. However, by (iii), $n \notin H[p]$. Consequently, there is a vector space decomposition

$$P_r = S \bigoplus (P_r \cap H[p]), \quad n \in S.$$

By (i) and (ii), $h \in H[p]$ and $h \notin P_r \cap H[p]$. Therefore, there is a decomposition

$$H[p] = T \oplus (P_r \cap H[p]), \quad h \in T.$$

Clearly,

$$P_r + H[p] = S \oplus T \oplus (P_r \cap H[p])$$
 .

Finally, choose a decomposition

$$G[p] = R \oplus (P_r + H[p])$$
.

Define

 $M_{\scriptscriptstyle 0}=R\oplus S$.

Then we have

$$G[p] = M_{\scriptscriptstyle 0} \oplus H[p]$$
 , with $n \in M_{\scriptscriptstyle 0}$.

Let π be the projection mapping determined by this decomposition:

 $\pi: G[p] \rightarrow H[p]$.

Note that by the construction, $\pi(P_r) = P_r \cap H[p]$. Define

$$K = \{M_{\scriptscriptstyle 0}, m\}$$
 .

It is easy to see that since $p^{j-1}m = n \in M_0$, the *p*-layer of *K* is M_0 . Thus, $K[p] \cap H[p] = M_0 \cap H[p] = 0$, and therefore $K \cap H = 0$. Let *M* be maximal containing *K* and disjoint from *H*. The proof of the lemma is completed by showing that $h_p^{\scriptscriptstyle M}(pm) \leq r$. Indeed, this will imply that *M* is not pure, because

$$h_p(pm) = h_p(p(m+h)) \ge h_p(m+h) + 1 \ge r+1$$
.

Suppose that $h_p^{\underline{M}}(pm) \ge r+1$. Then $z \in M$ exists satisfying

 $p^{r+1}z = pm$.

Consequently,

$$u=p^rz-m\in M\cap G[p]=M\cap (M_0+H[p])=M_0+(M\cap H[p])=M_0$$
 .
Since $h_p(m+h)\geq r$, we can write

$$m + h = p^r y$$

for some $y \in G$. Thus,

$$p^r(y-z) = h - u \in G[p] \cap p^r G = P_r$$
,

and therefore since $u \in M_0$,

$$h = \pi(h - u) \in \pi(P_r) = P_r \cap H[p] \subseteq P_r$$
.

However, $h_p(h) < r$ by the choice of r. This contradiction shows that $h_p^{\underline{M}}(pm) > r$ is impossible, so that the proof of the lemma is complete.

We can now prove Theorem 1. Suppose that $P_k \supseteq H[p] \supseteq P_{k+2}$. If $k = \infty$, there cannot be any $h \in H[p]$ satisfying condition (ii) of the lemma. Suppose therefore that k is finite. Assume that $h \in H$ and $m \in G$ exist satisfying conditions (i), (ii) and (iii) of (*) in the lemma. Let $h_p(h) = j$. Then $k \leq j < h_p(m+h) \leq \infty$. Let $O(m) = p^f$, where $f \geq 2$ by (i). Write x = m + h. Then $h_p(x) \geq k + 1$. Consequently, $h_p(p^{f-1}x) \geq k + 2$. Therefore, $p^{f-1}m \in P_{k+2} \subseteq H[p]$. This is contrary to (iii). It follows that H is a center of purity in G. Conversely, suppose that $P_k \supseteq H[p] \supseteq P_{k+2}$ is not satisfied for any k. Then in particular, $H[p] \not\subseteq P_{\infty}$. Since $P_{\infty} = \bigcap_{k < \omega} P_k$, it follows that $H[p] \not\subseteq P_j$ for some finite j. Let $k \geq 0$ be the largest natural number such that $H[p] \subseteq P_k$. The maximality of k and the fact that $P_k \supseteq H[p] \supseteq P_{k+2}$ is false implies that

$$H[p] \nsubseteq P_{k+1}$$
, $H[p] \sqsubseteq P_k$, and $P_{k+2} \nsubseteq H[p]$.

Therefore, there is an element $h \in H[p]$ such that $h_p(h) = k$, and there exists $u \in P_{k+2}$ such that $u \notin H[p]$. Let u = pv, where $v \in G$ and $h_p(v) \ge k + 1$. Define m = v - h. Then $O(m) = p^2 > p = O(h)$, $h_p(m) = k$, $h_p(m + h) = h_p(v) \ge k + 1$, and $\{m\} \cap H = 0$, since $pm = pv = u \notin H[p]$. It follows from the lemma that H is not a center of purity in G. The proof of Theorem 1 is therefore complete.

Theorem 2 is obtained with the help of Theorem 1, by refining the proof of Lemmas 3.5 and 3.7 in [5]. Suppose that G/H is a torsion group, and H_t is a center of purity in G_t . If M is maximal disjoint from H, then $M \subseteq G_t$, and a short calculation shows that Mis maximal disjoint from H_t in G_t . Therefore M is pure in G_t , and hence also in G. Next, suppose that $H[p] \subseteq \bigcap_{n=0}^{\infty} p^n G$ for all primes p. If H is not a center of purity in G, then by Theorem 2.1 in [5], there exists $h \in H_p$ such that $h_p(h) < \infty$. Let $O(h) = p^r$. Using the same argument that was given in the last paragraph of the proof of 2.1 in [5], we can show that $h_p(p^{r-1}h) < \infty$. This contradiction proves that H must be a center of purity. Suppose conversely that H is a center of purity in G. It is a routine exercise to show that H_t is a center of purity in G_t . Assume that G/H is not a torsion group and for some prime p, $H[p] \not\subseteq \bigcap_{n=0}^{\infty} p^n G$. Let k be the largest integer such that $p^k G \supseteq H[p]$. Then by Theorem 1

$$p^kG\cap G[p]\supseteq H[p]\supseteq p^{k+i}G\cap G[p] \ , \qquad p^{k+i}G\cap G[p] \supseteq H[p] \ .$$

Let $t \in H[p]$ satisfy $h_p(t) = k$. Since G/H is not a torsion group, an element $x \in G$ exists satisfying $O(x) = \infty$ and $\{x\} \cap H = 0$. Consequently $\{p^{k+2}x + t\} \cap H = 0$. Let M be maximal disjoint from H, with $p^{k+2}x + t \in M$. Then $p^{k+3}x = p(p^{k+2}x + t) \in M$. Since H is a center of purity, M is pure. Consequently, $m \in M$ exists satisfying $p^{k+3}m =$

$$p^{k+3}x$$
. Thus, $p^{k+2}(x-m) \in p^{k+2}G \cap G[p] \subseteq H[p]$. Therefore,

$$p^{k+2}x + t - p^{k+2}m = p^{k+2}(x - m) + t \in H \cap M = 0$$
,

so that $h_p(t) \ge k + 2$. However, $h_p(t) = k$ by choice. The contradiction shows that the condition (ii) must hold.

References

1. L. Fuchs, Abelian groups, Budapest, 1958.

2. J. M. Irwin, High subgroups of Abelian torsion groups, Pacific J. Math., **11** (1961), 1375-1384.

3. J. M. Irwin and E. A. Walker, On N-high subgroups of abelian groups, Pacific J. Math., **11** (1961), 1363-1374.

4. Samir Khabbaz, On a theorem of Charles and Erdélyi, Bull. Soc. Math. France, 89 (1961), 103-104.

5. J. D. Reid, On subgroups of an abelian group maximal disjoint from a given subgroup, Pacific J. Math., **13** (1963), to appear.

UNIVERSITY OF WASHINGTON, SEATTLE