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If A is a compact continuum in En

y then En\A is the decompo-
sition of En whose only nondegenerate element is A. If C is an
w-cell in En, let N(C) be the set of points on BdC at which BdC is
not locally polyhedral.

In [1], Andrews and Curtis proved that if A is an arc in En,
then En[A x E1 is homeomorphic to En+1. In Theorem 2 of this paper
it is proved that if C is a 3-cell in E3 such that there exists an arc
A on BdC containing N(C), then E3/A is homeomorphic to E3/C. It
follows that E3\G x E1 is homeomorphic to E\

J denotes the set of all positive integers and d is the usual
metric for E3. An n-manifold is a separable metric space K such
that each point of K has a neighborhood which is homeomorphic to
E*. An n-manifold-with-boundary is a separable metric space M
such that each point of M lies in an open set V such that the closure
of V is an w-cell (the homeomorphic image of {(xl9 x2, , £cw): OJ? +
%l + - + x\ S 1}). If M is an ^-manifold-with-boundary, then the
boundary of M is the set of points of M which do not have neighbor-
hoods homeomorphic to En. The boundary of M is denoted by BdM.

The term "interior" is used in two different ways. The interior
of an w-manifold-with-boundary M is M — BdM. If T is a compact
connected 2-manifold in E3 such that E3 — T is the union of two
disjoint open sets each having T as its boundary, then the interior
of T is the bounded component of E3 — T. In either case the in-
terior of a set L is denoted by (int L). The exterior of T is the
unbounded component of E3 — T and is denoted by (ext T). If Xis
a set in E3 and e is a positive number, let Cl(X) be the closure of
X and F(X, β) be {y: yeE3 and ώ(X, y) < e}.

THEOREM 1. Let C and A be compact sets in E3 such that there
exist sequences U and V of open sets in E3 and a sequence h of
homeomorphisms of E3 onto itself such that

(1) Cl(Ui+1) c Uif Π {Uj .je J} - C, Ux is bounded,
(2) Cl(Vi+ί) c Vi9 Π {Vd: j G J} = A, VΊ is bounded, and
(3) ^ [ ϋ i - Ci(C7i+1)] = V, - Cl(Vi+1), and ht - ^_ x on E3 - U,.

Then E3/C is homeomorphic to E3jA.
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Proof. If x e (E* - C), let g({x}) be {lim h^x)}, and let g(C) be
A. Then g is a homeomorphism of E3/C onto ϋ73/A

THEOREM 2. Lei C be a 3-cell in Ez such that there exists an
arc A on BdC such that N(C) c A. Then E3/C is homeomorphic to
E*IA.

Proof. Let C and A satisfy the hypothesis of Theorem 2.

LEMMA 1. If e is a positive number, there exist a 3-manifold-
with-boundary S and a homeomorphism he of E* onto itself such
that (1) C c (int S), (2) if x e [E* - V(C, e)] (J A, hβ(x) = x, and (3)
Λβ[CZ(int S)] c V(A, e).

Proof of Lemma 1. Let P be the solid parallelepiped with the
set of vertices

{((~ir, (-1Γ, 0): m, ne J} U {((-l) , (~l)m, -1): mfneJ}.

There exists a homeomorphism g oί C onto P such that
{(x, 0, 0): — 1 ^ x ^ 1}. There exists a number 6, 0 < b < 1, such that
{(x, y, z): y2 + z2^ b2 and (x, y, z)eP}c g[V(A, e)]. Let E be {(x, y, z):

y2 + z2 = b2 and (OJ, y, z) e P}.

Let D be ^[i?]* A be the component of BdC — D containing A,
and A be BdC - CT(A). Notice that each of D U A and D U A is
a 2-sphere which bounds a 3-cell, and Cί(int (D U A)) c V(A, e).

Now 5cίi) is a simple closed curve which lies on a tame disk,
and therefore BdD is a tame simple closed curve. It follows from
Theorem 7 of [2] that, without loss of generality, it can be assumed
that D is locally polyhedral at each point of (int D). But then D
is tame ([3]). Thus it can be assumed that D is a tame disk.

Since D and Cl(D2) are tame disks which intersect in the boundary
of each, D U A is a tame 2-sphere ([3]). Thus there exists a homeo-
morphism / of E3 onto itself such that /[CZ(int(Z> U A))] = P,f[D]
- {(x, y, 0): (x, y, 0) € P}, and /[CT(int (D U A)) - D] c {(a, y, z): z > 0}.
Let U be /[7(C, β)] and W be /[F(A, β)]. Since

Ci(int (D U A)) c VXA, β),/[Cl(int (D U A))] c PΓ.

There exists a positive number c such that Cl( V(P, c)) c U. Let
To be Cl(V(P,c)). If » e ( / [ C ] - Γo), let Tx be a polyhedral 3-cell
such that x e (int Tx) and T* c (1^ Π {(x, y, z): z > 0}). Then there
exists a finite subcollection {Tlt Γ2, , Tn} of {Tx: xe (f[C] - To)}
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such that {To, Tlf T2, ••, Tn} covers f[C]. Assuming that BdT0,
BdTlf '-, and BdTn are in relative general position, let H be
U {T<: i = 0,1, 2, , n}. H is a polyhedral 3-manifold-with-boundary
and f[C] c (int H)czHdU. Furthermore, since (H- {(x, y, z): z < 0})
c W and H Π {(a?, #, z): £ ̂  0} is Cl(V(P, c)) Π {(», 2/, «): « ^ 0}, there
exists a homeomorphism fc of E* onto itself such that if x e (E* — U)
U {{x, y, z): z ^ 0}, k(x) = x, and k[H] c 17.

Let he be /^fc/ and S be / ^ [ i ϊ ] . Then λβ and S satisfy the
conclusion of Lemma 1.

LEMMA 2. There exist a sequence Slf S2, of S-manίfolds-with-
boundary and a sequence h of homeomorphisms of E* onto itself
such that

(1) Sx c V(C, 1),
(2) S U c (int S;),
(3) n {(int Sj):jeJ} = C,
(4) n {(int hjlSj]): j e J} = A, and
(5) if xe ((int Sk) - Sk+1), hk+1(x) = hk(x).

Proof of Lemma 2. Lemma 2 follows immediately by repeated
application of Lemma 1.

For each positive integer i, let E7i be (int Si) and VΊ be / î[(int Si)].
Then the sequences C7, V, and /̂  satisfy the hypothesis of Theorem
1. Thus E*IC is homeomorphic to E3/A.

COROLLARY 1. If C satisfies the hypothesis of Theorem 2, then
EsjC x E1 is homeomorphic to E\

COROLLARY 2. Let C be a S-cell in E* such that N(C) is a O-
dimensional set. Then E3/C x E1 is homeomorphic to E4.

Proof. N(C) is a compact O-dimensional set on BdC. Thus
there exists an arc A on BdC such that N(C) c A. Then the result
follows from Corollary 1.

THEOREM 3. Let C be a 3-cell in E3 such that there exists a
disk D on BdC containing N(C). Then E3jC is homeomorphic to

Proof. The proof of Theorem 3 is analogous to the proof of
Theorem 2.



196 DONALD V. MEYER

REFERENCES

1. J. J/Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math., 75 (1962),.
1-7.
2. R. H. Bing, Approximating surfaces by polyhedral ones, Ann. of Math., 65 (1957),.
456-483.
3. E. E. Moise, Affine structures in 3-manifolds VIII. Invariance of the knot-types'r
local tame imbedding, Ann. of Math., 59 (1954), 159-170.

STATE UNIVERSITY OP IOWA




