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l Introduction. Let X be a compact Hausdorff space and let
C{X) be the Banach space of continuous real or complex valued
functions on X, with supremum norm. We are concerned with the
set & of positive bounded constant decreasing projections in C{X).
That is, & is the set of bounded linear operators T: C{X)—> C(X)
which have the properties T2 = T, Tf ^ 0 if / ^ 0, Γ l ^ 1. A great
deal is known about the structure of such T when the range of T is
a closed self-ad joint subalgebra of C(X) containing constants [1] [4] [5].
In the present paper we develop a corresponding representation theory
for members of &. An application to Markov processes is given.

2 Representation theory* Let X denote the σ-field of Borel
subsets of X We represent the conjugate space of bounded linear
functional on C(X) as the space of regular real or complex Borel
measures in X, with variation norm. In all that follows, the topology
in C*(X) will be the C(X) (weak*) topology.

THEOREM 1. The members of & correspond 1 — 1 to certain C*(X)
valued functions on X, as follows. Suppose t: X—*C*(X) corresponds
to Te^. Then t and T are related by (i), and t has properties
(ii)-(iv):
( i ) Tf(x) = \f(x')tx(dx'), xeX,fe C(X)

(ii) t: X-^ C*(X) is continuous (with the C(X) topology in C*(X)).
( i i i ) tx ^ 0 , t x ( X ) ^ 1 , x e X

(iv) tx = \ta,tβ(dx'), xeX.

Proof. Suppose Γ e ^ is given. Standard representation theory
for bounded linear transformations into C(X) gives (i) and (ii) im-
mediately [2, p. 490]. Property (iii) is a consequence of T Ξ> 0, TΊ ^ 1.
It is to be noted that the conditions T ^ 0, Tl ^ 1, T Φ 0 which
characterize the nonzero members of & are equivalent to the con-
ditions T ^ 0 , || T| | = 1. The function t is simply the restriction of
the adjoint Γ*: C*(X)—>C*(X) to domain X, regarding X as the set
of unit point measures in C*(X). The adjoint itself has the represen-
tation
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(2) T*λ = [tx\(dx), X e C*(X) ,

where the integration is in the weak* sense [3]. (That is, for given
λeC*(X) the value of the integral in (2) is the element of C*(X)
whose values for fe C(X) are

Condition (iv) is a consequence of T2 — T; the integration again is in
the weak* sense. Conversely, any t with properties (ii)-(iv) determines
a Γ e ^ according to (i), and the theorem is proved.

Let φ be the equivalence in X defined by xλφx2 if and only if
ίfl = ί.a. On the quotient space Y^X/φ define t: Γ-> C*(X) by
ty = tx if y — πx, xeX where π: X—* Y is the quotient mapping.
General considerations show that t is a homeomorphism of compact
Hausdorff Y and the set K = {tυ: yeY} of various distinct values of
t. The quotient mapping is closed, so that the decomposition {π~ιy:
1/eΓ} of I into closed equivalence classes is upper semicontinuous.

Denote by Kx the closed convex hull of K U {0}, where 0 is the zero
measure. Since K U {0} is compact, Kλ is compact, and is hence the
closed convex hull of its extreme points. Denote by Yo the set of all
yeY such that ty Φ 0 is an extreme point of Kλ) all extreme points
of Kx are to be found in {tv:ye Yo} U {0} [2, p. 440].

THEOREM 2. For each y e Yo the measure ty lives on π^y; that
is, ty(E) = tyiEOπ-'y), EeX, yeY0. Moreover, ty(X) = 1, ye Yo.

Proof. Property (l.iv) is

(3) ty

in terms of t. Fix y e Yo, and suppose there exists a closed set F
disjoint from π~λy such that ty(F) > 0. Since t is one-to-one and
continuous, tπF — {tπx: xeF} is a compact set which does not contain
ty. The closed convex hull of tπF does not contain tv, either (other-
wise ty e tπF, ty being extreme [2, p. 440]). Thus there exists fe C(X)
which separates ty and tπF strictly. Expressing (3) as

we see that ty is expressed as a proper convex combination of elements
of Kx distinct from ty. This contradicts the assumption that ty is an
extreme point of Kx. The regularity of each ty shows that ty lives
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on π~λy when y e Yo. The same sort of argument shows that if ty(X) Φ
0, then ty is not an extreme point of Kx unless ty(X) — 1.

THEOREM 3. Yo is closed.

Proof. Define u: Γ->C*(Γ) by uy(E) = t^π-'E), EeY, ye Y.
The continuity of t implies that u is continuous with the C(Y) topology
in C*(Y). From Theorem 2, uv is for each yeY0 the unit point
measure at y. Thus for each feC(Y) we have

(4) /(»)= \f(y')uy(dy'),yeY0.

Since for each feC(Y) the members of (4) are continuous in y, the
equality (4) persists for y e Ϋo. This implies that uy is the unit point
measure at y for each y e ΫQ. It follows that ty lives on π~xy for
each y e ΫQ. It should be clear that each such ty, y e Ϋo, is necessarily
an extreme point of Klf and the theorem follows.

THEOREM 4. For each yeY the measure ty lives on TC^YQ; that
is, ty(E) = ί ^ Π π - T o ) , EeX, yeY.

Proof. Since {ty,yeY} is in t h e closed convex hull of compact
{ty, yeY0}\J {0}, for each yeY t h e r e exists a Borel measure vy ^ 0
on compact Yo such t h a t

( 5 ) ί, = [ ty,vy{dy')

in the weak* sense. Let F be an arbitrary closed subset of X — 7z^Y0,

and let fe C(X) satisfy f(F) = 1, / ( T Γ " 1 ^ ) = 0, 0 ̂  / ^ 1. From (5)

and Theorem 2 one has \f(x)ty{dx) — 0, yeY, and hence ty{F) — 0,

yeY. Since each ty is regular, the theorem follows.

3 Invariant measures and functions* We now characterize the
ranges of Γ* and T. From (2), any invariant measure Γ*λ is con-
tained in the weak* closed subspace spanned by {tx, xe X}. From
(l.iv), each tx is invariant, xe X. Thus range (T*) is the weak* closed
subspace spanned by {tx, x e X}. The extreme points {ty, y e YQ} con-
stitute a minimal spanning set, clearly.

From (l.i), any invariant function Tf is constant on equivalence
classes, and so determines an element of C(Y). Restriction of domain
to YQ gives an element of C(Y0). Conversely, let f0 be an arbitrary
element of C(Y0). Define function / by

( 6 ) f(x) = ^ fo(πx')tx(dx'), xeX.
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It follows from Theorem 3 and the Tietze extension theorem that
feC(X) and hence that Tf = f. From Theorem 2, the contraction
procedure described above applied to / gives f0 back again. It should
then be clear that (6) establishes an isometric order isomorphism of
C(YQ) and range (T). The isomorphism is algebraic if and only if
Yo = Y [4].

4. Application to Markov chains. Let (Xlf J^) be a measurable
space, and let p(x, E), xeXly Ee^, be a transition subprobability.
That is, p(x, •) is a measure on ^ for each xe Xλ and 0 ^ p{-, E) ^ 1
is a measurable function for each EeJ?~~. Denote by B(XU J^~) the
Banach space of all bounded real or complex measurable functions on
Xu with supremum norm. Then P: B(XU j^~) —> B(XU ^) defined by

Pf(x) = \f(x')P(x, dx'), x e Xl9 fe B(Xlf

has the properties P ^ 0, | | P | | ^ 1 . Suppose there is an operator T
(necessarily unique) in the closed convex hull of {Pn, n — 1, 2, •} in
the weak operator topology with the properties TP = PT = T. Then
T has the properties T ^ O , | | Γ | | ^ 1 , and is the projection onto the
subspace of invariant functions of P.

We assume without essential loss of generality that B(Xl9 J?~)
separates the points of Xlm Then there is a totally disconnected compact
Hausdorίf space X containing Xλ as a dense subset such that each
element of B(Xly J^~) extends uniquely to an element of C(X) [2, p.
276]. Operator P becomes an operator P:C(X)-*C(X) with the
properties P ^ 0, | | P | | ^ 1. Such an operator necessarily has the form

Pf(x)\= \f(*')P.(dx'), xeX,fe C(X) ,

where p: X—*C*(X) is continuous with the C(X) topology in C*(X)
and has the properties px ^ 0, px(X) ^ 1 , xe X. Clearly, p is the
extension of the given transition subprobability to all of X

The operator T becomes a projection in C{X) to which our results
apply. Each set π~ιy,ye Yo is an ergodic set and X — π~λYQ is the
dissipative set, according to

THEOREM 5. // y e Yo then for almost all x e π~ιy with respect
to ty the measure px lives on π~xy.

Proof. From TP = T we obtain

\ty(dx)\px(dx')f(dx') - jί f(a0/(*'), VG Γ, feC(X) .
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Fix yeYQ and let F be any closed set disjoint from π~xy. Let fe C(X)
be such that f(F) = 1, /{π^y) = 0, 0 ^ / ^ 1. The right-hand side
above vanishes, from Theorem 2, which requires px(F) = 0 for almost
all x with respect to ty. Since px is regular, the theorem follows.
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