ON THE GENERATION OF DISCONTINUOUS GROUPS

JOSEPH LEHNER

In a paper in this Journal (v. 11, p. 675) M. I. Knopp remarked that G(j), the principal congruence subgroup of level $j \ge 2$ of the modular group, can be generated exclusively by parabolic transformations if and only if it is of genus zero. The following natural generalization is easily proved :

Let Γ be a horocyclic¹ group of genus g. Then Γ possesses a system of generators consisting entirely of parabolic and elliptic elements if and only if g = 0.

Knopp's result is a special case, since G(j) has no elliptic substitutions.

For the proof we appeal to the classical result that Γ has a canonical fundamental region whose sides are conjugated by elliptic and parabolic substitutions and 2g hyperbolic substitutions $A_1, B_1, \dots, A_g, B_g$ (cf. [1], p. 182 ff). These substitutions generate Γ . If g = 0, the hyperbolic ones are absent and the conclusion follows.

Conversely, let Γ be generated by elliptic and parabolic transformations T_1, \dots, T_s . Let the domain of existence of Γ be, for example, the upper half-plane H. Denote by H^+ the union of H and the parabolic cusps of Γ . If g > 0 there exists an abelian integral of the first kind, that is, a function F regular in H^+ such that

(*)
$$F(Lz) = F(z) + C(L)$$

for all $L \in \Gamma$. Each T_i has a fixed point lying in H^+ . Letting z tend to this fixed point in (*), we see that $C(T_i) = 0$, $i = 1, \dots, s$. Since

$$C(L_1L_2) = C(L_1) + C(L_2)$$
,

and the T_i generate Γ , we have

$$C(L)=0$$

for all $L \in \Gamma$. The abelian integral F has zero periods and is therefore an automorphic *function* on Γ . Since it is regular in the closed fundamental region, it is a constant. Differentiating, we conclude that there are no abelian differentials of the first kind except 0,

Received June 15, 1962.

¹ A discontinuous group Γ is called horocyclic (*Grenzkreisgruppe*) if there is a fixed disk (or half-plane) preserved by each element of Γ and every boundary point of the disk is a limit point of Γ .

JOSEPH LEHNER

whence Γ is of genus 0. This completes the proof.

That a group of genus 0 cannot always be generated entirely by parabolic elements is shown by the following example, supplied by Morris Newman. Let H be the group generated by G = G(3) and T, where $T\tau = -1/\tau$. Since T is of period 2 and commutes with G, we have

$$H = G + TG.$$

Now G is of genus 0, as is known. Let $f(\tau)$ be a univalent function on G with a simple pole at $\tau_0 \neq i$. Then $f(\tau) + f(-1/\tau)$ is univalent on H, which is therefore of genus 0. A parabolic element P of H cannot lie in TG, for P has trace ± 2 whereas $TG \equiv T \pmod{3}$ has trace divisible by 3. Hence P is in G, and therefore every product of parabolic elements of H is also in G. It follows that H cannot be generated by parabolic elements alone.

Instead of G(3) we could also have used G(4) or G(5).

REFERENCE

1. R. Fricke-F. Klein, Vorlesungen über die Theorie der automorphen Funktionen, vol. 1, Teubner, Leipzig, 1897.

NATIONAL BUREAU OF STANDARDS AND MICHIGAN STATE UNIVERSITY