
SOME METRICS ON THE SUBSPACES OF

A BANACH SPACE
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Notation, Terminology and Conventions* We shall denote by [X]
the Banach algebra of all bounded operators mapping a Banach space
X into itself. Unless otherwise stated, all operators are defined every-
where and bounded, and all convergence of operators is with respect
to the uniform operator topology. An invertible element of [X] will
be called an invertible operator or an automorphism. A linear homeo-
morphism of one Banach space onto another will be called an
isomorphism. The symbol "J" will be used for the identity operator.
The term "subspace" will mean "closed linear manifold," and given a
subspace Y, we will denote by Σ(Y) the set, {ye Y\ \\y\\ — 1}. Finally,
the set of subspaces of a Banach space X will be denoted by Sx.
Additional terminology and notation will be developed as needed.

Introduction* This paper is devoted to the study of three metrics
on the set of subspaces of a Banach space : one due to J. J. Schaffer
(see §1), one obtained as a modification of the opening (see § §2 and 3),
and one due to J. D. Newburgh (see §7). I am indebted to Dr. J. J.
Schaίfer for helpful conversations and suggestions, and for the elegance
of the demonstration in §5. In addition, it was a desire on my part
to find geometric properties of his metric which led me to compare
it with the opening. It turns out that this metric has strong con-
nections with the opening. The connections between the three metrics,
as well as properties of the opening of interest in themselves, form
the subject matter of this paper.

l The metric of Schaffer. In this section we list some of Schaffer's
results surrounding the definition of his metric. This metric is intro-
duced and discussed in [11].

DEFINITION. Let X be a Banach space. For arbitrary subspaces
Y, Z we define :

ro(Γ, Z) =

inf {\\C — 111 \C is an invertible operator and CY = Z},

if such an operator C exists.

1, if no such operator C exists.
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r(Y, Z) = max{ro(F, Z), ro(Z, Y)} .

d(Y, Z) = \og(l + r(Y, Z)) .

(1.1) d is a metric on SΣ .

(1.2) ro(Y,Z)^l.

(1.3) ro(Y, Z) < 1 implies ro(Z, Y) 5S
1

(1.4) ro(Y, Z) ^ r(Y, Z) ^

If, in addition, ro(F, Z) < 1, then

r(Γ, Z)^- _

(1.5) If there exist projections Pτ and P^ with ranges Y and ^,
respectively, such that \\PY — Pz\\ < 1, then I — Pγ + P z is an inver-
tible operator mapping Y onto ϋΓ, and consequently

rQ(Y, Z) ^ \\PY - Pz\\ .

DEFINITION. We shall say that a subspace is complemented provided
X is the direct sum of it and another subspace.

(1.6) The set of complemented subspaces is an open set relative
to d.

2. The opening.. This section is devoted to the concept of open-
ing, which was first introduced in Hubert space by M. G. Krein and
M. A. Krasnoselski [8]. The definition given by these authors is as
follows:

Let Y and Z be subspaces of a Hubert space X. The opening of
Y and Z, which will be designated as Θ(Y, Z), is defined as \\PY — Pz\\,
where PF(resp., Pz) is the projection on Y along Y3- (resp., on Z
along ZL).
This definition was later extended to arbitrary Banach spaces in a
paper by M. G. Krein, M. A. Krasnoselski, and D. P. Milman [9] as
follows:

Let Y and Z be subspaces of a Banach space X. The opening
of Y and Z, Θ(Y, Z), is defined by

Θ(Y, Z) = max {sup ρ(y, Z), sup ρ(z, Y)} ,
ver zez

\\y\\=i 11*11=1

where p(x, S) denotes the distance of the point x from the set S-

A proof that this definition actually extends the one originally given
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in Hubert space may also be found in §34 of [1]. This definition of
θ for an arbitrary Banach space, strictly speaking, does not make
sense if one or both of Y, Z is {0}. If one and only one of Y, Z is
{0}, we set Θ(Y, Z) equal to 1, and we also take 0({O}, {0}) to be 0.

It is evident that 0 ^ Θ(Y9 Z) g 1, and that Θ(Y, Z) = Θ{Z, Y).
Also, by the lemma of F. Riesz (see Theorem 3.12-E of [13]), if Y
is a proper subspace of Z, then Θ(Y, Z) = 1. Roughly speaking, there
are various properties which are shared by subspaces whose opening
is sufficiently small. We give some sample theorems illustrating this
point. Their proofs may be found in [3].

2.1. THEOREM. Let Y and Z be subspaces of a Banach space,
with Θ(Y, Z) < 1. // one of Y, Z is finite dimensional, then both
have the same dimension.

2.2. THEOREM. (See also §34 of [1].) // Y and Z are subspaces
of a Hilbert space, and if Θ{Y, Z) < 1, then Y and Z have the same
orthogonal dimension.

2.3. THEOREM. // Y and Z are subspaces of a Banach space
whose opening is less than 1/2, then the minimum cardinality of a
dense subset of Y is the same as that of Z.

3. Uniform structure determined by θ. It is evident that θ is
a metric on the subspaces of a Hilbert space. However, it is not
true for an arbitrary Banach space X that θ is a metric on Sx. In
fact, consider the real Banach space 11(2). For 0 < a < 1/2, let A be
the subspace generated by (l/(α + 1), a\(a + 1). Also let Z7and V be
the subspaces generated by (1, 0) and (2/3, 1/3), respectively. Then
it is straightfoward to verify that Θ(U, V) = 1/2, Θ(U, A) = a, and
Θ(A, V) = {1- 2a)/2(a + 1). Hence Θ(U, V) > Θ(U, A) + Θ(A, V), and
so the triangle inequality does not hold. Nonetheless θ is always quite
close to being a metric in just what sense we shall make precise
presently.

The metric θ is defined in [4] as follows :

DEFINITION. For subspaces Y, Z of a Banach space X we define
Z) by

Θ{Y, Z) = max{sup p(y, Σ(Z))9 sup p(z
eΣ(γ) βΣ()

In case one of Y, Z is {0}, we complete the definition by taking
θ( Y, Z) = θ( Y, Z), and we point out that in the definition above
9(Y,Z) is the Hausdorff distance [6] between Σ(Y) and Σ(Z). The
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following theorem occurs in [4].

3.1. THEOREM. For Y, ZeSx, Θ{Y,Z)j2 ^ θ(Y, Z) ^ Θ(Y, Z).
Thus θ determines the same uniformity on Sx as the metric θ (the
uniformity determined by θ has as a base the family of subsets of
Sx X Sx of the form {(Y, Z)\β{Y, Z) < r}, where r > 0). We shall
use the expression, "with respect to θ" instead of such expressions as
"with respect to the uniformity determined by θ" and "with respect
to the uniform topology induced by the uniformity determined by θ".
For our purposes, the expressions, "which respect to θ" and "with
respect to d", are interchangeable. In view of (1.4.) we can deal
similarly with r0 and d, and we shall do so.

The next theorem shows that the uniformity for Sx determined
by θ is contained in the uniformity determined by d, and so if a
sequence of subspaces in Cauchy (resp., convergent) with respect to
d, then it is also Cauchy (resp., convergent to the same limit) with
respect to θ.

3.2. THEOREM. If X is a Banach space, and Y and Z are sub-
spaces, then Θ{Y, Z) ^ r(Y, Z).

Proof. The nontrivial case is that in which r(Y, Z) < 1 and
neither Y nor Z is {0}. In this case, if C is an automorphism mapping
Y onto Z, and yeΣ(Y), we have

ftV,Z) £\\y - Cy\\ £\\I- C\\ .

Hence &vφyeΣmP(y,Z) ^ ro(Y,Z), and similarly sup,e^)iΦ, Y)^ro(Z, Y).

If X is a Hubert space, then θ and d determine the same uniformity
on Sx. This observation has been made on page 563 in [11], but, in
fact, we can state :

3.3. COROLLARY. If X is a Hubert space and Y and Z are
subspaces, then r(Y, Z) = Θ(Y, Z).

Proof. Let PF(resp., Pz) be the projection on Y along Γ±(resp.,
on Z along Z 1 ) . Θ(Y, Z) = \\PY - Pz\\. By (1.5.), r(Y, Z) £ Θ(Y, Z).

3.4. COROLLARY. // X is finite dimensional, then r0 and θ
determine the same uniformity on Sx.

Proof. X can be renormed with an equivalent norm which makes
it a Hubert space,
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4. Completeness of d and θ.

4.1. THEOREM. Let X be a Banach space. (Sx, d) is complete.

Proof. Let {Yn} be a sequence of subspaces such that

ro(Yn, Ym) >0 .

We can assume without loss of generality that ro(Yn, Yn+1) ^ 1/2Λ+1.
For each n let Cn be an invertible operator such t h a t :

CuYn = Yn+1, and | |/ -Cn\\<^.

Since | | |CJ| - 1| ^ | | / ~ Cn\\ < 1/2W, for each n, it is clear that

Σ l H C J I - i l
71 = 1

is convergent hence the infinite product

Π IIC.II - Π {1 + (HCII - 1)}
n=l w=l

is absolutely convergent. Let M be a bound for the sequence

We now use the following notation :

11 Cj — ^n^n-1

(4.2) llΓff Cy - Π CM = ||(C.+1 - /)(Π C,)
3=1 3=1 3=1

^ ||C.+1 - I|| Π
3=1

Let Tn = Π?=iCy. By (4.2.) \\Tn+1 - Tn\\ ^ M/2W+1. Thus the series
Σ"=i(2\+i ~~ Tn) is absolutely convergent, and so {Tn} converges. Let
To = limnΓ».
For each i,

Consequently, for each n
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( 4 . 3 ) II n II — II i 2 »-i n II = -

Since ΠjU(l — (1/2')) converges absolutely, we have by (4.3) :

M\\T?\\ < ~
n

It now follows (see Theorem 4.11.1 of [7]) that To is invertible.
Let Yo =- ToiYJ. Clearly for each n, TnYx = Yn+U and so

T rΓ~1V TV V
•*- O 1- n •*- » + l — •* 0 •* 1 — ^ 0

Hence TQT~X is an invertible operator mapping Yn+1 onto Yo. For each

ro(Yn+1, Yo) £ | | J - Γ 0 Γ^ | | = | | (Γ. - Γ 0 )Γ- | | ^ | | Γ - | | \\Tn - Γo|| .

Since {||7Y||} is bounded, and \\Tn - Γ 0 | | ->0, we have that

Therefore Y"w —-> Fo relative to d. This completes the proof.
The completeness theorem for # is shown in [4].

4.4 THEOREM. Let X be a Banach space. (Sx, θ) is complete.

This result could also be obtained using the theorem on completeness
of Hausdorff distance when the underlying space is complete (see page
198 of [10]), which gives the result that if {Yn} is a sequence Cauchy
with respect to θ, then θ(Yn, Z)—>0, where the subspace Z is

{x e XI x = lim yn , for some sequence {yn} e Π " = i ^ }

5 Partial converse to 3 2 The theorem of this section shows
that under certain circumstances, r0 can be made arbitrarily small by
taking θ sufficiently small. We shall use a notion and a result occur-
ring in [4].

DEFINITION. The minimal angle φ{m)(Y, Z) between two nonzero
subspaces Y, Z of a Banach space is defined by

sin φ{m)(Y, Z) = inf \\y + z\\, with 0 ^ φ{m)(Y, Z) ^ — .
yβY zEZ 2

m&x[\\y\\, \\z\\} = l

The following result is valid:
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Let Y and Z be nonzero subspaces of a Banach space.
Then YΓ\Z = {0} and Y + Z is closed if and only if φ{m)(Y, Z) > 0.

Also of use will be the notion of angular distance [2].

DEFINITION. Given two nonzero vectors x, y, we define the angular
distance between them a[xy y] by

M I \\y

The fact about angular distance which we shall need (Lemma 5.1 of
[11]) is that for nonzero vectors x, y,

(5.1) a[x, y] max {|| x ||, || y ||} ^ 2 || x - y || .

Before proving 5.2 we point out that if one replaces (5.3) by
the condition

9(Y, Y')< sin φ{™\Y,Z) ,

then a result in [4] gives the conclusion that X is the direct sum of
Y' and Z, from which the authors of [4] conclude the result 5.7.
However, the important result (5.4) cannot be obtained from this
development in [4], which supplies no quantitative information. More-
over, the following simple example shows that there are cases where
the hypotheses of [4] do not hold and those of 5.2 do. Let X be a
Hubert space and xu x2 orthogonal unit vectors. Let Y be the sub-
space spanned by xu let Z = Y1, and for each complex number λ,
let Y'κ be the subspace spanned by x1 + Xx2. Then sin Φ{m)(Y, Z) =
| | P F | | = 1. It is straightforward to verify that for each λ,

Θ(Y, Y!) = V l ^ l and 9(Y, YJ) = ^ 2 -

Thus the hypotheses of 5.2 are satisfied for all λ, while those of [4]
are violated for sufficiently large |λ | .

5.2 THEOREM. Let X be a Banach space which is the direct
sum of subspaces Y and Z with Y Φ {0}, X. Let Pγ {resp., Pz) be
the projection on Y along Z (resp.f on Z along Y). If Yf is a sub-
space such that

(5.3) θ{ Y, Y>) < min | _ L - , sin *<->( Y, Z)\ ,
^ II PY II J

then X is the direct sum of Yr and Z. Furthermore, denoting by
Pγ, the projection on Yf along Z, we have that I — Pγ + Pγ, is an
invertible operator mapping Y onto Yr, and
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(5.4) ro(Y, Y>) £ || P r - Pτ. || * || P. || || P r

γr)

Proof. We first show that the sum of Y' and Z is closed and
direct. If y'eΣ(Y') and zeΣ(Z), then for each <5 > 1, there is a
vector y8 in Γ such that \\y' - y*\\ ^ δθ(Y, Y'). Hence

α[y', z] ^ \\z - yΛ || - | |y ' - y> || ^ s i n ^ > ( Γ , Z) - δθ(Y, Y') .

Letting 3 —> 1+, we have

α[lΛ s] ^ sin φ{m)(Y, Z) - Θ{Y, Y') > 0 .

with the aid of (5.1), we infer that sin0 ίm)(Γ', Z) > 0.
To establish that X is the direct sum of Y' and Z, we show that

YξΞ=Y' + Z. Results obtained in the process will be used to establish
(5.4). Let η be any number such that 1 < η < (|| Pγ \\ Θ{Y, Y'))~\
For given yoe Y, we choose inductively two sequences {ΐ/yJA in Y
and {y'j}j=o in Yr such that for each j ,

|| Vj - y) || S ηθ{Y, Y') \\ yά \\ and yj+1 = Pγ(yj - y}) .

By induction,

(5.5) || yj || ^ (|| P r || η Θ(Y, Y')Y \\ y01|, for each j .

If we set Zj = Pz{yj-x — y'j-i) for i ^ 1, then for each j ,

yd = y'j + Pz(y3 - y'3) + Pτ{yά - yf

3) = y] +zj+1 + yj+1 .

Hence

Λ
Vo = V'o + Zi + Vi= = Σ (l/y + «i+i) + ί/*+i

oince 2?^(Γ, Γ') | |Prll < 1, it follows from (5.5) that !/,--> 0.
Therefore

»o = Σ to + «y+i) e F ' + ^ .
i=o

in view of the continuity of Pγ, we have

OO CO

Vo = Σ i/ί + Σ «i+i,

from which it is clear that

(Pr - Pr>)Vo = Vo ~ Σ y'i = Σ «i+i .
i=o i=o

From the definition of zj+1,
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l l * i + ι | | ^ I I P , I I I I V i - v ί l l £ \\Pz\\nθ{Y, n i l V i l l .

Hence, using (5.5),

IIzj+11| ^ || p z ii ii p γ r\\\ Pr \\v Θ(Y, Y'))j+1\\vo II.

Thus,

/K a\ \\(P —- P YM 11 < 11 P 11 V "(Yt Y ) ^ 11 ΛI II

(5.6) || (Pr Prt)y0\\^\\Fz\\ 1_ιlPγm&(Y)Y,f\\yo\\

Since X is the direct sum of Y and Z and of Y' and ̂ , it is easy
to see that I — Pγ + PF, is an invertible operator mapping F onto
Y' a n d t h a t f o r e a c h xeX (Pγ - Pγt)Pτx =• (Pγ - PYf)x. I f w e l e t
37 —> 1 + in (5.6) and replace yQ by PFα?, we get

Since (PΓ — Pγ,)Pγx = (P r — PΓ,)αs, (5.4) is immediate.

5.7 COROLLARY. Sf

x = {Fe S x ( Fig complemented} is open with
respect to θ. In fact, if Y is complemented, and if Θ{Y, Yr) is
sufficiently small, then Y and Yf have a common complementary
subspace.

5.8 COROLLARY. / / Y has a complementary suhspace, and if
θ(Yn, F)—>0, then ro(Yn, F)—>0. Consequently, in view of (3.2) and
(1.4), r0 and θ define the same topology on Sr

x.

6 Further theorems on the structures (Sx, d), {Sx, θ) and com-
parison of θ with d.

6.1 THEOREM. The following statements are equivalent:
(1) (SXi d) is totally bounded.
(2) (Sx>θ) is totally bounded.
(3 ) X is finite dimensional.

Proof. (1) => (2), by (3.2). If X if infinite dimensional, then
there is a sequence {Yn} of subspaces such that Yn has dimension n
and Yna Yn+ι. Consequently θ(Yn, Fm) = 1, for n < m, since Yn is a
proper subspace of F m . Thus {Yn} has no Cauchy subsequence with
respect to θ. This shows that (2) => (3). To complete the proof we
show that (3) => (2) and (1). We can, without loss of generality, assume
that X is a finite dimensional Hubert space. Furthermore, since d
and θ determine the same uniformity on Sx, when X is finite dimensional,
it suffices to show that (3) => (2). Let {Yn} be a sequence of subspaces,
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and let {Pn} be the corresponding sequence of orthogonal projections.
Since the closed unit sphere of [X] is compact, {Pn} has a Cauchy
subsequence, and consequently the corresponding subsequence of {Yn}
is Cauchy with respect to Θ. This completes the proof.

6.2 COROLLARY. The following three statements are equivalent:
(1) (SXf d) is compact.
( 2 ) (Sx, θ) is compact.
(3) X is finite dimensional.

Proof. By 6.1 and the completeness theorems of §4.
The following observations are needed in what follows:
In a Banach algebra with identity e, the ε sphere centered at β,

for ε ̂  1, is a convex set contained in the group of invertible elements,
and hence this group is locally arc wise connected. It follows that the
components of the group are arc wise connected.
We shall denote by gf the group of invertible operators on the Banach
space X, and by ^ the component of / in S\

6.3 THEOREM. (SX, d) is locally arcwise connected (and hence its
components are arcwise connected).

Proof. Let Ye Sx, and consider {ZeSx\ rQ(Y, Z) < ε}, where
ε ^ 1. If ZQ is in this set, there is an invertible operator C mapping
Y onto Zo and such that \\I- C\\ <e. For each λ e [0, 1], let Cλ =
λC + (1 - λ)J. Then each Cλ is invertible, and | | / — C λ | | < ε. Let
Yk = C λΓ, for each λ. Clearly r o(Γ, Γλ) <£ || / - Cλ | | < ε. Γλ, -
CK.Y = Cλ,C^CλY - CvCz'Y,. Therefore ro(Yλ, Γ v ) g \\I - CK.C?\\.

Thus {YK}kei0<11 is an arc connecting Y with Zo and lying in
{Ze Sx I ro(Γ, Z) < ε}. This completes the proof.

6.4 THEOREM. Let Sx be the set of complemented subspaces of X.
Two subspaces Y, Z in Sx (resp., Sx) lie in the same component of
(Sx, d) (resp., (Sx, d)) if and only if there is an operator T in 2^
such that TY= Z.

Proof. We first prove the assertion for Sx. Define the relation
" ~ " on Sx by:

Y.~ Z if and only if there is Te Sζ such that TY = Z .

It suffices to prove that it is an equivalence relation and that the
equivalence classes modulo ~ are components of (Sx, d). Since ^ is
a group, it is clear that ~ is an equivalence relation. Let ^/ί be an
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equivalence class mod~. From the fact that the sphere of radius 1
about / in [X] is contained in S ,̂ it can be seen that ^ is both
open and closed. If Y, 2 G ^ , and Teg^, with TY=Z, then in
view of the arcwise connectedness of 5^, there is an arc {Γλ)λ€[0>i]
lying in Sζ such that To = /, Tx = T. It then follows that {TκY}λeί0,1Ί

is an arc lying in ^ connecting Y with Z. Thus ^ is arcwise
connected, and, being both open and closed, is not a proper subset
of a connected set. This completes the proof for Sz. The details of
the proof for Sx are entirely analogous; one need only make the
additional observation that an automorphic image of a complemented
subspace is complemented.

6.5 COROLLARY. // & is connected, then two subspaces Y, Z in
Sx (resp., Sx) are in the same component of (Sx, d) {resp., (Sx, d)) if
and only if there is an invertible operator T mapping Y onto Z.

6.6 THEOREM. If & is connected, then two subspace Y, Z in Sx

are in the same component of (Sx, d) if and only if Y is isomorphic
to Z and X/Y is isomorphic to XjZ.

Proof. Any subspace complementary to F(resp., Z) is isomorphic
to X/Y (resp., X\Z) (in view of the theorem that a one-to-one bounded
linear transformation of one Banach space onto another is an iso-
morphism). Hence by 6.5 the desired conclusion follows.

In a Hubert space it follows from the polar decomposition theorem
and the spectral theorem that any invertible operator is a product of
two exponentials, and hence is connectable to I by an arc. Hence if
X is a Hubert space, ^ is connected. Since a finite dimensional normed
linear space can be renormed with an equivalent norm which makes
it a Hubert space, S? is also connected if X is finite dimensional.

6.7 COROLLARY. // X is finite dimensional, two subspaces Y, Z
are in the same component of (Sx, d) or of (Sx, Θ) if and only if
dim Y = dim Z.

6.8 COROLLARY. If X is a Hilbert space, two subspaces Y, Z are
in the same component of (Sx, d) or of (Sx, θ) if and only if orthogonal
dim Y = orthogonal dim Z and orthogonal dim Y1 = orthogonal dim Z1.

Proof. By the theorem of [5] which states that if there is a one-
to-one bounded linear transformation mapping the Hilbert space H
into the Hilbert space K, then orthogonal dim H ̂  orthogonal dim K.

We remark that since X and {0} are isolated points of (Sx, d) and
(Sx, θ) neither of these metric spaces is connected if X Φ {0}. Less
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trivial is the fact that for a given positive integer n, {Ze Sx\ dim Z = n)
is both open and closed with respect to θ (and hence with respect to
d) by virtue of 2.1.

The investigations of this paper pose the question, "Do θ and d
define the same uniformity on Sx, or, at least, the same topology?"
We have seen in § 3 that θ and d do define the same uniformity on
SX9 if X is finite dimensional, or if X is a Hubert space. We also
have 3.2 and the partial converse afforded by 5.2, as well as 5.7 and
5.8. In addition, we know that Sx is complete with respect to either.
A partial answer to the question, favoring the affirmative, would be
that given a subspace Y, there is a positive δ such that Θ(Y, Y') < δ
implies that Y and Yr are isomorphic. In this connection, one might
note the previously known theorems, 2.1-2.3, as well as 5.2. A still
weaker partially affirmative answer would be that the set of subspaces
which possess Schauder bases is open with respect to θ, and it is to be
noted that a proof that this is not generally valid would also prove (in
view of 2.3) that there is a separable Banach space possessing no Schauder
basis. The question as to whether every separable Banach space
possesses a Schauder basis has been unsettled for many years.

7. The metric of Newburgh. In this section we depart from our
previous conventions regarding the term "operator." An operator
need not be bounded or everywhere defined, and can have its domain
and range in different Banach spaces. In [12], Newburgh defines a
metric δ on the set of nonzero subspaces of an arbitrary Banach space
X. This metric is the Hausdorff metric associated with an appropriate
metric px defined on X — {0}. His purpose is to obtain a metric on
the set of closed operators with domain in a Banach space Xλ and
range in a Banach space X2. This is accomplished by defining the
distance between two such operators Tlf T2 to be δ (graph Tlf graph
Γ2), where graph T19 graph T2 are considered as subspaces of the
Banach space X — Xx x X2. We shall show in 7.1 that δ is equivalent
to θ. This gives a way of viewing δ and the results obtained with
δ which is immediately and directly connected with the geometry of
X, and eliminates the necessity of proceeding via the intermediate
metric ρx. In view of Newburgh's results, it also provides applications
of θ to the study of closed operators.

Before proving 7.1, we reproduce some of the machinery of [12].

DEFINITION. Let X be a Banach space, and let X' = X — {0}.
For any two vectors a, be X\ define

ρz(a, b) = inf {e I || α - 51|< (eε - 1) || α ||

and | | α - δ | | < ( β - l ) | | & | | } .
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px is a metrix on Xr defining the same topology as the norm.

DEFINITION. Given two nonzero subspaces Y, Z let d(Y, Z) =
D(Y - {0}, Z - {0}), where D is the Hausdorίf distance relative to the
metric px on X'. δ is always finite (in fact, ^Iog3), and hence is a
metric on Sx — {{0}}.

7.1 THEOREM. Let X be a Banach space, and Y and Z nonzero
subspaces. Then

(7.2) log (1 + Θ(Y, Z)) £ δ(Y, Z) ^ log (1 + 2Θ(Y, Z)) .

Proof. It is readily verified that for nonzero vectors α, b,

pja, b) = inf \ε log (l + ^ = M < β and log (l + ^ r = Ά <
I V | | α | | / V II o|| /

In this proof, we shall continue to use "p" to denote the norm distance
of a point from a set, and we shall use "px" in the usual senses. Let
yeY- {0}. We shall show:

(7.3) log (l + Ef^f) £ PΛV, Z ~ {0}) ^ log (l + 2

If {zn} is a sequence of vectors in Z — {0} such that px(y, zn)
px(y, Z — {0}), then for each nf

Hence

log (l + £ψψ) ^ Pχ(v, «.) . for each n .

Letting n —> co, we obtain the first half of (7.3). By (5.1), for arbitrary
zeZ- {0};

\V-Pl*
;> a[y, z] =

I v i
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The second half of (7.3) is immediate.
From (7.3) we conclude:

log ( l + sup p(y, Z)) ^ sup pz(y, Z - {0})
\ veΣ(γ) / yeτ-{o}

5Ξ log ( l + 2( sup p(y, Z))) .

Upon reversing the roles of Y and Z, (7.2) follows.
It is interesting to note that:

7.4 THEOREM. (X', ρx) is complete, and hence the norm and px

define different metrizable uniformities on Xf which induce the same
uniform topology.

Proof. Suppose {xn} is Cauchy with respect to ρx. Then

(7.5)

In particular, there is a positive integer N such that m,n^ N implies

So,

(7.6) - 1 < 1 , f or m, n ^ N.

If either infy || xά || = 0 or supy || x3- \\ = ™9 then (7.6) leads to an
absurdity. Thus

0 < i n f i l l(7.7)

(7.8)

By (7.5) and (7.8), {xn} is Cauchy with respect to the norm. By (7.7),
the limit in norm, %, of {xn} is not zero. Since ||α?n — x \\ —> 0, it
follows that px(xn, x) —> 0. This completes the proof.

Given two Banach spaces Xlf X2, we make Xx x X2 a Banach space
by defining the algebraic operations coordinate wise, and setting
II (8if x2)\\ = II Xi || + II x2 ll We denote by ^ 1 > 2 the set of closed operators
with domain in X± and range in X21 and by [Xlf X2] the set of bounded
operators mapping all of Xλ into X2. For operators Tl9 T2 6 ̂ 2 we
define
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θ(Tlf T2) = θ (graph Tlf graph Γa), where graph Tl9 graph T2

are considered as subspaces of Xx x X2 .

0 thereby defines a uniformity on . ^ 2 . For T e ^t2 we denote by
R(T) its range, and, if T is one-to-one, ϊ7"1 will be its set-theoretic
inverse defined on R(T). In this paragraph we present some of the
results of [12] regarding ^ 2 , reformulated in terms of θ. The con-
tinuity of an operator will mean continuity on its domain, and will
not signity that the operator is everywhere defined.

(1) { Γ e ^ a l T is continuous} is open with respect to θ.
(2) {Te^~lt2\ T is one-to-one, and T~x is continuous on R{T)} is

open with respect to θ.
(3) [Xlf X2] is an open subset of ^\>2 with respect to θ.
(4) The set S = {Te Jζ2 \ T is one-to-one, and T'1 e [X2, X,]} is

open with respect to θ, and the map which assigns to each operator
in S its inverse is continuous from S with the topology induced by θ
to [X2, XJ with the uniform operator topology.

(5) The topology induced on [-Xi, X2] by θ coincides with the
uniform operator topology.

In conclusion, we point out that for a Banach space X Φ {0}, the
uniformity determined by the operator norm on [X] is not the same
as that determined by θ, and that ^" f the set of closed operators
with domain and range in X, is not complete with respect to θ. In
fact, for each positive integer n, let Tn be the operator nl. One
verifies that θ ({0} x X, graph Tn) 5Ξ 1/n, for each n. Since {graph
Tn} is Cauchy with respect to θ, so is {Tn}; however, {Tn} is obviously
not Cauchy with respect to the operator norm. Moreover, although
{Tn} is Cauchy with respect to θ, the fact that {graph Tn] tends to a
subspace which is not a graph, shows that {Tn} does not converge to
an operator in ^ with respect to θ.
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