MAXIMUM MODULUS ALGEBRAS AND LOCAL
APPROXIMATION IN C*"

A. E. HurD

1. In [4] W. Rudin established an important result concerning
maximum modulus algebras A of continuous complex-valued functions
defined on the closure K of a Jordan domain in the complex plane (see
also [5]). Rudin’s result states, under the assumptions (a) 4 contains
a function ¥ which is schlicht on K, and (b) A contains a non-constant
function ¢ which is analytic in the interior, int K, of K, that every
function in A is analytic in int K. In this note we will establish
conditions under which assumption (b) alone yields the desired conclusion
in a slightly more general setting. We assume that K is a compact
set, with interior, of a Riemann surface, but also assume that int K
is essentially open in the maximal ideal space 3, of A (A being regarded
as a Banach algebra with the sup norm ||f|| = sup,ex | f(D)[; see [2]).
This means that each point of int K, excepting a set of points having
no limit point in int K, has a neighborhood in int K which is open in
2, under the natural mapping of K into 2,. Under these assumptions
it is easy to show, using the Local Maximum Modulus Principle of
H. Rossi [3; Theorem 6.1] and Rudin’s results, that (b) is sufficient to
guarantee that A consists only of analytic functions. Our main purpose,
however, is to establish the result by a geometric method, independent
of Rudin’s work, which is based on an appropriate local approximation
in C". Unfortunately the geometric approach being used here only
allows us to make the desired conclusion for twice continuously
differentiable functions in A whereas the use of Rubin’s results would
give a proof valid for any function in A. However it is hoped that
our method will be of some interest in itself.

The basic idea of the proof is as follows. For simplicity let K be
the unit circle {ze C:|z| =<1} in the complex plane, and let f and ¢
be nonconstant functions in the maximum modulus algebra A. Suppose
that ¥, = K. Use fand g to map K into C? (the space of 2 complex
variables) in the obvious way. If f and g are twice continuously
differentiable in the neighborhood of a given point in int K then the
image of this neighborhood in C* will be a two (real) dimensional surface
possessing a tangent plane at the image p of the point. Let 7 be
the two (real) dimensional tangent plane to this surface at p. If this
plane is nonanalytic (Definition 1) then we can find a polynomial in
the coordinates w, ane w, of C* which locally peaks [3] at » when
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restricted to the surface. The results of Rossi and the Arens-
Calderon Theorem [1] then show that this will contradict the maxi-
mum modulus property. Thus 7 cannot be nonanalytic. This gives
a relation between the complex derivatives of f and ¢ which, in
particular, implies that both functions are analytic at the pre-image
of p if one of them is analytic there. In § 2 the essential geometric
lemma is established and in § 3 it is used to prove the main result.

2. Let F: M — R™ be an immersion (a regular map in the sense
of Whitney [6]) of a two (real) dimensional twice continuously differ-
entiable manifold M into real Euclidean n-space R". Let pe M and
let (U, h) give local coordinates about p, where U is an open set in
M, and & is a homeomorphism from U onto D = {(u, v) € R%: w* + v* < 1},
with k(p)=(0,0). Ifx;(j=1, -+, n)is a coordinate function in R" then
the functions ¢;(u, v) = x;0Foh™(u, v)(§j =1, ---, n) are differentiable
and give a map @: D — R* defined by @(u, v) = (¢,(u, v), - - -, ¢,.(u, v)).
Since F' is an immersion, the 2 by n matrix

04, 09,
ou ov
<6¢j a¢j> _ :
ou ' v 6;5 0;5
ou 0v

has rank 2 and the mapping @ is one-to-one in some disc V =
{(w, v) e R*: w* + v* < r* < 1}. Further, the set @&(V) is a surface
element having a tangent plane at @(0, 0)).

We can suppose for our purposes that @(0, 0) is the origin 0 in R”.
The tangent plane @ to @(V) at 0 is then given parametrically by

2.1) 2, = 081y 4 995, (1=1,---,n),
ou ov

where the derivatives are evaluated at u = v = 0. A change of local
parameters from # and v to % = w'(u,v) and ¢ = v'(u,v) with
o(w', v')[6(u, v) + 0 (the inverse transformation being given by u =
u(u', v') and v = v(u’, ') in some neighborhood of w = v = 0) yield new
funections ¢;(u’, v') = ¢;(u(w’, v'), v(w', v')) and a new parametrization of
the tangent plane, namely,

o= D 1 9y

ou’
_ ( 09; 0u 0¢9; dv )u’ i+ <6¢j ou 4 04; Ov )v’
ou ou' ov ou ou ov ov oV
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Note that the rank of the matrix (64;/0u, 0¢;/0v) is the same as that
of (0¢;/ou’, 0¢;[0v") since a(w', v')[d(n, v) + 0.

Now v and v parametrize both the surface element @(V) and the
tangent plane (given by (2.1)). Let %; and 7;(7 =1, 2, --+ n) denote
the coordinates in R" of the points B and B’ on 7 and @(V), respectively,
corresponding to the parameters v and v (u* + v* < 7. For sufficiently
small v and v,

2 2 2
m= gt gt (G 2w+ T
where the first derivatives are evaluated at v = v = 0 and the second
derivatives are evaluated at ' = 6u, v = 6v for some 6 satisfying
0< 0 <1. Since M is twice continuously differentiable, the second
derivatives of ¢; are bounded in absolute value in some sufficiently
small neighborhood of (0, 0) and we obtain

S5~ 7 = K(Jul + o]y

and so
(2.2) M — ;1 = L(lu| + [v])
where K and L are constants depending on these bounds and on =,
and % and v are sufficiently small. These estimates will be used later.

Suppose now that » = 2m. One can define complex coordinates
W; = Xy;_, + 1%,; making R" into complex Euclidean space C™. Also
the (u, v)-plane can be formally complexified by writing z = u + v,
Z =u — 1. We then have a mapping ¥: V — C™ defined by ¥(z, Z) =
{w,, -+-, w,) Where

wJ:wJ(z!§)=¢2]~l<z;—zy z2_1,z>+”/¢21<’z__+2;z—1 z;/z>
(j = 1’ e m) .

An elementary computation shows that in this formalism the tangent
plane 7 to Z(V) at the origin 0 is given parametrically by

o, | oV, _ .
— x4+ 17 =1 ---,m
o2 oz (g )

w; =

where the derivatives are evaluated at z = Z = 0. Furthermore, under
a change of local coordinates in the parameter plane from z and Z to
2Z'=u'+1iv" and Z’=u’ — 7', the tangent plane is given parametrically by
o’ ov’. _
w; = —=2' + —L7'
T o 0z’
_ <6T,~ 0z, T, g_)z, (611/‘,- 0z, o¥; 0% )2
0z 07 0z 07 0z 0z’ 0z 0z’
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where T'i(?', 2")=¥ ;(2(¢', 2’), Z(z’, Z)). Since, as a short calculation shows,

02,2 _ 0w _

o#,z) o, )
the complex rank of (0¥ ;/6z, 8% ;/0Z) remains unaffected by a parameter
change. We now make the following definition.

Definition 1. The two (real) dimensional plane in C™ defined
parametrically by w;, =a;z + 8;2(7=1,2, --+, m) is said to be non-
analytic if the rank of the 2 by m (complex) matrix («;, 5;) is 2.

The preceding remarks show that if 7 is nonanalytic in one co-
ordinate parametrization then it remains so under any change of co-
ordinates in the parameter plane. We want to establish the following.

LeMMA. Suppose the tangent plane w to ¥(V) at the origin in
C™ is nonanalytic. Then there is a polynomial in the coordinates w;
whose absolute value takes on a local maximum at the origin when
restricted to T(V).

Proof. Since 7 is nonanalytic there exist new coordinates w) =
S vw; (6 =1, - -+, m), where the matrix (7v;;) is nonsingular, such
that in the wi-coordinates 7 is given parametrically by w; =z, w; = Z,
and w;=0(m = j = 3). Now let B and B’ be points on 7 and ¥'(V),
respectively, corresponding to the parameters # and v. Let 7; and
Ni(5=1, + -+, 2n) be the real coordinates of B and B’ (with C™ regarded
as R*™) in the new coordinate system. Clearly v, =u, %, =, 7, = u,
n,=—v,and ;=0for 5=7=2n. Let 9, —7n,=¢(=1,---,4).

Now consider the function P(w;) =1 — wyw, (a polynomial in
Wy, »++, W,). When restricted to m, P(w,;) is real-valued and has a
maximum in absolute value at the origin. We would like to show that
| P(w;)| also has a local maximum at the origin when restricted to a
sufficiently small neighborhood of the origin on (V). This will be
true essentially because 7 has a contact of order at least 1 with Z(V)
at the origin (here we will use the estimates (2.2)).

We have, at the point B’,

[P(B)" =1 — (71 + 115) (3 + 7)) [
=12+ v") + (W + v’ + 2Q(u, v) [u* + v* — 1]
+ [Qu, V)] + [ule, + &) + v(e; — &)
where
Qu, v) = u(e, + &) + v(e, — &) + &8 — &€, .

Using inequalities (2.2) for |¢;| (7 =1, ---, 4) we obtain
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(P(B)] =1 — 2(u”+ v") + M(lu|+ [v])
=1-—[1— M(lw|+ [vDI(Ju| + [v])

for w and v sufficiently small and some constant M., If |u|+ |v]|<
1/M we see that |P(B’)| < 1 unless B’ = 0.

3. Let K be a compact subset, with nonempty interior, of a
Riemann surfee M.

DEFINITION 2. An algebra A of continuous functions on K is said
to be a maximum modulus algebra on K if for every fe A there is a
point p on the boundary 8K of K such that |f(q9)| =< |f(p)| for all ¢ € K.

As remarked in [4], we can suppose without loss of generality that
A is uniformly closed and contains the constants and so is a Banach
algebra with identity and norm || f|| = sup,ex |f(®)|. It is well known
that there is a natural continuous mapping ¢: K — %,, where %, is the
maximal ideal space of A (with the usual Gelfand topology), defined
by point evaluation (which is not 1:1 unless A separates points in X ).

THEOREM. Let A be a umiformly closed algebra of continuous
functions, containing the constants, on the compact subset K (with
nonempty interior) of the Riemann surface M. Suppose that there
is a set D of points in int K having no limit point in int K, such
that each p € int K — D has a neighborhood U for which ©(U) is open
wm ,. Suppose further that A contains one monconstant analytic
Sfunction g = g + ig®>. Then any function f = f* + if* in A such that
Jtand f* are twice continuously differentiable is analytic in int K.

Proof. Let S be the discrete subset of int K on which the differ-
ential dg vanishes. For any point p in int K — S there is a neighborhood
containing p and contained in int K — S and in which ¢ is one-to-one.
Thus for any point peint K — (DU S) there exists a neighborhood U
containing p which is mapped homeomorphically by ¢ onto an open set
W in Y, and hence local coordinates in U may be transferred to W.
Define the mapping F. ¥, — C* by F(¢') = ("), 9(q)), ¢’ € ¥, (where
we have used the letters f and g to denote the extension, via the
Gelfand representation, of f and ¢, defined on %K), to Y,). For any
point ¢’ in W we have f(¢') = f(:7Y(¢")) and ¢(¢') = g(:7(q’)) so that ¥’
can be regarded as a mapping defined on U by F(q) = (f(9), 9(q)),
g€ U. F defines an immersion of W since in the local coordinates z =
% -+ 1v the matrix

fo fi 9. 9
fo fio9 9
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(here the subscripts % and v denote partial differentiation) is of rank
2 due to the nonvanishing of the differential dg = 8g/6z dz—apply the
Cauchy-Riemann equations to the matrix

9. 9.

(gt gi) .
Since A contains the constants we can suppose without loss of generality
that F'(p) is the origin 0 in C®. We have thus a mapping F: ¥, — C?
which maps a neighborhood W of i(p) onto a two-dimensional surface
element F'(W) having a tangent plane 7 at 0.

We now note that 7 cannot be nonanalytic. For if this were the
case then by the lemma of §2 there would be a polynomial in the
coordinates w, and w, of C® taking on a local maximum in absolute
value at 0 when restricted to F'(W). By the Arens-Calderon theorem
[1; Theorem 3.3] there would then be a function k€ A taking on a
local maximum at #(p), and finally, by Rossi’s Local Peak-Point Theorem
[3, Theorem 4.1] there would be a function e A taking on its maximum
value exactly at i(p), contradicting the fact that A is a maximum
modulus algebra.

Thus the rank of

99
0z

of of
0z 07

(the derivatives being evaluated in the local coordinates at p) must
be 1 and this implies that 8f/0z = 0. The same conclusion could be
drawn for any peinf K — (DU S) and so by the theorem of Riemann
on removable singularities, f is analytic in int K.
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