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CL Introduction* For normal operators on a Hubert space the
problem of unitary equivalence is solved, in principle; the theory of
spectral multiplicity offers a complete set of unitary invariants. The
purpose of this paper is to study a special class of not necessarily
normal operators (partial isometries) from the point of view of unitary
equivalence.

Partial isometries form an attractive and important class of ope-
rators. The definition is simple: a partial isometry is an operator
whose restriction to the orthogonal complement of its null-space is an
isometry. Partial isometries play a vital role in operator theory; they
enter, for instance, in the theory of the polar decomposition of arbit-
rary operators, and they form the cornerstone of the dimension theory
of von Neumann algebras. There are many familiar examples of
partial isometries: every isometry is one, every unitary operator is
one, and every projection is one. Our first result serves perhaps to
emphasize their importance even more; the assertion is that the
problem of unitary equivalence for completely arbitrary operators is
equivalent to the problem for partial isometries. Next we study the
spectrum of a partial isometry and show that it can be almost any-
thing; in the finite-dimensional case even the multiplicities can be
prescribed arbitrarily. In a special (finite) case, we solve the unitary
equivalence problem for partial isometries. After that we ask how
far a partial isometry can be from the set of normal operators and
obtain a very curious answer. Generalizing and simplifying a result
of Nagy, we show also that if two partial isometries are sufficiently
near, then some natural cardinal numbers (dimensions) associated with
them are the same. This result yields a partitioning of the metric
space of all partial isometries into open-closed sets, and we conclude
by proving that these sets are exactly the components.

For any operator A with null-space 5JI we write v(A) = dim 9ΐ
and we call v{A) the nullity of A. If A is a partial isometry with
range 5R, we write 4o(A) = dim3ί and p'(A) = dim SR1; the cardinal
numbers p(A) and p\A) are the rank and the co-rank of A. The
subspace 5ft1 is the initial space of A] the range 3ΐ (which is
the same as the image A3lL) is the final space of A. If A is a
partial isometry then so is A*; the initial space of A* is the final
space of Af and vice versa. It follows that v(A*) = p'{A) and

Received February 21, 1963. Research supported in part by grants from the National.
Science Foundation.

585



586 P. R. HALMOS AND J. E. MCLAUGHLIN

//(A*) = V(A).
It is natural to define a partial order for partial isometries as

follows: A g B in case B agrees with A on the initial space of A.
(This implies that the initial space of A is included in the initial
space of B.) A partial isometry is maximal with respect to this order
if and only if either its initial space or its final space is the entire
underlying Hubert space. It follows that every partial isomstry can
be enlarged to either an isometry or a co-isometry (the adjoint of an
isometry). A necessary and sufficient condition that a partial isometry
possess a unitary enlargement (i.e., that there exist a unitary operator
that dominates it) is that its nullity be equal to its co-rank. If the
underlying Hubert space is finite-dimensional, this condition is always
satisfied; in the infinite-dimensional case it may not be.

1. Reduction. If A is a construction (i.e., if | |A| | g l ) on a
Hubert space ξ>, then 1 — AA* is positive, and, consequently, 1 — AA*
has a unique positive square root A'. Assertion: if M = M(A) is the

( A A'\Q Q J, interpreted as an operator on ί? © §, then

M is a partial isometry. One quick proof is to compute MM* and
observe that it is a projection; this can happen if and only if M is
a partial isometry. Consequence: every contraction on a Hubert space
can be extended to a larger Hubert space so as to become a partial
isometry.

THEOREM 1. If A and B are unίtarίly equivalent contractions,
then M(A) and M(B) are unitarily equivalent; if, conversely, A and B
are invertible contractions such that M(A) and M(B) are unitarily
equivalent, then A and B are unitarily equivalent.

Proof. If U is a unitary operator that transforms A onto B,
then U transforms A* onto J5*, and therefore U transforms A' onto
B'; it follows that (V £Λ transforms M(A) onto M(B).

Suppose next that A and B are invertible and that M(A) and
M(B) are unitarily equivalent. The range of M(A) consists of all
column vectors of the form ( * "t g\ This set is included in the
set of all column vectors with vanishing second coordinate; the inver-
tibility of A implies that the range of M(A) consists exactly of all
column vectors with vanishing second coordinate. Since the same is
true for M(B), it follows that every unitary operator matrix that
transforms M(A) onto M(B) maps the subspace of all vectors of the
form (£) onto itself. This implies that that subspace reduces every
such unitary operator matrix, and hence that every such unitary
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operator matrix is diagonal. Since the diagonal entries of a diagonal
unitary matrix are unitary operators, it follows that A and B are
unitarily equivalent, as asserted.

The theorem implies that the problem of unitary equivalence for
partial isometries is equivalent to the problem for invertible contrac-
tions. The latter problem, in turn, is equivalent to the problem for
arbitrary operators. The reason is that by a translation (A —> A + a)
and a change of scale (A—>βA) every operator becomes an invertible
contraction, and translations and changes of scale do not affect unitary
-equivalence.

Here is a comment on the technique used in the proof. There
are many ways that a possibly "bad" operator A can be used to

manufacture a "good" one (e.g., A + A* and ( Λ* Λ ) ) . None of
V \ / i U / /

these ways has ever yielded sufficiently many usable unitary in-
variants for A. It is usually easy to prove that if A and B are
unitarily equivalent, then so are the various constructs in which they
appear. It is, however, usually false that if the constructs are uni-
tarily equivalent, then so are A and B. In the case treated by
Theorem 1 this converse is true, and its proof is the less trivial part

ιθf the argument.

2* Spectrum* What can the spectrum of a partial isometry be?
fSince a partial isometry is a contraction, its spectrum is included in
the closed unit disc. If the partial isometry is invertible (i.e., if 0
is not in the spectrum), then it is unitary, and therefore the spectrum
is a non-empty compact subset of the unit circle; well known con-

structions prove that every such set is the spectrum of some unitary
operator. If the partial isometry is not invertible, then its spectrum
contains 0; what else can be said about it? The answer is, nothing

-else. This answer was pointed out to us by Arlen Brown; its precise
formulation is as follows.

THEOREM 2. If a compact subset of the closed unit disc contains
the origin, then it is the spectrum of some partial isometry.

Proof. It is sufficient to prove that if A is a contraction, then
the spectrum of M(A) is the union of the spectrum of A and the
singleton {0}. (This is sufficient because every non-empty compact
subset of the closed unit disc is the spectrum of some contraction.)
It is easy enough to see that 0 always belongs to the spectrum of
M(A); indeed every vector of the form (Λ is in the null-space of
M{A)*. It remains to prove that if λ Φ 0, then a necessary and



588 P. R. HALMOS AND J. E. MCLAUGHLIN

sufficient condition that ( "Γ Λ ) be invertible is that A — λ be

invertible. This assertion belongs to the theory of formal determinants
of operator matrices. Here is a sample theorem from that theory: if
C and D commute and if D is invertible, then a necessary and suffi-

cient condition that („ jΛ be invertible is that AD — BC be inver-
tible. For our present purpose it is sufficient to consider the special
case C = 0, in which case the commutativity hypothesis is automatically
satisfied; we proceed to give the proof for that case. If A is inver-
tible, then ( Q 2)) c a n be proved to be invertible by exhibiting its

/ Λ-i Λ~1BD~1\
inverse: it is Λ n _ x . (Recall that the invertibility hypothesis

(A B\on D is in force throughout.) If, conversely, ( Λ n ) is invertible,,
(P O\ ^ '

with inverse ί τ> g) say, then

AP+ BR
DR

AQ + BS\
DS )

PA

~ \RA
PBΛ
RB-

-QD\
\-SD

(1

\0

0

1

It follows that DR = 0; since D is invertible, this implies that R = 0 r

and hence that AP — PA = 1. The proof is complete.

3 Multiplicity^ For finite sets what the preceding argument
proves is this: if Xlf , Xn are distinct complex numbers with | λ* | ^
1 for all ΐ, and if λ< = 0 for at least one i, then there exists a
partial isometry whose spectrum is the set {Xlf •• ,λw}. The partial
isometry that the proof yields acts on a space of dimension 2n and
has a large irrelevant null-space. There is an alternative proof that
yields much more for finite sets.

THEOREM 3. If Xu •• ,λw are complex numbers (not necessarily
distinct) with | λ* | g 1 for all i, and if λ< = 0 for at least one i,
then there exists a partial isometry on a space of dimension nf.
whose characteristic roots are exactly the λ's, each with the algebraic
multiplicity equal to the number of times it occurs in the list.

Proof. The proof can be given by induction on n. For n = 1,
the operator 0 on a space of dimension 1 satisfies all the conditions.
The induction step is implied by the following assertion: if an n x n
matrix U with 0 in its spectrum is a partial isometry, and if | λ | ^ 1,
then there exists a column vector / with n coordinates such that

( Q £ J is a partial isometry. To prove this, observe that, since 0 is in

the spectrum of U, the column-rank of U is less than n. This makes
it possible to find a non-zero vector / orthogonal to all the columns.
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of U; to finish the construction, normalize / so that | | / | | 2 = 1 — | λ |2.

4. Equivalence. In at least one case, a very special case, the
unitary equivalence problem for partial isometries has a simple and
.satisfying solution.

THEOREM 4. // two partial isometries on a finite-dimensional
space are such that 0 is a simple root of each of their characteristic
•equations, then a necessary and sufficient condition that they be uni-
tartly equivalent is that they have the same characteristic equation
{i.e., that they have the same characteristic roots with the same alge-
braic multiplicities).

REMARK. The principal hypothesis is that 0 is a root of multi-
plicity 1 of the characteristic equation. If this were replaced by the
hypothesis that 0 is not a root of the characteristic equation at all
(i.e., is a root of multiplicity 0), then the statement would become
the classical solution of the unitary equivalence problem for normal
•operators on a finite-dimensional space.

Proof. The necessity of the condition is trivial. Sufficiency can
be proved by induction on the dimension. If the dimension is 1, the
assertion is trivial. For the induction step, if the dimension is n + 1,
represent the given partial isometries by triangular matrices with 0
in the northwest corner, and write the results in the form

u'Λ, V=Γ
0 \) \0

Λvhere Uo and Vo are n x n matrices, and / and g are w-rowed column
sectors. Since both U and V are partial isometries with first column
0 and rank n, it follows that, in both cases, the remaining n columns
constitute an orthonormal set, and hence, in particular, that / is
orthogonal to the columns of Uo and g is orthogonal to the columns
of Vo. The thing to prove is that if Uo and Vo are unitarily equiva-
lent, then so also are U and V. Suppose therefore that Wo is unitary
and WQUQW* = Vo. Assertion: there exists a complex number θ of
modulus 1 such that W = ( / Λ transforms U onto V. Indeed, if
! 0 I = 1, then

wuw -(y > W J ) ,

Since this matrix is a partial isometry with first column 0 and rank n,
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it follows that ΘW0/is orthogonal to the span (of dimension n — 1) of the
columns of Vo. Since g also is orthogonal to the columuns of Vo, it follows
that θ can indeed be chosen so that ΘWof = g. The only case that gives
a moment's pause is the one in which Wof = 0. In that case / = 0r,
and therefore | λ | = 1; this implies that 0 = 0, and all is well.

5. Distance* Since the unitary equivalence problem is solved for
normal operators, it is reasonable to approach its solution in the general
case by asking how far any particular operator is from normality.
The figurative "how far" can be interpreted literally, and its
literal interpretation yields a curious unitary invariant. Let N be
the set of all normal operators, and for each (not necessarily normal)
operator A consider the distance d(A, N) from A to N. The distance
here is meant in the usual sense appropriate to subsets of metric
spaces: d(A, N) — inf {|| A — JV|| : Ne N}. The definition makes sense
for all operators, and, in particular, for partial isometries. We pro-
ceed to study one of the simplest questions that the definition suggests:
as U varies over the set P of partial isometries, what possible values-
can d(U, N) attain? The answer we obtain is rather peculiar.

THEOREM 5. The set of all possible values of d(U,N), for U in
P, is the closed interval [0, 1/2] together with the single number 1.

Proof. We begin with the assertion that if a partial isometry
U has a unitary enlargement, then d(U, N) ^ 1/2. The proof consists*
in verifying that if W is a unitary enlargement of U, then

II [/-JLwHI _λ.
II 2 II ~~ 2

Indeed, if ϋft is the null-space of U, then U is equal to 0 on Jί and

to W on 5TC1; it follows that U- — W is equal to - — W on % and

to — T7 on Sft1. This implies that U- —W is 1/2 times a unitary
Δ Δ

operator and hence that its norm is 1/2.
It is easy to exhibit a partial isometry U such that d( U, N) — 1/2;

in fact this can be done on a two-dimensional Hubert space. A simple
example is the operator Uo given by the matrix (Q Δ. That f70 is
a partial isometry can be verified at a glance. (Its matrix is obtained
from a unitary matrix by "erasing" a column.) The preceding para-
graph implies that d(UOf N) ^ 1/2; it remains to prove that if N is
normal, then || Uo — N\\ ^ 1/2. For this purpose, let/be an arbitrary
unit vector and note that
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III ϋo/ll - II UQ*f\\ I ̂  III ϋo/H - II Nf\\ I + III N*f\\ - II ϋoVII I
£2\\U0-N\\.

(Recall that, by normality, || Nf\\ = || iSΓ*/||.) If / is the column

vector L j , then || C/0/ll = 1 and || Z70*/H —0; the proof is complete.

For each number t in the interval [0, 1] write V = i/l — t2.

The mapping t—*Ut = ln π is a continuous path in the metric space
\ U U / /I Ax

P, which joins the partial isometry Uo to the projection ίΛ ϊ j (a

normal partial isometry). Conclusion: as Z7 varies over all partial

isometries, d{U9N) can take (at least) all values between 0 and 1/2

inclusive. (The technique of the preceding paragraph can be used to

show that d(ϋu N) = — V.

For the next step we need the following lemma: if P is a pro-
jection, and if A is an operator such that P + A is one-to-one, then
v(A) ^ p{P). To prove this, observe that the null-spaces of P and A
have only 0 in common, so that the restriction of P to the null-space
yi of A is one-to-one. It follows that the dimension of 31 is less than
or equal to the dimension of the entire range of P, which is the
desired conclusion. (We use here the assertion that one-to-one bounded
linear transformations do not lower dimension; cf. [2, Lemma 3].)

Suppose now that U is a partial isometry such that v(U) < ρ'{U).
Assertion: no operator at a distance less than 1 from U can be in-
vertible. Suppose, indeed, that || U- A | | < 1, so that \\U*U- U*A\\ <
1. Write P = 1 — U*U; since U is a partial isometry, P is the pro-
jection onto the null-space of U. Since J7* U- !7*A = 1 - (P + ί7*A),
it follows that P + £7*A is invertible, and hence, from the lemma of the
preceding paragraph, that v(U*A) ^ p(P) = v(U). If A were invertible,
then U*A and Z7* would have the same nullity, and it would follow
that v(U*) ^ v(U). This contradicts the assumption on U, and it follows
that A cannot be invertible.

Since the closure of the set of all invertible operators includes
N, it follows from the preceding paragraph that if U is a partial
isometry with v(U) < p'(U), then d(U, N) ^ 1. This result quickly
implies some minor improvements of itself. To begin with, the hypo-
thesis v{U) < ρ'(U) can be replaced by v(U) Φ p'{U). (If v{U) > p'(U),
then p'(U*) > v(U*), and the original formulation is applicable to Z7*.)
Next, the conclusion d(U, N) ^ 1 can be replaced by d(U, N) = 1.
(Since 0 is normal, no partial isometry is at a distance greater than
1 from N.) Finally, the result implies the principal assertion: if U
is a partial isometry such that d(U, N) > 1/2, then d(U, N) = 1.
Indeed, if d(U, N) > 1/2, then v(U) Φ ρ'(U), for otherwise U would
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have a unitary enlargement, and therefore, by the first paragraph of
this proof, U would be at a distance not more than 1/2 from N.
The proof of Theorem 5 is complete.

6. Continuity. Associated with each partial isometry U there
are three cardinal numbers: the rank p(U), the nullity v(U), and the
co-rank p'(U). Our next purpose is to prove that the three functions
p, v, and p' are continuous. For the space P of partial isometries we
use the topology induced by the norm; for cardinal numbers we use the
discrete topology. With this explanation the meaning of the continuity
assertion becomes unambiguous: if Z7is sufficiently near to V, then Z7and
Fhave the same rank, the same nullity, and the same co-rank. The
following assertion is a precise quantitative formulation of the same
result.

THEOREM 6. If U and V are partial isometries such that
|| U- V\\ < 1, then p{U) = p(V), v{U) = v(V), and p'{U) = ρ\V).

Proof. The null-space of U and the initial space of V can have
only 0 in common. Indeed, if / is a nonzero vector such that Uf=0
and || Vf\\ = | | / | | , then || Uf - Vf\\ = | | / | | , and this contradicts the
hypothesis || U — V\\ < 1. It follows that the restriction of U to the
initial space of V is one-to-one, and hence (see [2] again) that the
dimension of the initial space of V is less than or equal to the
dimension of the entire range of U. In other words, the result is
that p(V) ^ p(U); the assertion about ranks follows by symmetry.
This part of the theorem generalizes (from projections to arbitrary
partial isometries) a theorem of Nagy (see [4, § 105]), and, at the
time, considerably shortens its proof. The original proof is, in a sense,
more constructive; it not only proves that two subspaces have the
same dimension, but it exhibits a partial isometry for which the first
is the initial space and the second the final space.

The assertion about v can be phrased this way: if v(U) Φ v(V),
then \\U— VΊ| ^ 1. Indeed, if v{U) φ v{V), say, for definiteness,
v(U) < v(V), then there exists at least one unit vector / in the null-
space of V that is orthogonal to the null-space of U. To say that / is
orthogonal to the null-space of U is the same as to say that / belongs
to the initial space of U. It follows that 1 = 11/11 = 1 1 ^ 1 1 = 1 1 ^ -
Vf\\^\\U— V\\, and the proof of the assertion about nullities is
complete.

The assertion about co-ranks is an easy corollary: if || U — V\\ < 1,
then || Z7* - V*\\< 1, and therefore p'(N) - v(C7*) - v(V*) = ff(V).

If the dimension of the underlying Hubert space is <5, then the
rank, nullity, and co-rank of each partial isometry are cardinal numbers
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p, v, and ft such that p+ι> = p + f? = δ. If, conversely, p, v, and
p' are any three cardinal numbers satisfying these equations, then
there exist partial isometries with rank p, nullity v, and co-rank p'.
Let P(p, v, pr) be the set of all such partial isometries. Clearly the
sets of the form P(p, v, pf) constitute a partition of the space P of
all partial isometries; it is a consequence of Theorem 6 that each set
P(p, v, ρf) is both open and closed.

7. Connectivity Φ We proved in § 5 that there is a continuous
path in the space P joining a normal partial isometry (in fact a pro-
jection) to one whose distance from N is 1/2. On the other hand,
§ 6 shows that P is not connected, and this suggests the question of
just how disconnected P is. The following assertion is the answer.

THEOREM 7. For each p, v, and p', the set P(ρ, v, ρf) of all
partial isometries of rank p, nullity v, and co-rank p' is arcwise
connected.

Proof. The principal tool is the theorem that the set P(p, 0, 0)
of all unitary operators is arcwise connected. This is a consequence
of the functional calculus. Indeed, if U is unitary, then there exists
a Hermitian operator A such that U — eiA, If Ut = eitA, 0 5Ξ t S 1,
then t —> Ut is a continuous path of unitary operators joining 1 (— UQ)
to U(= UT). Since each unitary operator can be joined to 1, it
follows that any two can be joined to each other. This settles the
case P(p, 0, 0). A useful consequence is that if two partial isometries
are unitarily equivalent, then they can be joined by a continuous
path. Indeed if Z70 and Uλ are partial isometries, and if V is a unitary
operator such that F* Uo V = Ul9 then let t —> Vt be a continuous path
joining 1 to V, and observe that t —> Ff* Uo Vt is a continuous path
joining Uo to Ux.

For the next step we need to recall the basic facts about shifts
{see [1] or [3]). A simple shift (more precisely, a simple unilateral
shift) is an isometry V for which there exists a unit vector / such
that the vectors /, Vf, V2f, form an orthonormal basis for the
space. A shift (not necessarily simple) is, by definition, the direct
sum of simple ones. It is easy to see that every shift is an isometry
whose co-rank is the number of simple direct summands. Two shifts
are unitarily equivalent if and only if they have the same co-rank.
The fundamental theorem about shifts is that every element of
P(p, 0, p') (i.e., every isometry of co-rank pr) is either unitary (in
which case pf = 0), or a shift of co-rank p', or the direct sum of a
unitary operator and a shift of co-rank pf.

Suppose now that Uo and Ux are in P{py 0, p'), with p' Φ 0. If



594 P. R. HALMOS AND J. E. MCLAUGHLIN

both Uo and J7i are shifts, then (since they have the same co-rank)
they are unitarily equivalent, and, therefore, they can be joined by
a continuous path.

Suppose next that Uo is a shift (of co-rank p') and that Uλ ==•
FjφWj, where Vλ is a shift (of co-rank p') and Wx is unitary..
Since the dimension of the domain of Uo is />' ^0> and since ί70 and
U1 have the some domain, it follows that the dimension of the
domain of Wλ is not more than ρ'-)£o. If p' > \ftOf then break up
Wx into pf direct summands, each on a space of dimension fc$0, and
match these summands with the ff simple direct summands of Uo and
UΊ. The result of this procedure is to reduce the problem to the
problem of joining a simple shift U to the direct sum of a simple
shift V and a unitary operator W on a space of dimension ^ 0 or
smaller.

If the dimension of the domain of W is n (< ^ 0 ) , the problem
is easy to describe and to solve in terms of matrices. The shift U
is unitarily equivalent to (and therefore it can be joined to) an oper-
ator with matrix

/0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

and, similarly, the direct sum 7 φ W can be joined to an operator

with matrix

/I 0 0 0 0 \

0 1 0 ••• 0 0

0 0 1 0 0

0

0

0

0

0

0

0

1

0

0
1

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

It remains to prove that the first of these two matrices can be joined
to the second. For this purpose, note that the (unitary) permutation
matrix (with n + 1 rows and columns)
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1°
1

0

0

\o

0
0

1

0

0

0
0 •••

0

0

0

0
0

0

0

1

1\
0

0

0

ol

can be joined to the identity matrix (with n + 1 rows and columns).
Let t —> Mt be a continuous path of unitary matrices that joins them,
and let P be the projection matrix (with n + 1 rows and columns)

The "product" path t

11

0

0

0

lo

0
1

0

0

0

MtP

10

1

0

0

,0

0

0

1

0

0

0

0 ••

1

0

0

joins

0

0 ••

0

0

0

0

• 0

0

1

' 0

0

• 0

0

0

1

o\
0

0

0

oj

tn
0

0

0

0)

to P. Use this path in the northwest corner (of size n + 1) of the
infinite matrices to obtain a path joining the matrix of U to the
matrix of VφW.

If the dimension of the domain of W is ^Q, the solution is easier.

It is easy to verify that the operator matrix L Q) (considered as

an operator on the direct sum of the underlying space with itself) is
/ W 0 \unitarily equivalent to U, and the operator matrix ( 0 JJ ) is uni-

tarily equivalent to 7 0 W. Since W can be joined to the identity

can be joined

path of numerical unitary

by a continuous path, it remains to prove that L
t o (π ττ\ If ^ —* (^ x) is a continuous path o

matr ices t h a t joins ( ? V) t o f ϊ ? ) , t h e n t-+>(%* χTT) is a con-

t inuous p a t h of par t ia l i sometries t h a t joins L Q j t o (Q
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What we have proved so far (after successive reductions) implies
that any two isometries can be joined by a continuous path, i.e., that
the set P(/>,0, '̂) is arcwise connected.

To prove that P{p, v, pr) is always arcwise connected, it is suffi-
cient to consider the case v ^ p\ (Argue by adjoints.) If Uo and Ux

are in P{p, v, pf), then they can be enlarged to isometries Vo and Vτ.
Such enlargements are far from unique; what is important for our
purposes is that Vo and Vx can be found so that they have the same
co-rank. If Po and P1 are the projections onto the initial spaces of
Uo and Uι (i.e., Po = U0*U0 and Px = UfU,), then Po and Pλ have the
same rank and co-rank. It follows that there exist paths t—>Vt and
t -> Pt joining Vo to V1 and Po to Px. Since Uo = V0PQ and Ux = V1Plt

this implies that t —* VtPt is a continuous path joining Uo to UΊ. The
proof of Theorem 7 is complete.

The following consequence of Theorems 6 and 7 is trivial, but
worth making explicit: the components of P are exactly the sets
P(P, v, P').
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