EXTREMAL ELEMENTS OF THE CONVEX
CONE OF SEMI-NORMS

E. K. MCLACHLAN

1. Introduction. Let L be a real linear space and let » be a
real function on L such that (1) p(Ax) = |\| p(x) for all z in L and
all real ), and »(x, + @,) < p(x,) + p(x,) for all x, and %, in L, i.e.is
a semi-norm on L. Since the sum of two semi-norms, p, + p. and
the positive scalar multiplication of a semi-norm, Ap, M > 0 are semi-
norms, the set of semi-norms on L, C form a convex cone. Those
pe C such that if p = p, + p, where p, and p,e€ C we have p, and .
proportional to p are extremal element of C, [1]. In this paper it
is shown that p» = |f|, where f is a real linear functional of L is an
extremal element of C. For L, the plane it is shown that these are
the only extremal elements of C. Since norms are semi-norms, C'
includes this interesting class of functionals.

2. The main results. The convex cone C and the convex cone
—C, the negatives of the elements of C have only the zero semi-
norm in common since semi-norms are nonnegative. The zero semi-
norm is an extremal element if one wishes to allow in the definition
the vertex of a convex cone to be an extremal element. Below only
the nonzero elements are considered.

The following lemma which characterizes the nature of certain
semi-norms will be used in obtaining the two main theorems.

LemMA 1. If p is a semi-norm on L such that the co-dimension
of N(p) =1, then p is of the form p = |f| where f is a linear func-
tional on L.

Proof. Let be L\N(p), where N(p) is the null space of p.
Then any element xe€L can be written « =z + \b where ze& N(p)
and \ is real. Let f(x) = Ap(b). Then clearly f is a linear functional
on L. It shall now be shown that | f(x)| = p(x) for all xe L. Notice:
that

[f(x)| = [f(z + \b) [ = [ Ap(b) | = | | p(D).
Thus
| f(x) | = p(Ab) = p(2) + P(ND) = p(z + \b) = p(%).
The proof will be complete if it can be shown that the inequality:
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cannot be a strict inequality for \ = 0.

Consider the case of the strict inequality occurring at 2’ + \b
where %, > 0 and 2’ € N(p). The set U = {z: p(2) < \p(b)} is a convex
circled set containing N(p) and \b. . It follows that there exists v = 1
such that

D(V(Z" + Nb)) = TD(2" + Neb) = \ep(D)

and hence ¥(Z + \d) e U. Take 8 = (v(1 — a))ja where & = (v — 1)/(27).
Then 0 < @ <1 and

alB(—2)] + (1 — a)[v(Z + AD)] = (1 — a)yvnd
belongs to U since —2’ and ¥(2’' + A\b)e U and U is convex. Now
(1 — ayrad) = (1 — @)rp(Reb) > e (D)

since (1 — a)y = (1/2)(1 + 7) > 1, a contradiction since (1 — a)y\be U.
Thus |f(z)| = p(x) for A\, > 0. Now for the case A, < 0 it follows
from the above

|f@) | = [f(z + M) | = | =f(—2 — Md) | = [ f(—2 — AD) |
and |
[f(—=2 — N\b) | = D(—2 — Md) = D(2 + Neb).

Thus p(x) = | f(x)| for all xe L.

It is now possible to prove the following theorem which shows
that the absolute value of a real linear functional is an extremal
element of C.

THEOREM 1. If f s a real linear functional on L, then |f| is
an extremal element of C.

Proof. It is easy to check that |f| is subadditive and absolutely
homogeneous and hence |f|eC.

Suppose | f| = p, + p, where p, and p,€C. Since p, and p, are
nonnegative 0 < p; < |f|, ©=1,2. Thus when f(z) =0, pix) =0,
©+=1,2 and N(f) < N(p;), ©=1,2. Hence the co-dimension of p,
and p, is less than or equal to one. If the co-dimension of N(p,) is
zero, then clearly p, and p, are proportional to |f|. If the co-
dimension of N(p,) is one then by Lemma 1, there exists a real
linear functional f; such that p, = |fi]. Since N(f,) = N(p,) D N(f)
it follows that A, f = f, for some real A, # 0. Hence |\, ||f]| = 2.
Thus p, (and consequently p,) is proportioned to |f|, and hence |f}
is an extremal element of C.
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. The following theorem shows that for the case L = E? the
Euclidean plane, the only extremal elements for C are the semi-
norms given in Theorem 1.

THEOREM 2. Let L = E* then if p is an extremal element of
C, there exists a linear functional f on L such that p = |f|.

In order to prove this theorem it will be necessary to show that
for p a semi-norm on L and p not of the form p = |f| then there
exists semi-norms p, and p, on L such that p = p, + p, and p, (and
consequently p,) is not proportional to p.

It follows from Lemma 1 that for a semi-norm » on L to not be
of the form |f|, where f is a linear functional on L that the co-
dimension of N(p) must be greater than one. Hence for arbitrary L
and p an extremal element of C other than those of Theorem 1,
then p must have the co-dimension of N(p) >1. For L = E? and
peC such that the co-dimension of N(p) >1, then p is a norm.
Thus for the proof of Theorem 2 a non-proportional decomposition
must be provided for all norms on E®,

For p a norm on E*?= {(x, 2,)}, the unit ball U(p) = {x: p(x) = 1}
is a convex circled set containing the origin as a core point. There
is no loss in generality in assuming that the segment (—1,0), (1,0)
is a diameter of U(p). This will mean that U(p) is contained in the
closed unit disk with center at the origin. Let b,(x;,) = sup {x,: (2, %,)
€ U(p)}, the function giving the upper boundary of U(p). Then b, is
a concave function on [—1,1] and b,(+1) = 0. The lower boundary
is given by o',(x) = —b,(—x,) since p(—x) = p(x). The next lemma
gives a non-proportional decomposition of norms p such that the set
U(p) is a parallelogram.

LEMMA 2. Let p be a norm on E* such that b,(a) = b, > 0 for
some a,, —1=<a,<1 and b(x,) is linear on [—1,a,] and on [a, 1],
then p is not an extremal element of C.

Proof. Let p((w, %)) = (1/b) |bx, — a@,| and let pS((x,, x,)) =
(1/b) | %,]. Then p, and p,e C since they are positive multiples of the
absolute values of linear functionals. In order to see f = p, + p, it
is sufficient to show that 2,((,, b,(2,)) + (2, b,(2))) =1 for all
2,€[—1,1]. This can be easily checked directly by substituting in
the equations of the appropriate straight lines for b,. Clearly p, and

P, are not proportional to p.
The next lemma will give a non-proportional decomposition of a

norm p such that the set U(p) is a six-sided polygon.

LEMMA 3. Let p be a morm on E* such that b,(a;) =b; >0,
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1=1,2, where —1<a,<a,<1 and b, 1s linear on [—1, a]], [a,, a.]
and on [a, 1], then p is not an extremal element of C.

Proof. Let p((%, @,)) = a; | a;w, — b, |, © =1, 2 and let pi((,, 2,))
= a, | ®,| where

a, = (bzld) (b1 — b, + Ibzaq - a’2b1 I);
a, = (bI/A) (bz — b, + |b2a’1 — ash, 1,
ay = ((| bya; — agh, [)/4) (b + by — | b, — ab,|),

and
4 = 2bb, | ba, — ab,|.

Then p = p, + p, + p, gives a non-proportional decomposition of .
Although an extension of this method will not be used in the
proof of Theorem 2 it is worth noting at this point that this method
of decomposing P can be used on any norm p such that U(p) is a.
polygon. For a polygon with 2n + 2 sides then b,(x) is a concave:
polygonal function having vertices at {(a;, b))}, 1 =1,2, ---,n where:
b,>0and —-1<ao,<a, < +++» <a,<1l. In this case set.

() = ;a |02, — b, | + Qs | 25 .

By substituting each of the points (a;, b,), 1 =1,2, ---,n and (1, Oy
in this equation we have 7 + 1 linear equations in a,, &, -+, &,
since p((a;, b;)) = p((1,0)) =1 for all v. By solving for the «; and
nothing that they are nonnegative we get the required decomposi-
tion of ». Notice that p is a finite sum of extremal elements of C.

For any norm p on E*? such that U(p) is not a polygon of less
than six sides, that is p is a norm different from those considered in
Lemmas 2 and 3, then there exist points of E? 2™ = (a,, by(a,)),
x® = (ay, b(ay), 10, <a, =1, @, —a, <2 such that b, is not
piecewise linear on [a,, a,] on three or fewer non-overlapping segments
whose union is [a,, @,]. This means that p restricted to the line
segment [z, £®] is a strictly positive convex function that is not.
piecewise linear on three or fewer non-overlapping segments whose
union is [¢®, x®].

Let C,, be the convex cone in E? with vertex at the origin that.
is generated by [z®, #®] and let —C,, be the negatives of the vectors.
in Cu,. Let U(p’) be the closed convex hull of U(p)\(Ci U (—Cu))..
Let ¢, and ¢, be the tangent half-lines to U(p) at z® and z® re-
spectively. These tangent half-lines are to be taken from the interior
of C,. Their intersection #® will be a point in C,. Let U(p”) be
the closed convex circled set whose boundary U(p)\(Cp U (—C)) is
the same as U(p) and whose boundary in C, is [z®, 2®] U [, 2®]..
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Let p" and p” be the semi-norms whose unit ball is U(p’) and U(p”)
respectively. Since U(p') < U(p) < U(p") we have p'(x) < p(x) = p"'(x)
for all xe E*. Then if there exist semi-norms ¢, and ¢, on E* such
that 2'(x) < q;(x) £ p'(x), 1 =1,2 for all xe E* and such that on
'Cu U (_012)7

ag,(x) + (1 — a)gy(x) = p(),

0 <a<1, q (and hence ¢,) is not equal to p on C, U (—C,), then
p=aq, and p,= (1 —a)g, will be semi-norms on FE* such that
0, + p, = p and p;, © = 1, 2 is not proportional to p. Thus the problem
reduces to showing the existence of these semi-norms ¢, and g,.
Notice that it must be that gq)(x)= (%) =p(x) on E*\
{C, U (—C.)) and hence it remains to show that the definition of g,
and ¢, can be satisfactorily extended as required above to all of E*.
If ¢, ©=1,2, restricted to the closed line segment [z™, x®] is
defined to be a convex function such that ¢; #+ p restricted to this
same segment but agreeing with » at 2% and 2® and ¢, =

restricted to this same segment then ¢; can be extended to a semi-
norm on E? Consider the following: For x€C, 2 # 0, there is a
A > 0 such that Az belongs to [x™, £®]. Then take g;,(x) = (1/\)q;(\x).
For xe(—C,) take q;(x) = ¢,(—x) and take ¢;(0) =0. Now U(q,) is
a closed convex circled set since the central projection of a convex
curve is convex. Hence ¢; is a semi-norm. Notice U(p’)c U(g;)c U(p")
and thus p'(z) < ¢(x) < p"(x), ©=1,2 and z<€ E’. Notice also that
the slopes of the half-tangents to ¢q;, ¢ =1, 2 restricted to [z™, 2®]
are finite even at the end-points. The possibility of defining g,
©=1,2 on [, x®] as required above is assured by the following
lemma.

LEMMA 4. Let f be a real convexr function on [a,b] such that
the right-hand derivative at a, fi (@) and the left-hand derivative
at b, fL(b) are finite. Suppose further that f 1s not piecewise
linear on three or fewer non-overlapping segments whose union is
[@, b]. Then there exist real convex functions f,and f,on [a,d] that
differ from f on [a, b], but have the same values and derivatives as
f at the end-points and for some a, 0 < a < 1, afi(x) = (1 — a)fi(x)+
Sf(x) for all xe€la, b]

Proof. Let h(x) = fi(a)(x — a) + f(@). Then F = (1/m)(f — h),
where m is the left-hand derivative of f— 2 at b, is a nonnegative
convex function on [a,d] such that F(a) =0, Fi(a) =0, and
F’(b) = 1. The right-hand derivative of F, F. is a nondecreasing
right continuous function on [a,bd]. Let F. be defined at b by
Fi(b) = F'(b). Since f is not piecewise linear on three or fewer
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non-overlapping segments whose union is [a,b] then the range of
F! has at least four values, that is two besides 0 and 1. If there
exist two non-decreasing right continuous functions F;, ¢ =1,2 on
[a, b] such that Fya) =0, Fi(b) =1, F;# F} on some subinterval
of [a, b],

aFy(z) + (1 — a)Fyzx) = Fi(z),
I<a< 1 on [a,’b], and

SbFi(x)dx - ng;(x)dx
then the required functions f; are given by

£(®) = ha) + m| Foat,
1=1,2,

Consider first the case of F', having at least three discontinuities..
Let F have positive jump discontinuities of 6, at ¢;,, 1=1,2,8
where a < ¢, < ¢, < ¢; < b. Take ¢ = (1/2) min (4,, 0,, ;). Let

Fi(x) = Fi(x) — o0y,

when ¢, <« < ¢,

Fy(x) = Fi(x) + 0y,

when ¢, £ 2 < ¢, and Fy(x) = Fi(x) elsewhere; and let

Fyz) = Fi(x) + oy,

when ¢, = x < ¢,

Fyx) = Fl(x) — 0,

when ¢, <% < ¢, and Fyx) = F, () elsewhere. Take o, 1=1;2
such that 0 < 0, < 6, og,c, — ¢;) = 0,(¢; — ¢,).. It follows that F, and
F, satisfy the above requirement for a = (1/2).

Now for the case where F'} has less than three points of
discontinuity it follows from the condition that F'| has at least four
range values that there exists a subinterval of [a, b] on which F. is
continuous and non-constant. If now F, and F, can be defined on
[a,, b)] as it was required that they be on [a,b] then F, and F,
can be extended to [a,bd] by taking Fi(x) = Fyx)= Fi(x) for
zela, bl\la,, b]. It will follow that F, and F, obtained in this
manner satisfy the above requirements. Thus it is sufficient to show
the existence of F, and F, where F'| is continuous on [a, b].
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Let us perform one further simplification. Let @=sup{x : F;(x)=0}
and let b =inf{w:F/(x) =1}. Then a<a< b =<b. Since F, and
F, are non-decreasing, Fi(a)=0, and F(b)=1, and since a F,+(1—a)F,=
F it follows that Fy(x) = 0 on [a, @] and Fyx) =1 on [b,b], i=1,2.
Thus we may assume that 0 < F| () <1 on the interior of the
interval of definition. Take the interval [a, b] to be [0,1] since
there is no loss in generality in doing so.

The problem is now reduced to the following : Given F (instead
of F. for simplicity) a continuous non-decreasing function on [0, 1]
such that F(0) =0, F1) =1 and 0 < F(z) <1 for 0 < 2 < 1. Show
that there exist two functions F, and F, that have the same prop-
erties as F but are not F (that is, they differ from F' at one point)

and such that for some a, 0 < a <1, aF,+ (1 — a)F, = F and such
that

1 1
SF,.dx= SFdx
0 0

i=1,2. Take 7, 7,7 such that 0 <7, <7, <7, <1 and let &,
% =1,2,3 be such that F(&) =7;. Then let

Fy(x) = (/7)) min (F(x), 7,),

when 0 < 2 < &, and
Fy#) = (1 — 7)/(1 — 7)) (max (F(x),7:) — 75) + 7,
when &, <2 < 1. Let
Fiy(x) = 0/ (7, — 7))(max (F(x), 7,) — 1),

when 0=2<¢&, and

Fyw) = (1 — 75)/(s — 1)) (min (F(x), 17,) — 175) + 7y,

when &, < 2 <1. Now F, and F), are continuous non-decreasing on
[0, 1] such that F;(0) =0, F;(1) =1, ¢ =1,2 and F; # F. Then

D)y + (O — D) Fy = F
on [0, &] and
(@ =)A= P)F, + (s — 1A — P)F, = F
on (&,1). Take 7, = (1/2)n, and 7; = (1/2)(1 + %,). Then it follows

that f = (1/2)F; + (1/2)F, on [0,1], with 7, arbitrary. It remains
only to be shown that 7, can be chosen such that

SF do = S:Fdx,
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4 =1, 2 but this is assured if there exists a &, 0 < & < 1 such that
é 1
6@ = | — Fydo = [ F - F) ds = HE).
2

It can easily be checked that G(0) = H(1) = 0, G is a not identically
zero non-decreasing continuous function on [0,1) and H is a not
identically zero non-increasing continuous function on (0,1]. Hence
there exists &, 0 < & < 1 such that G(&,) = H(E,).

3. Remarks. The argument in E? that shows that the norms in
FE*® are not extremal elements of C shows also that for L general and
peC such that the co-dimension of N(p) =2, then p is not an
extremal element of C. Thus for L general any extremal element
of C other than those mentioned in Theorem 1 must be such that
the co-dimension of its null space is greater than or equal to two.
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