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l Introduction, Let L be a real linear space and let p be a
real function on L such that (1) p(Xx) = | λ | p(x) for all x in L and
all real λ, and p(x1 + x2) ^ p ^ ) + p(x2) for all ^ and x2 in L, i.e. is
a semi-norm on L. Since the sum of two semi-norms, pλ + p2 and
the positive scalar multiplication of a semi-norm, Xp, λ > 0 are semi-
norms, the set of semi-norms on L, C form a convex cone. Those
peC such that if p = px + p2 where px and p2eC we have pλ and p*
proportional to p are extremal element of C, [1]. In this paper it
is shown that p = | / | , where / is a real linear functional of L is an
extremal element of C. For L, the plane it is shown that these are
the only extremal elements of C. Since norms are semi-norms, C
includes this interesting class of functionals.

2. The main results* The convex cone C and the convex cone
— C, the negatives of the elements of C have only the zero semi-
norm in common since semi-norms are nonnegative. The zero semi-
norm is an extremal element if one wishes to allow in the definition
the vertex of a convex cone to be an extremal element. Below only
the nonzero elements are considered.

The following lemma which characterizes the nature of certain,
semi-norms will be used in obtaining the two main theorems.

LEMMA 1. If p is a semi-norm on L such that the co-dimension
of N(p) = 1, then p is of the form p = | / | where f is a linear func-
tional on L.

Proof. Let beL\N(p), where N(p) is the null space of p.
Then any element xeL can be written x = z + Xb where zeN(p}
and λ is real. Let f(x) = Xp(b). Then clearly/ is a linear functional
on L. It shall now be shown that \f(x) \ = p(x) for all x e L. Notice
that

= I/O* + λ&) I = I Xp(b) I = I λ I p(b).

Thus

\f(x) I - p(Xb) = p(z) + p(Xb) ^ p(z + Xb) = p(x).

The proof will be complete if it can be shown that the inequality^
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cannot be a strict inequality for X Φ 0.
Consider the case of the strict inequality occurring at zf + λo6

where λ0 > 0 and zr eN(p). The set U — {x: p(x) ^ XQp(b)} is a convex
•circled set containing N(p) and λo&. It follows that there exists 7 ^ 1
such that

p(y(z' + Xob)) = yp(z' + XQb) = Xop(b)

and hence j(z' + λoδ) e U. Take β = (7(1 - a))/a where a = (7 - l)/(2τ).
Then 0 < a < 1 and

+ λo6)] = (1 - α)

belongs to U since — 2' and y(z' + Xob)e U and U is convex. Now

= (1 - a)7p(Xob) > Xop(b)

since (1 — a)j = (1/2) (1 + 7) > 1, a contradiction since (1 — a)yXob e U.
Thus \f(x)\ = p(αθ for λ0 > 0. Now for the case λ0 < 0 it follows
from the above

1/0*01 = \Λ* + λo6) I = I - / ( - * - λo6) I = \f(-z - xob) I

and

\f(-z - Xob) I = p(-z - Xob) = p(z + Xob).

Thus p(x) = \f(x)\ for all aieL.
It is now possible to prove the following theorem which shows

that the absolute value of a real linear functional is an extremal
element of C.

THEOREM 1. If f is a real linear functional on L, then \f\ is
<ιn extremal element of C.

Proof. It is easy to check that | / | is subadditive and absolutely
Ίiomogeneous and hence \f\eC.

Suppose I /1 = pλ + p2 where px and p2 e C. Since px and p2 are
nonnegative 0 ^ p< ̂  | / | , i = 1, 2. Thus when f(x) — 0, p^x) = 0,
ί = 1, 2 and JV(/) c iV(Pi)> i = 1,2. Hence the co-dimension of φx

and p2 is less than or equal to one. If the co-dimension of N(pJ is
zero, then clearly px and p2 are proportional to | / | . If the co-
dimension of JYίPx) is one then by Lemma 1, there exists a real
linear functional fτ such that p1=\f1\. Since N(fJ = iSΓfe) 3 iSΓ(/)
it follows that Xxf = fi for some real Xx ψ 0. Hence \X1\ \f\ = px.
Thus pλ (and consequently p2) is proportioned to | / | , and hence | / |
is an extremal element of C.
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The following theorem shows that for the case L ~ E2, the
Euclidean plane, the only extremal elements for C are the semi-
norms given in Theorem 1.

THEOREM 2. Let L = E2, then if p is an extremal element of
€, there exists a linear functional f on L such that p = | / | .

In order to prove this theorem it will be necessary to show that
for p a semi-norm on L and p not of the form p = | /1 then there
^exists semi-norms pλ and p2 on L such that p = px + p2 and pι (and
consequently p2) is not proportional to p.

It follows from Lemma 1 that for a semi-norm p on L to not be
•of the form |/ | , where / is a linear functional on L that the co-
dimension of N(p) must be greater than one. Hence for arbitrary L
and p an extremal element of C other than those of Theorem 1,
then p must have the co-dimension of N(p) > 1. For L = E2 and
φ e C such that the co-dimension of N(p) > 1, then p is a norm.
Thus for the proof of Theorem 2 a non-proportional decomposition
must be provided for all norms on E2.

For p a norm on E2 = {(xlf x2)}, the unit ball U(p) = {x : p(x) ^ 1}
is a convex circled set containing the origin as a core point. There
is no loss in generality in assuming that the segment ( — 1,0), (1,0)
is a diameter of U(p). This will mean that U(p) is contained in the
closed unit disk with center at the origin. Let bp{x^) — sup {x2: (a?!, x2)
€ U(p)}, the function giving the upper boundary of U(p). Then bp is
.a concave function on [—1,1] and bp(+l) = 0. The lower boundary
is given by b'p{x^ — —bp(—x^ since p{—x) = p(x). The next lemma
gives a non-proportional decomposition of norms p such that the set
U(p) is a parallelogram.

LEMMA 2. Let p be a norm on E2 such that bp{a^) = bλ > 0 for
some alf — 1 ^ ax ^ 1 and b{Xτ) is linear on [—1, αj and on [alf 1],
then p is not an extremal element of C.

Proof. Let Pι{{xly x2)) = (l/&i) I Mi — #i#i I and let
<l/6i) I oja|. Then px and p2e C since they are positive multiples of the
absolute values of linear functionals. In order to see / = px + p2 it
is sufficient to show that PMX^ bp(xt))) + P2{{%i, bv{xt))) = 1 for all
^ € [ — 1,1]. This can be easily checked directly by substituting in
the equations of the appropriate straight lines for bp. Clearly px and
p2 are not proportional to p.

The next lemma will give a non-proportional decomposition of a
norm p such that the set U(p) is a six-sided polygon.

LEMMA 3. Let p be a norm on E2 such that b^) = δ̂  > 0,
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i = 1, 2, where — 1 < aλ < α2 < 1 and bp is linear on [—1, α j , [α^ α2]
w [α2,1], £&ew p is not an extremal element of C.

Proof. Let Pi((xl9 x2)) = oc{ \ a{x2 — 6 ^ |, i = 1, 2 and let p 3((^, α?2)>
= ^31 #21 where

«i = ΦJ4) (6i - &ι + I 6 A - αA i),
α2 = (6JJ) (62 - 6χ + I 6 A - αA |),
^3 = ((I &A - αA DM) (6i + 6i - I M i - α2δi I),

and

Δ = 2&X&21 6 A — αaδi|.

Then ί> = ί?i + p2 + ί?3 gives a non-proportional decomposition of p.
Although an extension of this method will not be used in t h e

proof of Theorem 2 it is worth noting at this point that this method
of decomposing p can be used on any norm p such that U(p) is a
polygon. For a polygon with 2w + 2 sides then bp(x) is a concave
polygonal function having vertices at {(α ,̂ 6̂ )}, i = 1, 2, , n where
bi > 0 and — 1 < ax < α2 < < an < 1. In this case set.

V{%) = Σ aι I α Λ - M i I + an+i I a* |.
i=l

By substituting each of the points (ai9 6̂ ), ί = 1, 2, , w and (1, 0)
in this equation we have n + 1 linear equations in au a2, , α n + 1

since p{{au 6J)••= p((l, 0)) = 1 for all i. By solving for the ai and
nothing that they are nonnegative we get the required decomposi-
tion of p. Notice that p is a finite sum of extremal elements of C.

For any norm p on E2 such that U(p) is not a polygon of less
than six sides, that is p is a norm different from those considered in
Lemmas 2 and 3, then there exist points of E2, xa) — (alf 6ί,(α1)),
#(2> = (α2, bp(a2)), —I^a1<a2^l, a2 — ax < 2 such that δp is not
piecewise linear on [au a2] on three or fewer non-overlapping segments
whose union is [alf a2]. This means that p restricted to the line
segment [x{1), x{2)] is a strictly positive convex function that is not
piecewise linear on three or fewer non-overlapping segments whose
union is [x{1), x{2)].

Let C12 be the convex cone in E2 with vertex at the origin that
is generated by [x{1), x(2)] and let — C12 be the negatives of the vectors,
in C12. Let U{p') be the closed convex hull of U(p)\(C12 U (-C1 2)) .
Let tλ and t2 be the tangent half-lines to U(p) at x{1) and x{2) re-
spectively. These tangent half-lines are to be taken from the interior
of C12. Their intersection #(3) will be a point in C12. Let U(p") be
the closed convex circled set whose boundary U(p)\(C12 U ( — Cl2)) is
the same as U(p) and whose boundary in C12 is [x{1), x{3)]\J [xι*\ x(2)]m.
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Let pf and p" be the semi-norms whose unit ball is U{p') and U{p")
respectively. Since U(p') c U(p) c U{p") we have p'{x) ^ p(x) ^ p"{x)
for all x e E2. Then if there exist semi-norms qλ and q2 on E2 such
that 2>'(&) ^ ?<(«) ^ p"(αθ, i = 1, 2 for all α? € # 2 and such that on
€1 2U(-C1 2) ,

0 < a < 1, gx (and hence q2) is not equal to p on C12 U ( — C12), then
px = ##! and p2 = (1 — a)q2 will be semi-norms on E2 such that
#i + Ί>2 = P and ^ , i = 1, 2 is not proportional to p. Thus the problem
reduces to showing the existence of these semi-norms q± and q2.

Notice that it must be that qλ(x) = q2(x) = p(α?) on E2\
(C12 U ( — C12)) and hence it remains to show that the definition of qλ

and g2 can be satisfactorily extended as required above to all of E2.
If qi9 i — 1,2, restricted to the closed line segment [x{1), x{2)] is
defined to be a convex function such that q{φ p restricted to this
same segment but agreeing with p at x{1) and x{2) and q{ Ξ> pr

restricted to this same segment then ĝ  can be extended to a semi-
norm on E2. Consider the following: For x e C12, x Φ 0, there is a
λ > 0 such that Xx belongs to [x{1\ x{2)]. Then take q^x) — (l/λjg^λa?).
For # e ( — C12) take ^(α?) = q^ — x) and take ^(0) = 0. Now U(qi) is
a, closed convex circled set since the central projection of a convex
curve is convex. Hence q{ is a semi-norm. Notice U(pf)c: U(q^c: U{p")
and thus p'{x) S <7;(#) ^ p"(x), i = 1, 2 and a? e E'2. Notice also that
the slopes of the half-tangents to gi9 i = 1, 2 restricted to [#(1), α;(2)]
are finite even at the end-points. The possibility of defining qif

i = 1, 2 on [#(1), #(2)] as required above is assured by the following
lemma.

LEMMA 4. Let f be a real convex function on [α, b] such that
the right-hand derivative at a,f[ (a) and the left-hand derivative
at 6, fL (b) are finite. Suppose further that f is not piecewise
linear on three or fewer non-overlapping segments whose union is
l[α, 6]. Then there exist real convex functions fλ and f2 on [a, b] that
•differ from f on \a, 6], but have the same values and derivatives as
f at the end-points and for some a, 0 < a < 1, afx(x) = (1 — a)f2{x) +
f(x) for all x e [α, b]

Proof. Let h(x) - fί(a)(x - a) + f(a). Then F = (l/m)(/ - h),
where m is the left-hand derivative of / — h at 6, is a nonnegative
convex function on [α, b] such that F(a) — 0, F[(a) = 0, and
FL{b) = 1. The right-hand derivative of F, F[ is a nondecreasing
right continuous function on [α, 6]. Let Ff

+ be defined at b by
J^|(δ) = FL(b). Since / is not piecewise linear on three or fewer
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non-overlapping segments whose union is [a, b] then the range of
Ff

+ has at least four values, that is two besides 0 and 1. If there
exist two non-decreasing right continuous functions Fi9 i — 1, 2 on
[α, b] such that F^a) = 0, F{(b) = 1, F{ Φ F'+ on some subinterval
of [α, 6],

aFλ{x) + (1 -

0 < tf < 1 on [α, 6], and

then the required functions f{ are given by

/<(») = h(x) +

Consider first the case of J P | having at least three discontinuities.
Let F[ have positive jump discontinuities of θi at cif i = 1,2, S
where α < c : < c2 < c3 < 6. Take 0 = (1/2) min (θlf θ2y θ%). Let

F|W - σ19

when βx ^ a? < c2>

.ί\(αj) = ί7i(a?)+ ισ2,

when c2 ^ a? < c3, and -PI(OJ) = F[(x) elsewhere; and let

F,{x) = F'+{x) + σlf

when dtί % < ci9

when c2 ^ a? < c8) and F2(x) = ί'+ίίc)- elsewhere. Take a4, i = 1, 2
such that 0 < σ{ < 0, tf^Cg — c j = σ2(c3 — c2). It follows that Fλ and
,P2 satisfy the above requirement for a — (1/2).

Now for the case where F[ has less than three points of
discontinuity it follows from the condition that F+ ha,s, at least four
range values that there exists a subinterval of [α, b] on which F+ is
continuous and non-constant. If now F± and F2 can be defined on
[cii, &x] as it was required that they be on [α, b] then F1 and ίV
can be extended to [α, 6] by taking F±(x) = Fa(αj) == F |(^) for
# e [ α , 6]\[αi, 6J. It will follow that i*\ and F2 obtained in this
manner satisfy the above requirements. Thus it is sufficient to show
the existence of Fx and F2 where F+ is continuous on [α, 6],
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Let us perform one further simplification. Let a~sup{x : F[(x)=0}
and let b = inf {x : F[(x) = 1}. Then ag*a<b^b. Since Fx and
F2 are non-decreasing, F;(α)=0, and 2 (̂6) = l, and sϊncte aFx+(1—a) F2~
F[ it follows that F^x) = 0 on [α, α] and 2̂ (0?) = 1 on [6, 6], i = 1, 2.
Thus we may assume that 0 < F[ (x) ..< 1 on the interior of the
interval of definition. Take the interval [α, b] to be [0,1] since
there is no loss in generality in doing so.

The problem is now reduced to the following: Given F (instead
of F[ for simplicity) a continuous non-decreasing function on [0,1]
such that F(0) = 0, F(ΐ) = 1 and 0 < F(x) < 1 for 0 < x < 1. Show
that there exist two functions Fλ and F2 that have the same prop-
erties as F but are not F (that is, they differ from F at one point)
and such that for some a, 0 < a < 1, aF1 + (1 — a)F2 = F and such
that

[1Fidx= Γ.
Jo Jo

~ %))(max (F(x),ηz) -

Fdx

i = 1,2. Take ηl9 %, % such that 0 < ηx < 7]2 < % < 1 and let ξir

i = 1, 2, 3 be such that F(^) = %. Then let

when 0 ^ α? ̂  ξ2 and

ί\(a?) - ((1 -

when ξ2 < x ^ 1. Let

when

when f2 < x fg 1. Now i
[0,1] such that F,(0) = 0,

and

= ((1 -

and are continuous non-decreasing on
^ F. Then= 1, i = 1, 2 and

+ ((% - v

2 - F

on [0, ί2] and

((1 -

on (&, 1). Take ηx = (1/2)% and % = (1/2)(1 + %). Then it follows
that / = (1/2)2^ + (1/2)F2 on [0,1], with η2 arbitrary. It remains,
only to be shown that Ύ]2 can be chosen such that

Fidx = [Fdx,
o Jo
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i — 1, 2 but this is assured if there exists a ξ2, 0 < ξ2 < 1 such that

G(?2) = ( V i -F)dx= [ (F - FO dx = fljfc2).
Jo Jf 2

It can easily be checked that G(0) = H(l) — 0, G is a not identically
zero non-decreasing continuous function on [0,1) and H is a not
identically zero non-increasing continuous function on (0,1]. Hence
there exists ξ2, 0 < ξ2 < 1 such that G(ξ2) = iϊ(?2).

3 Remarks* The argument in E2 that shows that the norms in
JE2 are not extremal elements of C shows also that for L general and
φeC such that the co-dimension of N(p) = 2, then p is not an
extremal element of C. Thus for L general any extremal element
of C other than those mentioned in Theorem 1 must be such that
the co-dimension of its null space is greater than or equal to two.
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