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l Introduction* Recently there has been a great interest in the
study of various classes of operators on a complex Banach space with
the purpose of developing a spectral theory generalizing that of self-
adjoint operators on Hubert space. Most well-known is the work of
N. Dunford [2,3] on spectral operators. Many operators of interest
are ruled out of this class by the requirement that there exist a
countably additive resolution of the identity; for example, U. Fixman
[5] has given examples of invertible isometries of Lp(p Φ 2) and C(X)
which fail to be spectral. This present work is directed toward the
development of a spectral theory where the resolution of the identity
need only be finitely additive.

The general method is to use the classical operational calculus,

φ:f-+f(T) = - M f(z)B(z; T)dz ,
2π% Jy

to induce a ring homomorphism of %(T), the ring of all functions
analytic on neighborhoods of σ(T). This calculus may be used to in-
duce a norm on %{T) by defining | / | to be \f(T)\. We may com-
plete g( T) in this norm to obtain a Banach algebra A which includes
%{T) as a dense subspace and on which there is a unique continuous
extension of the classical homomorphism. Alternatively, under certain
hypotheses, we may equip %(T) with a norm so that the completion
in this norm yields a regular function algebra.

What we will need, and therefore hypothesize, is a norm that
accomplishes both conditions, namely, the operational calculus, φ, is
to be bounded on g( T) and the completion of %(T) is to be a regular
function algebra. We will need to impose further conditions at the
"wrong end" of the theory; it will not be obvious from knowledge
of an operator whether these conditions are satisfied. It will be
clear, however, that the operationally defined class of operators con-
tains some more easily indentified classes. We also impose a "front
end" restriction on the spectrum of the operator, the .R-set property.

In § 2, we obtain the consequences of the existence of an opera-
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tional calculus satisfying a certain continuity condition. The theory
developed there will encompass: (A) self-ad joint and unitary operators
on a Hubert space; (B) operators of polynomial growth (a generali-
zation of the "weakly almost periodic" operators of E. Lorch [9]);
(C) operators of D. Smart [14]; and (D) spectral operators of scalar
type which have spectra of a certain class. The main result, Theorem
2.3, relates the support of a function and the spectrum of a vector.

In § 3, we introduce the iV*-condition and thereby obtain a
spectral decomposition of a class of operators with special attention
given to operators of polynomial growth. With the assumption that
the spectrum is purely continuous and is contained in the unit inter-
val, a family of closed commuting projections is obtained under the
iST*-condition.

Section 4 is concerned with the problem of the synthesis of an
operator from its parts in the form of an integral representation. A
decomposition analogous to that of spectral operators is given.

The notation terminology follow that of [4] and [8].
We conclude this present section with a few preliminary defini-

tions and results. These definitions and Theorem 1.1 have been given
by Dunford [2,3] for spectral operators.

For each x in X, the function z —> E(z : T)x is an X-valued analytic
function defined on ρ(T). An X-valued function z—» Y(z) will be
called an extension of R(z: T)x if it is defined and analytic on an
open subset D(Y) of the plane and if for each z in D(Y), we have
(z - T)Y{z) - x. Then, on D(Y) n ρ{T), we have Y(z) = R{z)x. R(z) is
said to have the single valued extension property if for each x in X
and each pair of extensions Yx and Y"2 of R(z)xf we have Yλ — Y2 on
the intersection of their domains. In this case, there exists for each
x, a maximal extension, Rx(z), with a domain p(x) which contains the
resolvent set of the operator.

We shall call Rx(z) the resolvent localized at x. The local spectrum
(at x in X) is the complement of p(x) and is denoted by σ(x). A
sufficient condition for R(z) to have the single valued extension prop-
erty is that σ(T) be nowhere dense [2].

If Yx and Y2 are two extensions of R(z)x, then for z in the
intersection of their domains, we have (z — T)( Yx{z) — Y2(z)) =
x — x — 0; hence, Yτ(z) — Y2(z)f if it is nonzero, is an eigenvector
with eigenvalue z. Thus, all branching is confined to the spectrum
proper. This furnishes us with another simple sufficient condition
for the existence of single valued extensions; namely, the absence of
the point spectrum. However, it should be noted that proper exten-
sions may fail to exist. The positive unilateral shift on a sequential
Hubert space furnishes an example of an operator with no point
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spectrum, but no proper extension for any nonzero vector.
The following properties of the local resolvent Rx{x) are readily

established [2, p. 246].

1.1. THEOREM. The local resolvent satisfies the following:
(a) Rx(z) = R(z)x on ρ(T);
(b) σ(x) is a compact subset of σ(T);
(c) σ(x) == 0 if and only if x = 0;
(d) σ(x + y)a σ(x) U σ(y);

(e) Raχ+υy(z) = aRM + bRy(z) on ρ{x) Γi
(f) if (z - Γ)a? = 0, then σ(x) c {z};
(g)

Proo/ of (/). For large λ,

^-t \ A. ά)

o (λ — Z) +

thus JS^λ) = xftk - z).

Proo/ o/ (g). Since we have for all x in X, <τ(#) c σ( T), we
assume λ does not belong to the union of the local spectra. We
have (λ - T)Ry{X)y = Ry(X)(X - T)y = y so that the range of λ - Γ
is the entire space. From (f) it is clear that λ — T is one-to-one;
thus λ belongs to the resolvent set of the operator.

1.2. THEOREM. If ST = TS/or some S m £(X), then σ(Sx) c σ(α ).
ikforeot er, if S is invβrtible, then σ (Sx) = σ(α ).

1.3. THEOREM. (Spectral Continuity Theorem). If T belongs to
B(£) and V is a neighborhood of zero in the complex plane, then
there exists aδ > 0 such that for each S in B(£) that commutes
with T and for which \ T - S\ ^ 3, we have σ{S) c σ{T) + V and
<σ(T)aσ(S)+ V.

2. The operational calculus. We will require certain restric-
tions on the spectrum of an operator. The family of functions, each
of which is analytic on some neighborhood of the set M is denoted
by %(M). We modify the outline of attack given in the introduction
to allow a superset M of the spectrum to be the base space of the
function algebra. Here, by a regular function algebra, we mean a
•commutative semi-simple Banach algebra with unit such that for any
two disjoint closed subsets of the maximal ideal space there is a
function in the algebra taking the value 1 on one closed set, the
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value 0 on the other. We allow the freedom of confusing the
elements of the algebra with the corresponding continuous functions
on the maximal ideal space.

DEFINITION. A subset M of the complex plane is an R-set if M
is compact and nowhere dense and the uniform closure of the family
R{M), rational functions with poles off of M, is all of C(M), the
space of continuous functions on M.

If a compact nowhere dense set M satisfies either of the two
conditions, then it is an iϋ-set [15, p. 77]:

(a) M has 2-dimensional Lebesgue measure zero, or (b) the com-
plement of M has only a finite number of components.

Let A be a function algebra defined on a compact nowhere dense
subset M of the plane C (i.e., the maximal ideal space is M and we
identify the elements of A with the continuous functions on M of
the Gelfand representation). We assume A is regular, %(M) is a
dense subalgebra (in the A norm), and that M is an JS-set.1 We
note that under these hypothesis A is inverse closed, the maximal
ideal space of A is M, and that the norm of A dominates the uniform
norm. Let T belong to B(£) and have its spectrum contained in M.
Then there exists a homomorphism φ of %(M) into B(%) defined by
the classical operational calculus. With one additional assumption we
are ready to start. Namely, we assume that φ is bounded in the A
norm and so extends uniquely to a continuous homomorphism of all of
A. We shall designate this extension by φ also. We shall call such
an algebra and mapping a pattern and a pattern calculus and denote
the image of A under φ by A(T). Note that A(T) need not be
closed in !?(£).

Some justification of the profusion of hypotheses is afforded by
the following examples which satisfy our requirements and provided
the motivation for this work.

EXAMPLE A. If U is a unitary operator on a Hubert space, then
σ( U) is contained in the boundary of the unit circle, D = {z : | z \ — 1},
φ extends to C{D), and A can be taken to be all of C(D). There
exists a resolution of the identity, that is, a family {Et :te D} of
projections which commute with U. The ranges and null spaces of
these projections form a system of closed reducing manifolds.

Since a unitary operator is an invertible isometry, \ Un\ = 1 for
— oo < n co. Nagy [10] proved that if an operator T on a Hubert
space satisfies [ Tn | ^ K for — oo < n < oo, then there exists a

1 The ίJ-set requirement may be replaced with the assumption that A is symmetric;
the purpose of these assumptions is to insure that A is uniformly dense in C(M). In
the latter case, Lemma 2.1 must be replaced with a longer construction.
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bounded invertible operator S such that STS'1 is unitary. Moreover,
if K = 1, then T is itself unitary. This leads one to hope that an
operator T satisfying such a growth condition on an arbitrary Banach
space will enjoy a few of the pleasant properties of a unitary
operator.

EXAMPLE B. If T in B(H) satisfies | Tn ^ K\n\q for n Φ 0, we
say that T is of polynomial growth (of order q). In case q = 0,
then T will be called an operator of bounded growth. Lorch, in [9],
used the term weakly almost periodic for such an operator (q = 0)
on a reflexive space. If q = 1, then the operator is of a class con-
sidered by Leaf [7].

A concrete example of this class of operators is furnished by the
translation operator on Lp of the real line where the measure is
given by Lebesgue measure multiplied by the absolute value of a
polynomial.

If T is of bounded growth, then σ(T) is easily shown to be
contained in the boundary of the unit disk. There is an obvious
homomorphism of the Wiener algebra Wo of functions on D = {z : | z | — 1}
with absolutely convergent Fourier series into B(3ί) defined by

φ:f-+f(T) = ΣonT
n for /(*) - Σcn exp(ins).

In [16], Wolf employed a homomorphism of C2(D), the class of
functions on D with a continuous second derivative. While C2 is
pleasanter to work with than Wo, the homomorphism in this case is
not as obvious. We shall show Wolf's homomorphism and results
can be obtained via a homomorphism of Wo.

An annoying point arises from the fact that a function / may
belong to %(T) and fail to belong to A. For example, / may have
a pole on M yet still be analytic on some neighborhood of σ(T).
However, if / belongs to F(T), it can be shown that there exists a
function g in A with

Suppose/ is analytic on a neighborhood £7of σ(T). Let σ(T)a E/Ίc U
and let / be the ideal of functions which vanish on Uϊ Π M. Since
/ is analytic it operates on the algebra A/1 and hence there is a
function g in A with f = g on & neighborhood of the spectrum.

It appears that we should be considering equivalence classes of
functions. If / vanishes on a neighborhood of o(T), we shall show
that φ(f) = 0. In the converse direction, only this holds: if φ(f) = 0.
then / vanishes on σ(T). The first impression that this technical
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difficulty may be eliminated by taking the quotient algebra W0/Ker φ
is in error; if Ker φ is not an ideal of spectral synthesis, then
WojΈLerφ fails to be semi-simple.

If T is of polynomial growth of order q, then a homomorphism
of a certain subalgebra of the Wiener algebra is used to obtain an
analysis of T.

EXAMPLE C. Smart [14] defined T to be a well-bounded operator
if there exists a homomorphism of the absolutely continuous func-
tions on the interval I — [a, b] which sends f(s) = s into T and which
is bounded under the norm

I/I - sup{|/(β)| : se 1} + var {/(β): se 1} .

Hence a pattern calculus based on the absolutely continuous func-
tions on I can be defined. Actually, Smart included in his definition
only such operators on a reflexive space; we shall employ the term
with the underlying space arbitrary.

A well-bounded operator on a reflexive space has a strongly con-
tinuous finitely additive resolution of the identity [14]. In this case,
an operational calculus, also based on the absolutely continuous func-
tions, can be built from an operator valued Riemann integral in the
strong operator topology. Ringrose [13] proved that a well-bounded
operator on a reflexive space is "scalar" in the sense that if we set

S= \btdE{t) ,
Jα

then T - S = 0.

EXAMPLE D. Dunford [2] showed that if R is an algebra of
bounded operators on a reflexive Banach space X which is equivalent
to C(M), then every operator in R is a scalar type spectral operator
of class X*. Here A can be taken to be C(M) and A(T) = R.

We shall have more to say concerning Examples B and C.
The development that follows depends on the Extension Theorem

2.2 below. It is here (and only here) that we employ the i?-set prop-
erty of M. Hence, this assumption could be dispensed with if the
assertion were to be hypothesized outright.

2.1. LEMMA. Let f belong to a pattern A. Then there exists g
in A which never vanishes and approximates f uniformly.

Proof. Since the algebra is based on an lϋ-set, we can approxi-
mate / by pjq where p and q are polynomials. Since p can vanish
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only at a finite number of points, we can replace p by px which does
not vanish on M. Now we use the i?-set property again to uniformly
approximate pjq with g in A.

2.2. THEOREM. (Extension Theorem) Let K be a closed subset of
M and A be a pattern defined on M. Let f be a function in A
which does not vanish on K. Then there exists a function g in A
which agrees with f on a neighborhood of K and is non-vanishing
on M.

Proof. With no loss of generality, we may assume U is a
neighborhood of K with | / | Ξ> 1 on U. By regularity, there exists h
in A with h = 1 if | / | ^ 1 and h = 0 if | / | ^ | . By the lemma,
there exists g in A, never vanishing, and approximating / with
\f-9\ ^(2max 1/̂1 + I)"1. Let

Λ - hf + (1 - h)g =f + (1 - h)(f - g) .

Then fλ is the required function in A.
For / belonging to A, we define Sf = {teM:f(t) Φ 0} and let Cl

denote the closure operation.

2.3. THEOREM. (Spectral Identification Theorem) Let A be a
pattern algebra for the operator T. Then

Cl [σ(x) Π Sf] c σ(f(T)x) c σ(x) Γ\ClSf .

Proof. Set gλ (t) = /(ί)/(λ - t). Then gλ belongs to A for λ
belonging to the complement of Cl Sf. This is shown by the follow-
ing argument. By the Extension Theorem 2.2, there is an extension
of the function λ — t that is non-vanishing in a neighborhood of λ
which is contained in the interior of the zero set of /. This exten-
sion is non-vanishing on M, so is invertible in A by the Wiener-
Gelfand Theorem. This inverse, when multiplied by /, is precisely
gκ. Hence, φ{gk)x = G(\)x is X-valued analytic since gλ is analytic in
A and satisfies (λ — T)G(X)x = f(T)x, and so it is an extension of
the resolvent at f(T)x. Therefore σ(f(T)x)dCl Sf which, together
with Theorem 1.1 (b), implies that

σ(f(T)x)aσ(x)nClSf.

We now use this result to establish the other half of the assertion.
If λ is in δ(x) and /(λ) Φ 0, then there exists a neighborhood V of λ
and a function g in A such that f + g never vanishes while g is
identically zero on V. Then
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λ 6 σ(x) = σ(9>(/ + g)x)

since φ(/ + #) is invertible in i?(3E). Moreover,

o{ψ{f + g)x) c *(/(2» U σ(g(T)x)

by Theorem 1.1 (d). But

σ(φ(g)x) c σ(a?) Π Cl Sg

while λ does not belong to ClSgi so we must have λ e o(φ{f)x). Thus

Since σ(f(T)x) is closed, this implies the result.

2.4. COROLLARY. Suppose that f belongs to A:
(a) if f vanishes on a neighborhood of σ(T), then f(T) = 0;
(b) if f(T)Tί = 0, then f vanishes on σ(T).
(c) iff vanishes on a neighborhood of σ{x), then f(T)x = 0;
(d) if f(T)x — 0, then f vanishes on σ (x);

2.5. THEOREM. (Spectral Mapping Theorem) For f in A, σ(f{T)) =
f[σ(T)]

Proof. Let [/J be a sequence of functions in %(M) that con-
verges to /. The standard Spectral Mapping Theorem [4, p. 569]
implies that for each n, σ{fn{T)) = fn[σ(T)]. The Spectral Continuity
Theorem 1.3 implies that for each neighborhood V of the point 0 in
the complex plane, when n is sufficiently large, we have

σ(φ(fn))cσ(φ(f))+ V, and φ(/))cφ(/J)+ V.

We then have ultimately

fn[σ(T)]aσ(f(T)) + V, and σ(f(T)afn[σ(T)] + V.

The norm convergence of {fn} to / implies uniform convergence
which, together with the fact that the spectrum is always compact,
yields the desired result.

We know by Corollary 2.4 (b) that if / is in Ker<£>, then /
vanishes on σ(T). The converse fails to be true in the general. If
/ vanishes on σ{T), we know \σ(f(T))\ = 0, but the spectral radius
is only dominated by the norm and is not necessarily equivalent.
Hence σ(f(T)) — [{0} does not imply that f(T) is the zero operator
An operator may behave in a quasi-nilpotent or nilpotent manner on a
particular manifold; for this reasons, equality is not to be expected
in Theorem 2.3.
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2.6. COROLLARY. For f in A, the operator f{T) is quasi-
nilpotent if and only if f[σ(T)] = {0}.

2.7. COROLLARY. The algebra A(T) is inverse closed in the
[sense that if F belongs to A(T) and has an inverse G in B(£), then
G belongs to A(T).

Proof. F is the uniform limit of analytic functions of the
operator. Since F is invertible in JB(3£) this sequence must be ulti-
mately invertible. Continuity of inversion completes the proof.

We denote the norm closure of A(T) by A(T)~; then the com-
mutivity of A(T)~, together with the fact that A(T) is inverse
closed, implies that A{T)~~ is also inverse closed. Any norm closed
inverse closed algebra containing / and T must contain all rational
functions of I and T. Hence, A{T)~ is the minimal norm closed
algebra over / and T which contains the inverses of all its invertible
members. This is known as the full algebra of T [3]. If φ is one-
to-one and φ{A) is closed then φ is continuous in the uniform norm
on A. See Example D concerning this case.

DEFINITION. The hull of an ideal /, denoted by H{I), is the
collection of all maximal ideals which contain /. For any collection
S of maximal ideals, the kernel, K(S), is the intersection of maximal
ideals belonging to S. The following facts are basic [8].

(a) If ScM, then K(S) is a closed ideal since it is the inter-
section of closed ideals.

(b) By regularity of A, each closed subset of M is a hull. In
fact, if S c l , then S~ = HK(S).

(c) For each ideal I in A, H{iγ = H{I).
(d) For each ideal I in A, I~ c KH(I).

Note that the inclusion in (d) need not be equality. An ideal I for
which / = KH(I) is called an ideal of spectral synthesis. Clearly,
any such ideal is closed. We call a hull a hull of spectral synthesis
if the closure of the ideal of functions in A, each of which vanishes
in some neighborhood of the hull, is the ideal of all functions of the
algebra which vanish on the hull.

2.8. COROLLARY. iϊ(Ker^) = σ(T).

2.9. COROLLARY. Let Rad A(T) denote the ideal of quasi-
nilpotent elements of A(T). Then Rad A(T) = φ[K(σ(T))].

2.10. COROLLARY. If σ{T) is a set of spectral synthesis, then
Rad A(Γ) = 0.
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Proof. Since σ{T) is of spectral synthesis, any function vanishing*
on σ{ T) may be approximated by a function vanishing in a neighbor-
hood of σ(T) hence is in the closure of the closed ideal Ker<p.

In a like manner, if σ(x) is a hull of spectral synthesis and if /
vanishes on σ(x), then f(T)x = 0.

2.11. THEOREM. (Closure Property) Let K be closed in M and
let ϊ ^ be the manifold of xelί such that σ(x)c K. Then ϋκ is a
closed subspace of X.

Proof. Suppose {xn} is a sequence in Hκ which converges to x.
If / vanishes on a neighborhood of K, then f(T)xn — 0 and, by
continuity of f{T), also f(T)x — 0. Hence, / vanishes on σ(x). If
σ(x) is not a subset of K, then regularity of A furnishes a function
/ vanishing on K but not on all of σ(x).

Non-trivial manifolds are generated by proper closed subsets of
σ(T). Such manifolds are invariant under T, and, moreover, invariant
under every operator in A(T) since

σ(f(T)x) c σ(x) ΠClSfcz σ(x) c K

for / in A.

2.12. THEOREM. Let K and N be closed in M. Then
(a) %κ Π £zy =

(b) βκ + X^)"
(c) if Kf)N=0, then %KUN- = X* + 3^ so ίλαί X̂  + 3^ is

ciosecί.

Proo/.
(a) Trivial.
(b) If x = w + z with (j(te ) c K and σ(a ) c N, then, since

α(w + z) c σ(w) U ̂ (^), we have σ(x) aK\J N so Tίκ + Xπ U X^u^
The assertion follows from monotonicity of the closure operation*
(c) If σ(x) c K U N, then a? = w + z where σ(w) c if and σ(z) c iV by
regularity of A and the fact that K Π N = 0 .

2.13. THEOREM. (Inclusion Property) // -K is cϊosed in M,
ίfeβ spectrum of the restriction of T to the closed manifold Ίίκ is
contained in K.

Proof. If λ does not belong to K, then there exists a function
f in A with f(z) = l/(λ - ^ ) o n a neighborhood of K. If α?eHκ, then
we have (λ - T)f(T)x =/(Γ)(λ - T > = α?. Hence λ is in the re-
solvent set of the restriction.
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3 The ΛΓ*̂ algebra* In this section, we shall examine the impli-
cations of an additional hypothesis on the pattern algebra. This is
the iV*-condition to be defined below. The application is to operators
of bounded growth and, since the same techniques apply to operators
of polynomial growth, we treat them also in this section although
the iV* -condition is not satisfied in general.

DEFINITION. Recall that an ideal / is of spectral synthesis if
KH{I) = I. An algebra in which each closed ideal with a one-point
hull is an ideal of spectral synthesis is called an N*algebra [11,
p. 92].

For a pattern A, this means the following: if t is a point of M
and / a function in A which vanishes at t, then for each e > 0, there
is a function g in A which vanishes in a neighborhood of t and such
that | / - g\ S ε.

3.1. THEOREM. (Lorch Approximation) Let T be an operator
with an N*-pattern. For each ε > 0 and each z in σ(T), there is
a δ > 0 such that | (T — z)x \ ^ εK\x\ for vectors x with σ(x) con-
tained in the neighborhood N5 (z) of radius δ about the point z.

Proof. The function f(t) = t — z vanishes at t — z. Hence, by
the ΛΓ*-condition, there exists a function g with the properties that
\f — g\ ^ ε and g vanishes in some neighborhood of t = z. Then

\ ( T - z)χ I = I φ(f)χ \ S \ φ ( f - g)χ I + I φ(g)χ \ ^ e K \ x \

Now, if σ(x) is disjoint from the closed support of g, then φ(g)x = 0
by Corollary 2.4 (c). The assertion then obtains if σ(x) c N5 (z) for
a small enough 3 < 0.

Lorch [9] obtained this result for operators of bounded growth.
We will obtain this result as a corollary of the fact that Wo is an
ΛΓ*-algebra and it will be clear that in this case δ can be taken
independently of z. We indicate a further generalization of the
theorem in the following direction. Define an N*(q)-algebra by the
condition that f(z) = 0 implies that (f)g can be approximated in the
algebra by functions, each of which vanishes in some neighborhood
of z. Then, if T has an iV*(g)-pattern, it follows from a similar
argument that for z in σ(T) and ε > 0, there exists a δ < 0 such
that I (T - z)px \^eK\x\ for those vectors x with σ(x) c Nδ (z). We
shall obtain this last result for operators of gth order growth by a
study of the ideals with one point hulls in the pattern algebra.

3.2. THEOREM. (Density Theorem) Let A be an N*-pattern
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algebra for the operator T and let z belong to the continuous
spectrum. Then

H(z) = {x e X : z e fσ{x)}

is dense in ϋ.

Proof. Since z belongs to the continuous spectrum, we know
(z — T)H is dense in 9c. Denote by J(z) the ideal of functions in A,
each of which vanishes in some neighborhood of the point z. Let
{fn} belong to J(z) and converge to g(t) — t — z. For x in X, there
exists a sequence of vectors {wn} such that φ(g)wn = yn converges to
x. Given ε > 0, choose wn so that | φ{g)wn — x | ^ ε. Then choose
fk in J(z) so that | φ(fk)wn - φ(g)wn | ^ e. Then

n I + I 9(flf)^n ~ X \ ̂  & ,

where o(φ(fk)wn) is disjoint from {2}.
If {2J belongs to the continuous spectrum for n = 1, •••,&, then,

in a similar fashion, it can be shown that

*(Si, , **) = {α e X : sn e V(α ), n = 1, •••,&}

is dense in ϊ .
If the spectrum of T, an operator with an iV*-pattern, is a

finite union of simple arcs, then the possibility of a decomposition of
the operator with respect to points in the continuous spectrum arises.
For notational convenience, we assume o(T) is contained in the unit
interval [0,1]. Then, if t is a point in the continuous spectrum, a
projection P(t) associated with the interval [0, t] can be defined on
the dense manifold £(£). For, if x is in Tί(t), then, by regularity of
A, we can write x = u + w with σ(u) contained in the interval [0, t)
and σ(w) contained in the interval (£, 1]. The projection is defined
by P(t)x — u. This projection has a closed extension.

3.3. THEOREM. Let T, an operator with an N*-pattern, have a
a purely continuous spectrum which is contained in the unit interval.
Then, for each point t in the unit interval, there is a densely
defined projection P(t) which has a closed extension.

Proof. The preceding discussion shows the existence of P(t)
defined on ϊ(£). The closure of the graph of P(t) is the closed exten-
sion provided this closure is an operator. Hence, the assertion is
verified once we show that if xn e ϊ(£) with xn —• 0, and if P(t)xn =
Vn -> Vo, then y0 — 0. We know σ(yn) c [0, t] and, since xn =
wn + yn, that wn-+-y0. But σ(wn)c[t, 1] so σ(-y0) = σ(yo)c.{t}.



SPECTRAL DECOMPOSITION OF A CLASS OF OPERATORS 345

Hence, if y0 Φ 0, we have σ(yQ) = {t}. By Theorem 3.1, \(T - t)y0 \ = 0
which contradicts the assumption that t is not in the point spectrum.
Hence, P(t) has a closed extension which we shall denote also by P(t).

For an operator of polynomial growth, we shall construct a
calculus based on Wo or a certain subalgebra. We shall examine
these algebras before applying the theory to operators.

Let D denote the boundary of the unit circle and WQ the algebra
of functions defined on D which have absolutely convergent Fourier
series. For / in WQ, /({) = Σ c , exp(int), we define | / | 0 = Σ K | .
Then Wo is a semi-simple symmetric commutative Banach algebra
with a unit under point-wise operations and which has D, under the
usual topology, as the space of maximal ideals.

DEFINITION. For q = 0,1, we define Wq to be the subalgebra
of Wo consisting of those functions f(t) — Σ cn exp (int) for which
Σ I cn^q I < °°. Then Wq is a Banach algebra in its own right under
the norm

It is well known that Wq is a semi-simple Banach algebra with
maximal ideal space D under the usual topology [11, p. 299]. We
summarize in the following lemma the properties of Wq pertinent to
our argument [17].

LEMMA 3.4.

(a) If f has a continuous derivative of order q + 2, then f{k)

belongs to Wo for k = 0, , q.
(b) If / ( g + 2 ) exists as a continuous function, then f belongs to

Wq. Conversely, if f belongs to Wq, then f{q) exists and is con-
tinuous.

(c) If a function f(t) = Σ cn exp (int) belongs to Wqf then f{k)(t) =
Σ^(m) f c exp( int) for k = 0, •••, q and \f\« = \f^ \q_k.

(d) For fin Wq, f(t) = Σ><>n exp (int), define fk(t) = Σ - * cn exp (int).
Then fk converges to f in the Wq norm (and therefore also uniformly).
It follows that Wq is a regular algebra and the class %(D) is dense
in Wq.

3.5. THEOREM. (Helson-Silov) Let I be a closed ideal in the Lx

algebra of a locally compact Abelian group and let f be a function
in Lλ such that H(I) is contained in H(f). If that part of the
boundary of H(f) which is included in H(I) contains no nonvoid
perfect set, then f belongs to I.

The proof is to be found in [8, p. 151]. Since Wo is isometrically
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isomorphic to the space Lλ of the integers, it follows from the above
theorem that Wo is an iNP-algebra.

The iV*-condition does not hold for Wq for q Φ 0. We will,
however, want to answer to question: what functions are in the
closure of the ideal J(λ0) of functions of Wq, each of which vanishes
in some neighborhood of the point λ0?

First, if / has zero constant term, it has a kth integral which is
given by the formal series except for a possible constant term of the
integral. Now suppose {/;} is a sequence of functions in J(λ0) which
converges to g in the Wg norm. Then f[k) —> g{k) in the Wq-k norm
for k = 0, , q. Since norm convergence in a function algebra
implies uniform convergence on the maximal ideal space, it is clear
that g{k)(X0) = 0 for fc = 0, •••,?. We assert that this condition is
also sufficient. The proof is inductive and can be outlined as follows.

With no loss of generality, we may take λ0 = 1. If g belongs
to Wx with g(l) = g{1)(l) = 0, then g{1) belongs to Wo and vanishes at
the point 1. By the iV* condition in Wo, there exists a sequence of
functions {/*} in Wo which converges to g{1) in Wo norm and each
function vanishes in some neighborhood of the point 1. Since ga) has
zero constant term, we may and do take the functions ft to have
zero constant terms. This normalization may be carried out as follows.
Choose h in Wo with constant term 1 and such that h vanishes in a
neighborhood of the point 1. The normalized approximating sequence
is given by

We now change notation to let {/*} denote the approximating sequence
with zero constant terms. We may now integrate back up to Wx to
obtain a sequence of functions, each of which vanishes in a neighbor-
hood of the point 1. This sequence converges to g since the norm of
the difference is given by the Wo norm of the difference of un-
integrated function except for a possible constant term which must
tend to zero since {/J converges uniformly to g{1). The inductive
step is essentially a repetition of this same argument. Thus we have
the following.

3.6. THEOREM. The closure of the ideal J(λ0) = {fe Wq:f
vanishes in some neighborhood of λ0} is given by

J(X0)- = {heWg:h
k(x0) = 0for k = 0, •••,?}.

Observe that the proof is valid with λ0 replaced by any closed
set K which is a hull of spectral synthesis in Wo For example, if
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the set K is the closure of its interior, and if / vanishes on K, then
dH(f) Π H(I) is countable and so can contain no nonvoid perfect
set.

Recall that T is said to have polynomial growth Ίof order q if,
for some constant K and all nonzero integers n, we have

(*) \Tn\ ^K\n*\ .

It is easily shown that if T satisfies (*), then σ(T) is contained in
the boundary of the unit circle. Also (*) implies that for | z \ Φ 1,

(**) *
" | 1 - \z\\q+1

Conversely, if (**) holds then T is of polynomial growth of order
q + 1 [16].

For T of qth order growth, we define the operational calculus on
Wq as follows: for f(t) = Σ^exp( int) in Wq, we set φ(f) = f(T) =
YjCnT

n. It follows at once that φ is a continuous homomorphism
into an algebra of operators.

Since Wo is an iV*-algebra, the Lorch Approximation is valid for
every operator of bounded growth and it is clear that this approxi-
mation is uniform for z in o(T). We shall obtain the generalization
of the Lorch Approximation for operators of polynomial growth.

3.7. THEOREM. Let T be of qth order growth. Given e > 0,
there exists δ > 0 such that for z in σ(T), we have \(T — z)qx\ <Ξ
εK I x I for x with σ(x) in N&(z).

Proof. We let g(t) = (exp (it) - z)q. From Theorem 3.6, there
exists a function / vanishing on a neighborhood of z such that
| / - # L < ε . So

| ( Γ - z)qx\ ^ |flf -f\q\x\ + \<P(f)x\ .

Now, if σ(x) is disjoint from the closed support of /, the conclusion
obtains.

We now give indications of an estimate of the Lorch Approxi-
mation for operators of bounded growth. We know that if T is of
bounded growth, then f or | z \ ψ 1 we have

\R{z)\^ M

11-1*11

The complement of σ(T) is open in D. Let (α, b) denote an open arc
of the complement. Pick ax and bλ in this open arc and let L(α2)
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and Lfa) be the radial lines through a± and bλ respectively. Set

G(z) = R(z)(z - aj(z - bλ)(z - c)"1

where c is the midpoint of the arc complementary to (a, b). Then
G(z) is an analytic operator valued function in the wedge determined
by !/(»!> and L(δi).

On L(aλ) we have the following estimate:

I G(z) I ̂  M \z "" bl I S j | f l g

z — c

This same estimate is valid on L(6i). Since G{z) —> I as s—»co, we
have I G(z) | ^ 3Λf throughout the wedge by the maximum modulus
theorem. Hence, on the wedge determined by the radial lines
through a and 6, we have

I R(z) I ̂  SMI (z - c)(z - α ) - 1 ^ - 6)"11 .

This inequality has a local version also; the same argument applied
to Rx{z) yields

I Rx{z) I ̂  SM I α; I I (z - c)(z - a)~\z - b)~ι \

in the wedge determined by the arc (α, b) of the complement of σ{x).
Using this inequality to estimate

- U (z - X0)Rx(z)dz
2m h

we find that | (T — λ0)^ | ^ 6M | α; | cί(α, δ) for x with spectrum in the
arc (α, b) where d(a, b) denotes the curvilinear arc length of (α, 6).

Wolf [17] demonstrated, for T of qth order growth, the existence
of a bounded homomorphism of Cq+\D), the functions on D with a
continuous derivative of order q + 2, sending /(£) = £ into T. We
find it simpler to obtain this homomorphism in the following manner.
First, we know by Lemma 3.4 (b) that Cq+2 is contained in Wq. The
mapping C9+2—>Wq is shown to be continuous as follows. I f/ is in
Cρ + 2 with norm in this algebra bounded by B, then the Fourier
coefficients of / { 9 + 2 ) are bounded by B. Hence the Fourier coefficients
of f{g) are summable and |/ ( ρ ) |0 = \f\q + |c01 is dominated by

B(i + Σ ' ™~2) + I Co I ̂  £(2 + Σ ' n~2) 9

where the prime indicates omition of the constant term. Thus the
composition of this mapping with the homomorphism of Wq previously
introduced is a continuous homomorphism of Cq+\D).

In his treatment of weakly almost periodic operators on a re-
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flexive space, Lorch [9] obtained a family of "reducing" manifolds.
Under his hypotheses, Lorch proved that the residual spectrum is
vacuous. We are able to obtain these manifolds by the present
methods for an operator of bounded growth on an arbitrary space
provided the spectrum is purely continuous. Moreover, we are able
to abtain these quasi-reducing manifolds for an operator with an
N* -pattern provided the spectrum is purely continuous and is con-
tained in a finite union of simple curves which, for simplicity, is
taken to be the unit interval.

3.8. THEOREM. Let T have a purely continuous spectrum which
is contained in the unit interval [0,1] and let T have an N*-pattern.
Then there exists a family {P(t): 0 ^ t ^ 1} of closed projections
with P(t) defined on the dense manifold %(t) and possessing the
following attributes:

(a) P(0) = 0 and P(l) = I;
(b) P(t)T= TP(t) on X(t);
(c) if s ^ ί, then P(s)P(t) = P(t)P(s) = P(s) on ϊ(s, ί);
(d) when restricted to the closure of P(ί)X(ί), T has spectrum

contained in [0, t\.
In fact, the range of P(t) is X[0, t] = {xe%: σ(x) c [0, ί]}. The

domain is X[0, t] 0 £[£, 1] which is dense in 9£, but not necessarily all
of 9c. If ϊ[0, t] and £[£, 1] are at a positive angle, then the manifolds
reduce T in the proper sense and the associated projection is
bounded.

4# Integral representations* In Theorem 3.8 we gave a spectral
decomposition for an operator that possesses an JV*-pattern algebra.
We obtain, in this section, an integral representation under the
additional hypothesis that the family of densely defined projections
of Theorem 3.8 is uniformly bounded. We operate, as before, under
the assumption that T has an JV* -pattern algebra and a purely con-
tinuous spectrum contained in the unit interval. We now assume
each projection has a bounded extension to all of X, and that the
family is uniformly bounded; that is | P(t) | ^ Kx for each point t in
the unit interval. The existence of a uniform bound implies con-
tinuity of the spectral family in the strong operator topology.

4.1. THEOREM. Let T have an N*-pattern algebra, purely con-
tinuous spectrum contained in the unit interval, and a uniformly
bounded spectral family of projections. Then P(t) is continuous in
the strong operator topology.

Proof. It must be shown that
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lira I P(t)x - P(s)x | = 0
s-*t

for each x in X. This clearly holds for y in X(£); in this case,
P{t)V — P(s)V = 0 whenever s is close enough to t. For x in X, we
choose y in X(£) to approximate x to within ε and obtain

I P(t)x - P(s)x I ̂  I P(t) - P(s) 11 x - y \ + \ P(t)y - P(s)y \

^2K1e+\P(t)y-P(s)y\.

Since the last term tends to zero, this proves the assertion.
For a point t in the closed unit interval and for each x in X, one

can write x = y + w with y e X[0, t] = M{t), and w e X[ί, 1] = N(t).
The null space of P(t) is JV(ί) and the range is M(t). The manifolds
M(t) and iV(£) are closed and disjoint for if σ(x) c {t}, then a? — 0 by
Theorem 3.1 and the fact that the spectrum is purely continuous.
Moreover, M(t) + N(t) = X, for if a? 6 X, then we have x —
P(t)x + (I- P(t))x. Thus X = M(t) 0 N(t); the manifolds reduce the
the operator in the proper sense.

If / is a function of bounded variation on the unit interval, then,
since t —> P(t) is strongly continuous, a Riemann integral of / with
respect to P can be defined in the strong operator topology [6,
p. 66].

We define

The question which presents itself naturally is—will the integral
defined above generate a calculus which agrees with the original
calculus? That is, for S defined above, can we claim T — S = 0?

4.2. THEOREM, T — S is quasi-nilpotent.

Proof. (The proof is patterned after a proof given by Smart
[14, Theorem D (ii)] for well-bounded operators.) For ε > 0, we
partition the unit interval with a finite set of points so that the
mesh of the partition is less than ε. Then, the restriction of S and
T to the closed manifolds (P(ti+1) — P(^))X have spectra in [tif ti+1].
This is a consequence of Theorem 2.14 for the operator T. That
this is true of S also follows from the same theorem, for S itself
has a pattern calculus defined on the absolutely continuous functions
given by the defining integral; in fact, S is well-bounded, as the
defining integral gives the homomorphism. Now, both S — t{ I and
T —U I have spectra in [0, ε] on the subspace. Since S and T
commute, the spectral radius of T — S on the subspace is at most
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2e. The space X is the direct sum of the subspaces so that spectrum
of T — S on X is the union of the spectra of its restrictions. Thus
\σ(T - S)\ ^2ε which implies σ(T - S) = {0}. In the case T itself
is well-bounded and X is reflexive, Ringrose [13], has shown T — S = 0.
Conversely, if T — S = 0 with X arbitrary, then T is well-bounded.

The decomposition can be stated in a form analogous to Dun-
ford's spectral operators.

4.3. THEOREM. Let T be a bounded operator with purely con-
tinuous spectrum contained in the unit interval. Let there be a
family {P(t): t e [0,1]} of commuting projections satisfying:

(a) P(0) - 0 and P(l) = I;
(b) P(t)T = TP(t);
(c) if s^t, then P(s)P(t) = P(t)P(s) = P(s);
(d) lim P(s)x = P(t)x;

(e) (P(t)\ ^Kλ; and
(f) the restriction of T to the closed manifold P(t)H has spectrum

in [0, ί].

Then T = S + N where S is a well-bounded operator defined by

S = \tdP(t)

and N is a commuting quasi-nilpotent.

Proof. The integral exists and defines a well-bounded operator
[14], The proof of Theorem 4.2 can be directly adopted to prove
T — S is quasi-nilpotent.

BIBLIOGRAPHY

1. W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans.
Amer. Math. Soc, 80 (1955), 373-392.
2. N. Dunford, A survey of the theory of spectral operators, Bull. Amer. Math. Soc,
64 (1958), 217-274.
3. , Spectral operators, Pacific J. Math., 4 (1954), 321-354.
4. N. Dunford and J. Schwartz, Linear operators, part I, Interscience, New York, 1958.
1958.
.5. U. Fixman, Problems in spectral operators, Pacific J. Math., 9 (1959), 1029-1051.
<6. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc.
Coll., Vol. 31, Providence, 1957.
7. G. K. Leaf, A spectral theory for a class of linear operators, Doctoral dissertation,
Univ. of 111., 1961. To appear in Pacific J. Math.
8. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New
York, 1953.
9. E. R. Lorch, The integral representation of weakly almost-periodic transformation
in reflexive vector spaces, Trans. Amer. Math. Soc, 49 (1941), 18-40.
10. B. Sz.-Nagy, Extensions of linear transformations in Hiϊbert space which extend



352 R. C. SINE

beyond the space, Ungar, New York, 1960.
11. C. E. Richart, General theory of Banach algebras, Van Nostrand, Princeton, 1960.
12. F. Riesz and B. Sz. Nagy, Functional analysis, Ungar, New York, 1955.
13. J. R. Ringrose, On well-bounded operators, J. Australian Math. Soc. I part 3 (1960),
334-343.
14. D. R. Smart, Conditional convergent spectral expansions, J. Australian Math. Soc.
I part 3 (1960), 319-333.
15. J. Wermer, Banach algebras and analytic functions, Academic Press, New York,
1961.
16. F. Wolf, Operators in Banach spaces which admit a generalized spectral decom-
position, Indag. Math., 19 (1957), 302-311.
17. A. Zygmund, Trigonometric series, second edition, University Press, Cambridge,
1959.

UNIVERSITY OF MINNESOTA.




