ORDERED COMPLETELY REGULAR SEMIGROUPS

TORU SAITO

Introduction. In the previous papers [7], [8], we studied some
special types of ordered semigroups in our general sense (cf. §1). In
the continuation of our study, in this note we characterize ordered
completely regular semigroups.

In the algebraic theory completely regular semigroups were first
studied systematically by Clifford [1]. He characterized these semigroups
when the idempotents of the semigroup commute. Recently Fantham
[4] generalized this result and characterized completely regular semi-
groups when the idempotents of the semigroup constitute a subsemi-
group.

Ordered completely regular semigroups are shown, in this note,
to be semigroups, in which the idempotents constitute subsemigroups.
However, it can be shown that the abstract semigroup of an ordered
completely regular semigroup is simpler than the semigroups of
Fantham’s type. Indeed, our main theorem (Theorem 6) asserts that an
ordered completely regular semigroup is characterized by the ordered
idempotent semigroup constituted by all the idempotents of the semi-
group, the ordered groups corresponding to all the elements of the
associated semilattice, and the mappings between these ordered groups
corresponding to all comparable pairs of elements of the associated
semilattice which satisfy certain conditions.

We remark, we characterize, in §3, ordered completely simple
semigroups without zero. This characterization seems to be interesting

by itself, by virtue of the importance of completely simple semigroups
without zero.

1. Preliminaries, A semigroup S is called completely regular, if,
for every element a € S, there exists ze S such that
axa =a and ax = %0

(Liyapin [5]). Clifford called such a semigroup a semigroup admitting
relative inverses and gave many interesting results of this semigroup.
Here we mention some of them without proofs.

LemMA 1 (Clifford [1], Theorem 1). A semigroup is completely

regular if and only if it is the set-union of mutually disjoint groups.
The adjective ‘mutually disjoint’ in the above Lemma 1 can be
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295



296 TORU SAITO

omitted (cf. Clifford [2], p. -501).

LemmA 2 (Clifford [2], Theorem 6). A semigroup is completely
regular if and only if it is a semilattice of completely simple semi-
groups without zero.

Thus, a completely regular semigroup S determines a semilattice
Ts such that to each element & of T there corresponds a subsemigroup
S(a) of S with the following properties:

(a) the S(a) are mutually disjoint and their union is S;

(b) each S(«) is a completely simple semigroup without zero;

() S@)S(B) = S(wopB), where aop is the product of @ and B
in T,.

We call the semilattice Ty the associated semilattice of the com-
pletely regular semigroup S. .

For discussing the structure of semigroups, it is sometimes suec-
cessful to use ideal-theoretical notions. In this note, we use R-equiva-
lence, L-equivalence and D-equivalence in the sense of Miller and
Clifford [6]. It can be seen that the decomposition of a completely
regular semigroup S into the collection of subsemigroups S(«) mention-
ed in Lemma 2, coincides with the decomposition of S into the collection
of D-equivalence classes.

In particular, a completely simple semigroup without zero is com-
pletely regular.

When a completely simple semigroup without zero is left simple,
that is, it consists of only one L-equivalence class, it is called a left
group. A right group is defined similarly. A semigroup I is called
left singular, if the multiplication is defined by

ab=a for every a, bel.

A left singular semigroup is clearly a left group. A right singular
semigroup is defined similarly. The following lemma is well-known
(cf. Cohn [3], p. 172).

LEMMA 8. A left group is semigroup-isomorphic to the direct
product of a group and a left singular semigroup. A right group
18 semigroup-isomorphic to the direct product of a group and a right
singular semigroup.

By an ordered semigroup, we mean a semigroup S with?a simple
order < satisfying the following condition:

a<b implies ac<bc and ca =cb.
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Evidently a left or right singular semigroup turns out to be an
ordered semigroup if we order the elements of the semigroup arbitrarily.

Ordered semigroups were studied in our previous papers [7], [8].
Here we mention some elementary results from these papers without
proofs.

LEMMA 4 (Saito [8], Corollary of Lemma 1). The set of all idem-
potents of an ordered semigroup S, if it is non-void, is a subsemi-
group of S.

LEMMA 5 (Saito [7], Lemma 2). If a and b are elements of an
ordered idempotent semigroup E such that a < b, then

a<ab=<b and a=<ba<b.

LEMMA 6 (Sait6 [7], Theorem 1). In an ordered idempotent semi-
group E, each D-equivalence class consists of either onlg one L-
equivalence class or only one R-equivalence class.

In an ordered idempotent semigroup E, a D-equivalence class is
called L-typed, if it consists of only one L-equivalence class, while it
is called R-typed, if it consists of only one R-equivalence class.

2. In this section, we always denote by S an ordered completely
regular semigroup, and by E the set of all the idempotents of S. FE
is nonvoid, and so, by Lemma 4, constitutes a subsemigroup of S.
The ordered semigroup FE is evidently completely regular, and so E
is decomposed into the collection of mutually disjoint subsemigroups
E@©) of E in such a way as is described in Lemma 2.

LemmA 7. For f, f'e E,

(@) f=r"(L) in S if and only if f = f'(L) in E;
@ Ff=f'"(R) in S if and only if f = f'(R) in E,
() f=f(D)in S if and only if f = f'(D) in E.

Proof. (a) If f=f'(L) in S, then there exist elements ®,ye S
such that zf = f', yf' = f. Then we have f'f = f', ff' = f, and so
S =f (L) in E. It is trivial that f = f'(L) in E implies f = f'(L) in
S. (b) The proof is similar as in (a). (c¢) If f=f'(D) in S, then
there exists an element z€ S such that f=2(L), z = f'(R) in S. By
Lemma 1, there exists a subgroup which contains 2z, and let ¢ be the
identity of this subgroup. Then clearly ec £ and z =e(L), z = ¢(R)
in S. Hence f =e(L), ¢ = f'(R) in S, and so, taking account of (a)
and (b) proved above, we have f = f'(D) in E. It is trivial that
f=f'(D) in E implies f = f'(D) in S.
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Let {S(a); a € Ts} be the decomposition of S described in Lemma
2. Clearly each D-equivalence class S(«@) in S contains with every
a € S(a) the identity of a subgroup which contains a. Hence S(a) N E+# ¢
for every ae Ty. Moreover, by Lemma 7 (¢), S(a) N F is a member
of the decomposition {E(0); de Tz} of E. Therefore it can be seen
that the associated semilattice T of S is semilattice-isomorphic to the
associated semilattice 7', of E. Thus in what follows, without loss
of generality, we assume that the semilattice T, coincides with the
semilattice Tg.

Now we give a definition. A semilattice T is called a tree semi-
lattice if it satisfies the following condition:

if a, o, B, B’ are elements of T such that a =o', B =B and

a and B are non-comparable, then o« and B are non-comparable.
(Here and hereafter we denote by < the order in a semilattice. a <8
in a semilattice is defined to mean aof8 = a.)

LEMMA 8 (Saito [7], Theorem 38). The associated semilattice of
an ordered tdempotent semigroup ts a tree semilattice.

As an immediate corollary of the above Lemma 8, we obtain

THEOREM 1. The associated semilattice Ts of an ordered com-
pletely regular semigroup S is a tree semilattice.

3. In this section, we characterize ordered completely simple
semigroups without zero.

For brevity, in this section we denote by S an ordered completely
simple semigroup without zero. By Lemma 7, the ordered idempotent
semigroup E which consists of all the idempotents of S, constitutes
a D-equivalence class in E. Hence, by Lemma 6, E itself constitutes
either an L-equivalence class or an R-equivalence class in E. In the
former case, the ordered completely simple semigroup S without zero
is called L-typed, while in the latter case S is called R-typed. In the
rest of this section, we treat only the L-typed case. The R-typed case
can be discussed similarly.

LEMMA 9. In this L-typed case, an ordered completely simple
semigroup S without zero is a left group.

Proof. Let a, be S, and let ¢ and €’ be the identities of subgroups
containing a and b, respectively. Then

a=e=¢ =bL),

and so S is left simple.
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Since S is a left group, it is, by Lemma 3, semigroup-isomorphic
to the direct product of a group G and a left singular semigroup I.
Thus we may consider that S consists of elements (g, ) with ge@G,
1€ I, and the multiplication in S is ruled by

(g, (9, 7)) = (g9, 7) .

We denote the identity of the group G by e.
New we show that

(1) (9,7) < (¢',1) if and only if (g,7) < (g,7).
In fact, if (g, 1) < (¢’, 7), then
(e, 1)(g, ) = (9,9 < (¢, %) = (e, V)(g', 7),

and so (g, 1) < (¢, 7).
Thus the order in G is well-defined, if we define

(2) g< ¢ in G if and only if (g,1) < (¢, 7).

Then, as is easily verified, G is an ordered group or, more exactly, a
simply ordered group.
Moreover, we define the order in I by

(3) 1<% in Iif and only if (e, %) < (e, 7).

Then clearly I is an ordered left singular semigroup.
Now we show that

(4) (9,7) < (¢",4") if and only if either g < ¢’
org=g9,1<1.
In fact, suppose that (g,1) < (¢’,%). If g + ¢’, then
(9,7) = (e, ©)(g, %) = (¢, )9, V) = (¢',7) ,
and so g < ¢'. If g=¢', then
(e,%) = (g, (g™, 1) = (¢, )Ng7, 1) = (¢, 7).
But, in this case, 7 # ¢/, and so © < 4. Conversely, if g < g¢’, then
(e, ©)(g, %) = (9,%) < (¢, %) = (¢, )¢, V),
and so (g,7) < (¢, 7). If g=¢’, 1 <4, then
(9, (97", %) = (¢, %) < (e, 7) = (¢, V)97, %),

and so (g, %) < (¢', 7).
Now we remark that an element of S is idempotent if and only
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if it has the form (e, 7) with 1€ I. Moreover it is easily verified that
the mapping

Es(e,t)—1el

is an ordered-semigroup-isomorphism of E onto I. Thus, we may
consider that the ordered left singular semigroup I coincides with the
ordered semigroup E. By this convention, the idempotent f of S is
identified with (e, f).

THEOREM 2. Amn ordered completely simple semigroup S without
zero 1s 1isomorphic as ordered semigroup to the lexicographically
ordered direct product of an ordered group G and the ordered left
or right singular semigroup E which is constituted by all the idem-
potents of S. Conversely an ordered semigroup which is isomorphic
to the lexicographically ordered direct product of an ordered group
and an ordered left or right singular semigroup is an ordered com-
pletely simple semigroup without zero.

The proof of the converse part of Theorem 2 can be verified easily.

4. In this section we discuss the structure of ordered completely
regular semigroups. First of all, we mention some results from our
previous paper [7].

LEMMA 10 (Saito [7], Lemma 4). Let f, f', f" be elements of an
ordered idempotent semigroup E such that f =< f" < f', and let E(a),
E(B), E(v) be the D-equivalence classes which contain f, f', f", re-
spectively. Then v = aoB in the semilattice T,.

LEMMA 11 (Saitd [7], Theorem 2). Let f and f' be elements of
an ordered idempotent semigroup E such that f < f', and let fe E(a),
f'e E(B). If the D-equivalence class E(aopB) is L-typed, then

ff' = min{y; y e E(@op) and y = f},
f'f=max{y;ye E(@op) and y < f'}.

If E(aop) is R-typed, then

ff' = max{y;ye E(@oB) and y < f'},
S'f =min{y; ye E(@oB) and y = f} .

Now we show the following

LEMMA 12. Let a be an element of an ordered completely regular
semigroup S, let £ be the identity element of a group which contains
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a, and let f' be an arbitrary idempotent of S. Then a and ff'f are
permutable.,

Proof. Let S(a) and S(B8) be the D-equivalence classes which
contain f and f’, respectively. We set /" = aff’fa*, where we denote
by a~* the inverse element of @ in a group which contains @. Then
a, a7'e S(a) and f"”e€ S(aoB). Moreover, as is easily seen, f” is
idempotent and ff"f = f”. Now we suppose that f < f’ and that, in
the ordered idempotent semigroup E which consists of all the idem-
potents of S, F(wofB) is an L-typed D-equivalence class. Then, by
Lemma 5, £ < ff'f, and so

f=afa =a(ff'fla=f", [F=f"f.
Hence, by Lemma 11,
S" =ff"f =min{y; ye E(aop) and y = f} = ff'f .

Similarly we can prove f” = ff’f in the remaining cases. The equality
a(ff'fa* = f" = ff'f implies evidently that a¢ and ff’f are permutable.

Bach D-equivalence class S(a) of an ordered completely regular
semigroup S is, by Lemma 2, a completely simple semigroup without
zero. Hence, by Theorem 2, we may consider, without loss of gener-
ality, S(«) is the lexicographically ordered direct product of an ordered
group G(«) and the ordered left or right singular semigroup F(«)
constituted by all the idempotents of S(«).

The groups G(a)(a e T,) are called the structure groups of the
ordered completely regular semigroup S. The identity of the group
G(a) is denoted by e,. If an element a of S(«) is represented by
(9, f) with ge G(a), f€ E(x), then g is called the group component
of a and f is called the singular component of a.

LEmMMA 18. If a€ S(a), fe E(a), then both af and fa have the
same group component as that of a. Conversely, if a, o' € S(), and
if a and o' have the same group component, then there exists fe E(x)
such that o' = faf.

Proof. Since fe E(«) has the group component e¢,, the first half
of this lemma is clear. For the second half, we assume a = (g,f”)
and o' = (g, f). Then, as is eagily seen, the element f = (e,, f) € E(«)
satisfies the required equality a’ = faf.

Let & and B be elements of the associated semilattice Ty such
that « = B, and ¢g be an element of the structure group G(z). We
take an element a € S(a) with the group component g, and also take
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an idempotent fe E(8). Then we consider the group component g’

of the element faf. Since fafecS(B), we have ¢'e G(B). Now we
show the following

LEMMA 14. The element g’ of G(B) constructed above is determined
only by g€ G(a), irrespective of the choice of ac S(a) and fe E(B).

Proof. Let o’ be an element of S(a) with the group component
.9 and let f’ be an element of F(8). Then, by Lemma 138, there exists
an element & € E(«) such that o’ = hah. First we assume that the
D-equivalence class E(B) of the ordered idempotent semigroup E is
L-typed. Then f'hf = f' = f'h and so

fla'f" = f'hahf’ = f'hfakf’ .

Using Lemma 13 repeatedly, faf and fa have the same group compo-
nent, and so faf and f'a’f’ = f'h(fa)hf’ have the same group com-
ponent. In the case when E(B) is R-typed, we can prove the assertion
of the lemma in a similar way.

Now, for a, B¢ Ty such that @ = B, we define the mapping 9§ of
the structure group G(«) into the structure group G(8) by

(5) P G@)sg9g— g €GB,

where ¢’ is the element of G(8) described above. By Lemma 14, ¢’
is well-defined by g e G(x).

The mappings #% defined for «, B e T, such that & = 8, are called
the structure mappings of the ordered completely regular semigroup S.

THEOREM 3. The structure mappings P§ of an ordered completely
regular semigroup S have the following properties:

(a) o2 is the identity mapping of G(a);

(b) if a =B =, then Pp§ = 95;

() 9% is a group-homomorphism of G(a) into G(B);

(d) @5 is isotone:

for g, ¢ e G(a) with g < ¢', we have 9P = g'Ps n G(B).

(We remark, in this note we denote by g the image of an element
g by a mapping @, and denote by @+ the mapping which maps g into

9P)y.)

Proof. (a) Evident by Lemma 13. (b) Suppose that gpg = g,
9?8 = ¢”, and that fe E(B), he E(v). For an element a with the
group component g, by Lemma 13, af has the group component ¢’,
and so afh has the group component ¢g”’. Since fhe E(7), gp5 is the
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group conponent of afh and so equals to g”. (¢) Let g, ¢’ € G(a),
and let @ and @’ be elements of S(a) with the group components g
and ¢’, respectively. By Lemma 12, there exists fe¢ E(S) which is
permutable with a’. Hence aa’f = (af)(a’f). The element aa’ is an
element of S(«) and has the group component gg’, and so, by comparing
the group components on both sides of the above equality, we have

99'Ps = (9PE)9'PE) -
(d) Suppose that g < ¢’ in G(«) and let ¢ and a’ be elements of S(«)
with the group components g and ¢’ respectively but with the same
singular component. Then, by (2) in §3, we have a < a’, and so
of < a'f for fe E(B). Now af and a'f belong to the same D-equiva-
lence class S(8). Hence, comparing the group components on both
sides of the above inequality, we have, by (4) in §3,

998 = 9'P5 .
THEOREM 4. For (g,f)e S(a) and (¢, f') e S(B),
9, I, F) = (9P )0 Phos), F) -

Proof. First we prove

(6) (9, FISTFS) = (FFFN9, ) = (9P%0n JFF) -

In fact, f = (e, f) is easily seen to be the identity of a group which
contains the element (g, f). Hence, by Lemma 12,

(9, NFF) = FFING IIFFS) = (FF )9, f) -

Moreover ff'f € E(aoRB), and so the group component of (f1'f)(g, £)(ff'f)
is g% s. Furthermore, since (ff'f)g, f)(ff'f)e S(aopB), the element

(FFNG, IIFF) = SN NG, PSS

has the same singular component as that of ff'f = (e,.s ff'f). Hence
we have the relation (6).
Now we have

(9, N9, f1) = (9, N, f)
= (9, SIS NG, f') since ff' is idempotent,
= (9P o S F)NG Phos, f'ff") by (6),
= (99209 Phcp), Sf'ff'ff') Dby the multiplication in S(a-p),
= ((9P%-e)9'Phop), [1') -

LEMMA 15. Let fe E(a), f'e E(B), a = B and g€ G(a).
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@) If f<f in 8, then (9, f) = (995, f').
() If f=zf in S, then (9,f) = (998 f').

Proof. We prove only (a) in the case when E(B) is L-typed.
Then, by Lemma 11, f'f = f’. Since
(eauf) :féf, = (eﬂyf’) ’

we have, by Theorem 4,

(9, 1) = (s, F)9, f) = (¢, SN, ) = (995, f") -

THEOREM 5. For (g, f) e S(a), and (¢, f') € S(B), (9, f) < (¢, f") if
and only if either gPy.e < §'Phop 0T 9Pacs = 9'Phos, f < f.

Proof. Without loss of generality, we assume that E(aopB) is
L-typed. Then ff'f = ff' = ff'f’. Suppose that

g(pzoﬂ g g,q)goﬁ .
Then we have

(g¢goﬁ} ff’) = (ewoﬁy ff')(g’ f)
é (ewo& ff,)(g’v f’) = (g,¢508’ ff,) ’

and so gPios < 9'Pios. Hence gpi s = g'Phe. Now we suppose that
f = f" were true. Then, by Lemma 5, f = ff’ = f. Hence, by Lemma
15, we would have

(9, 1) 2 9Peos Jf') = (9 Plop JF) 2 (9, F")

which is a contradiction. This proves the ‘only if’ part of the theorem.

Conversely suppose that either g5, < ¢'PL.p or 9P%.s = 9'PLos,
JF<f'. Now we suppose that (g9, f) < (¢9’,f’) were not true. Then
we would have (9,f) = (¢, f"). If (9,f) = (¢, f"), thena =B, 9=4¢,
f=/f', and so

9Pics=0=9 = 9P,

which is a contradiction. If (g,f) > (¢', f'), then, by the result proved
above, we would have either gp3.s > g'PL s or 9P%p = 9'Phcs, f > f
which is also a contradiction. This completes the proof.

5. In this section, we argue conversely, and we show that the
theorems in §4 really characterize ordered completely regular semi-
groups. More precisely

THEOREM 6. Let E be an ordered idempotent semigroup. For
each o of the associated semilattice T, of E, suppose that there
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corresponds an ordered group G(a). Moreover, for each pair of
elements a, Be Ty such that a = B, suppose that there corresponds a
mapping @5 of G(a) into G(B) which satisfies the following conditions:

(a) @2 is the identity mapping of G(x);

(b) if a =B =", then Pipt = @2;

(c) o3 is a group-homomorphism of G(a) into G(B);

(d) o5 is isotone.
For ae T, we denote by S(«) the set consisting of all pairs (g, f)
with g€ G(a), fe E(a), where E(a) is the D-equivalence class of E
which corresponds to ae Ty. Moreover we denote by S the set-umion
of S(a) when a goes through all the elements of Ty. We define in
S the multiplication by:

of (9,f)eS(@), (¢, 1) e S(B), then

9, )9, ) = (9P 9 Phop), ff')

and define the order by:
if (9,F)eS(@), (¢',f")eS(B), then

(9,F) < (g, f") if and only if either gp%,, < 9'PE.s
or g@zoﬁ = g’¢§oﬁy f <f’ .

Then S is an ordered completely regular semigroup.
Proof. We prove the theorem by dividing into several steps.

1°, Algebraically S is a completely regular semigroup.
In fact, for (g,f)e S(@), (¢, f)eSB), (9”,f") e S(v), we have

(9, UG, FING", f") = ((9PLe) 9 Phcs)s SF)G", )
= (9P%op) (9 Pl o)) PadBor)(9 " Phosor)s ST ')
= ((g<Pzoﬂoy)(glq)goﬁov)(g"@;/ooﬁov)’ fflf") by (b) and (C)~

Similarly
(9, /)9, )", f)
= ((9920po) (9 Plopor)(9 Picsor)s S ") -
Hence S is a semigroup. Moreover, for (g, f)€ S(a), we have
(9, )97 N, f) = (9Pa)g~*Pa)992), /)

= (997'9,f) by (a),
=(9,f),

and also

(g’f)(g*l,f) = (ew)f) = (g_lyf)(gyf) ’
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where e, is the identity of the group G(«). This proves 1°.

2°, S is simply ordered.
In fact, suppose that (g,f)e S(a), (¢',f')eS(B), (9", f")eSM).
It is clear that (g,f) < (g9,f), and that at least one of the relations

9, )<@,f 91)=G,r @ f) > (@, ) holds. Thus it suffices
to prove the transitive law. Hence we suppose that

(7) 9, /)< (¢, f) and (¢,f)<(g",f").

Now, in the associated semilattice T, we have o8B < S and Bov =Z .
Therefore, by Theorem 1, the two elements o8 and Bov of T, are
comparable. Without loss of generality, we assume that

(8) aoB X Bov.
Then aoBov = aof. By (7) we have

(9) either 995, < 9'Phog OF 9Pios = 9 Phos F < f',
and
(10) either ¢'P8., < §"Ploy OF G Phoy = 9" Phoy, ' < F" .

Now we consider by dividing into several cases. First we consider
the case when g9, < g'P5.6. Then we have

(9Pao)Padboy = 9Piosoy = IPuop < 9'Phos = 9'Phosoy

= (g'%gov)@gg%ov - (!J"‘P%oy)@i‘é?sov = 9" P osor

= (9" Phon)Padkor »
and 80 gP%oy < 9"Ploy. Secondly we consider the case when gpZ , =
g’¢£oﬁy f < f’, gl¢£oﬁo'y < g"g)?doﬁov' (We remark, Since g,ngv é g"%oy
by (10), we have always ¢'?8 g0y = 9”PLcpoy.) Then

(g¢zoy)¢gg%ov == g@ZoBo‘y - g@:oﬂ = g,¢§oﬁ - g,¢goﬁoy < g”@loﬁoy
= (g"@loy)Q’Zg;ov ’

and so gP5oy < 9"PLoy. Thirdly we consider the case when g%, =
9 Phopy F< Sy 9 Phosory=9"Phopoy 9 Phoy <9 'Ploy- Then Bov#=aoBov.

Now Bov <X, @aov << and so, by Theorem 1, &ov < Bov and hence
oy = aofBovy. Therefore

; _ _ W) _
gq):oy - g@?tjoﬁo‘y - gg):oﬁ - g 50505 - g,q)goﬁoy
— S 7 S
=49 loﬂov =g ngoy .

Moreover we have f < f"”. In fact, otherwise, we would have f” <
f < f'. Then, by Lemma 10, we would have a = Bo", since fe€ E(a),



ORDERED COMPLETELY REGULAR SEMIGROUPS 307

f'e E@B), f"e E(v). Hence we would have @oBov = Sov, which is
a contradiction. Fourthly we consider the case when g@2 s = ¢'®% s,
<[ 9Py = 9" Phoy, f' < f”. Then we have f < f’ < f”. Moreover,
by Lemma 10, we have 8 = aov, and so a¢ofBov = aoy. Hence

— — — !’ —
g?’ﬁioy - gg’:oﬁov - g,¢5oﬁov - g’ ¢Zoﬁo*/ - g”@Zoov .

Thus, in all cases, we obtain (g, f) < (9", f").

3°. S is an ordered completely regular semigroup.
By 1° and 2°, it suffices to show that S satisfies the monotone
condition:
for (9,/)eS(@), (9',f)eS®B), (9",f")eS(), the relation
(9,)<(¢',.f") implies (9, )g", f" )= (9", f')g", f") and (9", f")g,f) =
(9", f")g, ).
Here we prove only that (g, /)", ") = (¢, f)9”,f"). By the as-
sumption that (g, f) < (¢’, f), we have

either gPis < 9'Phop O gPiop = 9 Phos, f < S

‘We consider by dividing into several cases. First we consider the case
when 99,6 < 0'Phos 9Prosoy < 9'Phopoy- Then

(9P2NG Prho))Padbor = 9Paosord” Phopoy < 9 Phopord Plhosoy
= (0" PEo) (0" Phon))PaStor
(We remark that, in an ordered group, g < ¢’ implies gg” < ¢’9".)

Thus (g, F) 9", ") < @, 9", f"”). Secondly we consider the case
when 995 < 9'Phos 9Piopoy = 9’ Phosoys Then we have

(9PEANI Pro))Pidbor = 9Paosord” Phosor
= g'¢50307g,,¢340507 = ((9'@507)(9"9%01/))@53%oy .
Moreover &oB # aoBov. Now aov and aof are comparable, and so
QoY= &oBo7y., Similarly Bov = aoBoy. Since aof #* &oBoy, by
Lemma 10, neither fF=f" =<f" nor f'=f"” =f holds. First we

suppose that f < f”’. Then necessarily we have f’' < f”. Hence, if
E(aoBo7) is R-typed, then, by Lemma 11,

ff" =max{y;ye E(@ov) = E(aeBov) = E(Bov),y = f"}
="
Now we suppose that E(aoBo7) is L-typed. We remark that there

is no element of E(awoBo7v) between f and f’. In fact, if A e E(0) is
an element of E which lies between f and f’, then, by Lemma 10,

0 Z ol >aoBo7.
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Hence, by Lemma 11,

ff" =min{y:ye E(@ov) = E(@oBo7),y = f}
=min {y; yc E(Bo7) = E(@oBov),y = f'} =ff".

In a similar way, we can prove that ff” = f’f” in the case when
f" =f. Thus we have (g,f)g",f")= (9", )Ng",f"”). Thirdly we

consider the case when 995, = 9'PEcs, f < f’. Then, just as in the
preceding case, we have

(9P o) 9" PLon))Pedboy = ((9'PBoy)(9” Phoy))PEboy -

Moreover we have ff” < f'f”. Thus (g9,/)9",f") = (@, f' )", f").
This completes the proof of Theorem 6.
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