UNIMODULAR GROUP MATRICES WITH RATIONAL INTEGERS AS ELEMENTS

R. C. THOMPSON

1. Introduction. Let G be a finite group of order n with elements g_1, g_2, \dots, g_n . Let

(1)
$$x_{g_i}$$
, $1 \leq i \leq n$

be variables in one-to-one correspondence with the elements of G. The $n \times n$ matrix

$$(2) X = (x_{g_i g_i}^{-1})_{1 \le i, j \le n}$$

is called the group matrix for G. If numerical values are substituted for the variables (1) in X, we say X is a group matrix for G. In this paper we study group matrices which have rational integers as elements. Let A' denote the transpose of the matrix A. A generalized permutation matrix is a square matrix with only 0, 1, -1 as elements and having exactly one nonzero element in each row and in each column. A square matrix A is said to be unimodular if the determinant of A is ± 1 . The result obtained in this paper is the following theorem.

THEOREM. Let G be a finite solvable group. Let A be a unimodular matrix of rational integers such that B = AA' is a group matrix for G. Then $A = A_1T$ where A_1 is a unimodular group matrix of rational integers for G and T is a generalized permutation matrix.

This theorem has already been proved for cyclic groups in [1] and for abelian groups in [2]. The present proof is a modification of the proof in [2].

2. Proof of the theorem. Let

$$(3) 1 = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_{m-1} \subset H_m = G$$

be an ascending chain of subgroups of G, where each H_{i-1} is normal in H_i with cyclic factor group H_i/H_{i-1} of order n_i , $1 \leq i \leq m$. We let $n_0 = 1$, so that H_i has order $n_0n_1 \cdots n_i$. In order to simplify the proof we take the elements of G in a particular order. This will not affect the theorem as a reordering of the elements of G changes the group matrix X to PXP' for P a permutation matrix. Thus let

Received August 20, 1963.

 H_i be generated by the elements of H_{i-1} and an element a_i such that the coset a_iH_{i-1} has order n_i . By induction we define column vectors V_i of the elements of H_i . We let

$$(4) V_0 = (1)$$

be the one row column vector whose only element is the identity of G. Suppose

(5)
$$V_{i-1} = (h_1, h_2, \cdots, h_t)'$$

with

$$(6) t = n_0 n_1 \cdots n_{i-1}$$

has been defined, where h_1, h_2, \dots, h_t are the ordered elements of H_{i-1} . For any $g \in G$ let

$$egin{aligned} g \, V_{i-1} &= (gh_1,\,gh_2,\,\cdots,\,gh_t)' \;, \ V_{i-1}g &= (h_1g,\,h_2g,\,\cdots,\,h_tg)' \;. \end{aligned}$$

Then define V_i to be the column vector

$$(7) V_{i} = egin{pmatrix} V_{i-1} \ a_{i}V_{i-1} \ a_{i}^{2}V_{i-1} \ \cdots \ a_{i}^{n_{i}-1}V_{i-1} \end{bmatrix}.$$

For an arbitrary finite group G with ordered elements g_1, g_2, \dots, g_n we define the *left regular representation* of G by the matrix equations

$$(gg_{_1},\,gg_{_2},\,\cdots,\,gg_{_n})=(g_{_1},\,g_{_2},\,\cdots,\,g_{_n})P^{_{\!L}}\!(g)$$
 , $g\in G$.

Here $P^{I}(g)$ is a permutation matrix depending on the element $g \in G$. It is straightforward to check that the matrix X of (2) is given by

$$X = \sum\limits_{g \in G} x_g P^{\scriptscriptstyle I}(g)$$
 .

The set of all $P^{L}(g)$ for $g \in G$ is denoted by L(G).

We define the right regular representation of G by

$$(g_1g, g_2g, \cdots, g_ng)' = P(g)(g_1, g_2, \cdots, g_n)', \qquad g \in G.$$

The set of all permutation matrices P(g) for $g \in G$ is denoted by R(G).

The group ring of the left (right) regular representation is the set of all linear combinations of the $P^{L}(g)$ (P(g)) for $g \in G$, and is denoted by $L^{*}(G)$ $(R^{*}(G))$. Thus the matrix (2) is the typical member

720

of $L^*(G)$. The following two known facts are vital for the proof of our theorem:

(i) any matrix in $L^*(G)$ commutes with any matrix in $R^*(G)$;

(ii) any matrix that commutes with all the matrices in R(G) is a member of $L^*(G)$.

NOTATION. We let diag $(X_1, X_2, \dots, X_k)_k$ denote the direct sum of the square matrices X_1, X_2, \dots, X_k :

diag
$$(X_1, X_2, \dots, X_k)_k = egin{pmatrix} X_1 & 0 & 0 & \cdots & 0 \\ 0 & X_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & X_k \end{bmatrix}$$

We set $[X_1]_1 = X_1$. If k > 1 and X_1, X_2, \dots, X_k are square matrices of the same size, we set

$$[X_1, X_2, \cdots, X_k]_k = egin{pmatrix} 0 & X_1 & 0 & 0 & \cdots & 0 \ 0 & 0 & X_2 & 0 & \cdots & 0 \ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \ 0 & 0 & 0 & 0 & \cdots & X_{k-1} \ X_k & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

We construct certain of the matrices in R(G), where now the elements of G are ordered according to (4), (5), (6), (7). Let i be fixed, $1 \leq i \leq m$. Since H_{i-1} is normal in H_i , $V_{i-1}a_i = a_iP_{i-1}(a_i)V_{i-1}$ where $P_{i-1}(a_i)$ is a $t \times t$ permutation matrix (t as in (6)). Then, since

and because of (7), $V_i a_i = P_i(a_i) V_i$, where $P_i(a_i)$ is permutation matrix with the structure

$$(9) P_i(a_i) = [P_{i-1}(a_i), P_{i-1}(a_i), \cdots, P_{i-1}(a_i), \bar{P}_{i-1}(a_i)]_{n_i}$$

In (9), $\overline{P}_{i-1}(a_i)$ is another $t \times t$ permutation matrix.

Because of (7), we also have for any $g \in H_{i-1}$, that $V_i g = P_i(g) V_i$, where the permutation matrix $P_i(g)$ has the structure

(10)
$$P_i(g) = \text{diag} (P_{i-1}(g), P_{i-1}(g), \dots, P_{i-1}(g))_{n_i}, \qquad g \in H_{i-1}.$$

In (10), $P_i(g)$ is a block scalar matrix. The diagonal blocks $P_{i-1}(g)$ have dimensions $t \times t$. Furthermore, as g runs over the elements of H_{i-1} , $P_{i-1}(g)$ runs over all the matrices of $R(H_{i-1})$. Since H_i is generated by H_{i-1} and a_i , the matrices $P_i(g)$ for $g \in H_{i-1}$ and $P_i(a_i)$ generate $R(H_i)$.

Because of the ordering of the elements of G, the following block scalar matrices:

(11)
$$Q(g) = \operatorname{diag} (P_i(g), \dots, P_i(g))_u, \quad g \in H_{i-1} \text{ or } g = a_i,$$

$$(12) u = n/tn_i$$

are the matrices in R(G) determined by the $g \in H_{i-1}$ and by $g = a_i$. Here Q(g) is $n \times n$.

We now prove our theorem by the following induction argument. Suppose for a fixed i, $1 \leq i \leq m$, that B = AA' and that

(13)
$$AQ(g) = Q(g)A$$
, for any $g \in H_{i-1}$.

(In particular this is satisfied if i = 1 since then the only such Q(g) is I_n , the $n \times n$ identity matrix.) We shall then show that a generalized permutation matrix T exists such that B = (AT)(AT)' and such that ATQ(g) = Q(g)AT for any $g \in H_{i-1}$ and for $g = a_i$, and so, in consequence, for any $g \in H_i$. Thus the induction will eventually yield a generalized permutation matrix T_1 such that $B = (AT_1)(AT_1)'$ and such that $AT_1Q(g) = Q(g)AT_1$ for any $g \in G$. It will now follow from (ii) that $AT_1 \in L^*(G)$, and the proof will be complete.

Hence assume B = AA' where A satisfies (13). Partition

(14)
$$A = (A_{\alpha,\beta}), \qquad 1 \leq \alpha, \beta \leq v = n_i u$$

into blocks of dimensions $t \times t$. As Q(g) for $g \in H_{i-1}$ is a block scalar matrix with the blocks $P_{i-1}(g)$ of $R(H_{i-1})$ on the main block diagonal, it follows from (ii) and (13) that each

(15)
$$A_{lpha,eta} \in L^*(H_{i-1})$$
, $1 \leq lpha, eta \leq v$.

Since $B \in L^*(G)$, $BQ(a_i) = Q(a_i)B$ so that if

(16)
$$M = A^{-1}Q(a_i)A$$
 ,

then,

$$(17) MM' = I_n$$

As A is unimodular the elements of M are integers. Hence (17) implies that M is a generalized permutation matrix. Partition A, A^{-1} , $Q(a_i)$, and M into $t \times t$ blocks. As each block of A lies in $L^*(H_{i-1})$ and as A^{-1} is a polynomial in A, each of the $t \times t$ blocks of A, of A^{-1} , and of $Q(a_i)$ is a linear combination of a finite number of $t \times t$ permutation matrices. Therefore each $t \times t$ block of M is a linear combination of a finite number of a finite number of $t \times t$ permutation matrices. A permutation matrices in the sense that the sums across each row and down each column all have a common value.

As linear combinations of matrices doubly stochastic in this sense remain doubly stochastic, each $t \times t$ block of M is doubly stochastic. Let M_1 be a typical $t \times t$ block in M. Since M is a generalized permutation matrix, M_1 contains at most one nonzero element in each of its rows and columns. As M_1 is doubly stochastic, it now follows that M_1 , if it is not the zero matrix, is either a permutation matrix or the negative of a permutation matrix. Since M is a generalized permutation matrix, it follows that, after partitioning into $t \times t$ blocks, M is a "generalized permutation matrix" in that it has exactly one nonzero block in each of its block rows and in each of its block columns. Each nonzero block is \pm a permutation matrix.

There exists a permutation matrix R consisting of $t \times t$ blocks which are either the $t \times t$ zero matrix or I_t such that R'MR is a direct sum of cycles. That is, $R'MR = \text{diag}(E_1, E_2, \dots, E_r)_r$ where

(18)
$$E_{\delta} = [E_{\delta,1}, E_{\delta,2}, \cdots, E_{\delta,e_{\delta}}]_{e_{\delta}}, \qquad 1 \leq \delta \leq r.$$

Here each $E_{\delta,\omega}$ is \pm a $t \times t$ permutation matrix.

Note that RQ(g) = Q(g)R for any $g \in H_{i-1}$ since each such Q(g) is block scalar when partitioned into $t \times t$ blocks. Thus

$$ARQ(g) = Q(g)AR$$
, for any $g \in H_{i-1}$,

and

$$(AR)^{-1}Q(a_i)AR = R'MR$$

is a direct sum of E_1, E_2, \dots, E_r . Thus if we change notation and replace AR with A and R'MR with M, we have (13), (14), (15), (16), (18) and

$$M = \operatorname{diag} (E_1, E_2, \cdots, E_r)_r$$
.

Our immediate goal is to prove that each e_{δ} is n_i and that r = u. Because of (8)

$$egin{aligned} &M^{n_i} &= A^{-1}Q(a_i^{n_i})A \ &= A^{-1}Q(g)A \ &= Q(g) \end{aligned} \qquad \qquad ext{for some } g \in H_{i-1} ext{ ,} \ & ext{by (13) .} \end{aligned}$$

Hence each cycle E_{δ} of M has the property that

$$E_{\delta}^{n_i}$$

is block scalar. This is not possible if $e_{\delta} > n_i$. Hence each $e_{\delta} \leq n_i$.

Counting rows in M we get $t(e_1 + e_2 + \cdots + e_r) = n$. If any $e_{\delta} < n_i$ we would have

$$(19) r > u$$

Let $A_{\alpha} = (A_{\alpha,1}, A_{\alpha,2}, \dots, A_{\alpha,v})$, $1 \leq \alpha \leq v$, be the block rows of A. For each fixed d such that $0 \leq d < u$ it follows from (9), (11), and $Q(a_i)A = AM$ that

(20)
$$P_{i-1}(a_i)A_{dn_i+k} = A_{dn_i+k-1}M$$
, $2 \leq k \leq n_i$.

Let $w_0 = 0$ and let $w_{\delta} = e_1 + e_2 + \cdots + e_{\delta}$ for $1 \leq \delta \leq r$. Then (20) implies than for $2 \leq k \leq n_i$ and $0 \leq \delta \leq r - 1$,

(21)
$$(A_{dn_i+k,w_{\delta}+1},\cdots,A_{dn_i+k,w_{\delta}+1}) = P_{i-1}(a_i)^{1-k}(A_{dn_i+1,w_{\delta}+1},\cdots,A_{dn_i+1,w_{\delta}+1})E_{\delta+1}^{k-1}.$$

For each fixed d, δ such that $0 \leq d < u$, $0 \leq \delta < r$, let $F_{d,\delta}$ be the submatrix of A containing the blocks $A_{\alpha,\beta}$ with $dn_i + 1 \leq \alpha \leq (d+1)n_i$ and $w_{\delta} + 1 \leq \beta \leq w_{\delta+1}$. Since each $A_{\alpha,\beta} \in L^*(H_{i-1})$, each row of a given $A_{\alpha,\beta}$ is a permutation of the first row of this $A_{\alpha,\beta}$. Since $P_{i-1}(a_i)$ and $E_{\delta+1}$ are generalized permutation matrices, this fact and (21) imply that each row of $F_{d,\delta}$ is a generalized permutation of the first row of $F_{d,\delta}$ after the first row of $F_{d,\delta}$. Thus if we add all the columns of $F_{d,\delta}$ after the first to the first column of $F_{d,\delta}$ we produce a new matrix $\overline{F}_{d,\delta}$ in which the integers in the first column of $\overline{F}_{d,\delta}$ are all equal, modulo 2. Next add the first row of $\overline{F}_{d,\delta}$. Then all the integers in the first column of $\overline{F}_{d,\delta}$ below the top element are zero, modulo 2.

Now partition $A = (F_{d,\delta})$ into its blocks $F_{d,\delta}$. For each fixed $\delta, 0 \leq \delta < r$, add to that column of A that intersects $F_{0,\delta}$ at the extreme left of $F_{0,\delta}$, all the other columns of A that intersect $F_{0,\delta}$. This produces a new matrix $\overline{A} = (\overline{F}_{d,\delta})$. For each fixed $d, 0 \leq d < u$, add the topmost row of \overline{A} that intersects $\overline{F}_{d,0}$ to all the other rows of \overline{A} that intersect $\overline{F}_{d,0}$. We get a new matrix $\widetilde{A} = (\widetilde{F}_{d,\delta})$. The r columns of \widetilde{A} that intersect $\overline{F}_{0,\delta}$ at the extreme left of $\widetilde{F}_{0,\delta}$, $0 \leq \delta < r$, may now be regarded as vectors in a u dimensional vector space over the field of two elements. As r > u, these vectors are dependent and so \widetilde{A} (and hence A) is singular, modulo 2. This is a contradiction since the determinant of A is ± 1 .

Consequently each $e_{\delta} = n_i$, $1 \leq \delta \leq r$, and r = u.

Now let $E_{p,q} = \varphi_{p,q} \overline{E}_{p,q}$ where $\varphi_{p,q} = \pm 1$ and $\overline{E}_{p,q}$ is a permutation matrix. Let δ be fixed, $1 \leq \delta \leq u$. Suppose that $P_{i-1}(a_i)$ has a one at position $(1, \omega)$ and let $\overline{E}_{\delta,1}$ have a one at position $(1, \mu)$. Let $K_{\delta,1}$ be the permutation matrix in $L(H_{i-1})$ with a one at position (μ, ω) . $(K_{\delta,1}$ is the matrix in $L(H_{i-1})$ representing $h_{\mu}h_{\sigma}^{-1}$; see (2) and (5).) Then $\widetilde{E}_{\delta,1} = \overline{E}_{\delta,1}K_{\delta,1}$ has the same first row as $P_{i-1}(a_i)$. Similarly, by induction, we determine $K_{\delta,s}$ in $L(H_{i-1})$, $1 < s < n_i$, such that the

724

permutation matrices

$$\widetilde{E}_{{\delta},s} = K'_{{\delta},s-1} ar{E}_{{\delta},s} K_{{\delta},s}$$
 , $1 < s < n_i$,

each have the same first row as $P_{i-1}(a_i)$. Then let

$$S_{\delta} = ext{diag}\left(I_{\iota}, arphi_{\delta,1}K_{\delta,1}, arphi_{\delta,2} arphi_{\delta,2}K_{\delta,2}, \cdots, \left(\prod_{j=1}^{n_{i}-1} arphi_{\delta,j}
ight) K_{\delta,n_{i}-1}
ight)_{n_{i}},$$

and let $S = \text{diag} (S_1, S_2, \dots, S_u)_u$. Then

$$S'MS= ext{diag}\,(\widetilde{E}_{\scriptscriptstyle 1},\,\widetilde{E}_{\scriptscriptstyle 2},\,\cdots,\,\widetilde{E}_{\scriptscriptstyle u})_{\scriptscriptstyle u}$$

where

(22)
$$\widetilde{E}_{\delta} = [\widetilde{E}_{\delta,1}, \widetilde{E}_{\delta,2}, \cdots, \widetilde{E}_{\delta,n_i-1}, \pm \widetilde{E}_{\delta,n_i}]_{n_i}, \qquad 1 \leq \delta \leq u.$$

In (22) each $\widetilde{E}_{\delta,j}$, $1 \leq j < n_i$, $1 \leq \delta \leq u$, is a permutation matrix with the same first row as $P_{i-1}(a_i)$ and each

$$\widetilde{E}_{\delta,n_{m{i}}}$$
 , $1 \leqq \delta \leqq u$,

is some unknown permutation matrix.

Now SQ(g) = Q(g)S if $g \in H_{i-1}$ since S is block diagonal with its blocks in $L^*(H_{i-1})$ whereas Q(g) for $g \in H_{i-1}$ is block scalar with its blocks in $R(H_{i-1})$. Thus if we change notation again and replace ASwith A and S'MS with M we retain the validity of (13) and (16) and now

(23)
$$M = \operatorname{diag} (\widetilde{E}_1, \widetilde{E}_2, \cdots, \widetilde{E}_u)_u$$
.

Since for any $g \in H_{i-1}$, $a_i^{-1}ga_i = \overline{g} \in H_{i-1}$, it follows that for any $g \in H_{i-1}$ there exists a $\overline{g} \in H_{i-1}$ such that $Q(g)Q(a_i) = Q(a_1)Q(\overline{g})$. Hence, using (9), (10), and (11), we find

(24)
$$P_{i-1}(g)P_{i-1}(a_i) = P_{i-1}(a_i)P_{i-1}(\bar{g})$$
, $g, \bar{g} \in H_{i-1}$.

If we let $g \in H_{i-1}$ be such that $P_{i-1}(g)$ has a one at position $(1, \omega)$ then (24) says: row ω of $P_{i-1}(a_i)$ is determined in terms of row one of $P_{i-1}(a_i)$.

Now for $g \in H_{i-1}$:

$$egin{aligned} Q(g)M &= Q(g)A^{-1}Q(a_i)A \ &= A^{-1}Q(g)Q(a_i)A \ &= A^{-1}Q(a_i)Q(ar{g})A \ &= A^{-1}Q(a_i)AQ(ar{g}) \ &= MQ(ar{g}) \ . \end{aligned}$$
 by (13) ,

Hence, for fixed δ and j, $1 \leq \delta \leq u$, $1 \leq j < n_i$, it now follows

(using (10), (11), (22), and (23)) that

$$(25) P_{i-1}(g)\widetilde{E}_{\delta,j} = \widetilde{E}_{\delta,j}P_{i-1}(\bar{g}) , g, \ \bar{g} \in H_{i-1} ,$$

As with (24), (25) determines each row of $\tilde{E}_{\delta,j}$ in terms of the first row of $\tilde{E}_{\delta,j}$. Consequently

(26)
$$\widetilde{E}_{\delta,j} = P_{i-1}(a_i)$$
 , $1 \leq \delta \leq u, \ 1 \leq j < n_i$.

We also have (8), hence

$$M^{n_i} = A^{\scriptscriptstyle -1} Q(a^{n_i}_i) A = Q(a_i)^{n_i}$$

by (13). Hence, for each δ , $1 \leq \delta \leq u$,

(27)
$$\widetilde{E}^{n_i}_\delta = P_i(a_i)^{n_i}$$
 .

Each side of (27) is a block diagonal matrix. Equating the topmost diagonal blocks we get

$$\left[\prod_{j=1}^{n_i-1}\widetilde{E}_{\delta,j}
ight]$$
 $[\pm\widetilde{E}_{\delta,n_i}]=P_{i-1}(a_i)^{n_i-1}ar{P}_{i-1}(a_i)$.

Hence, by (26),

$$\pm \widetilde{E}_{\delta,n_i} = ar{P}_{i-1}\!(a_i)$$
 , $1 \leq \delta \leq u$.

We have now proved that $M = Q(a_i)$. Hence $Q(a_i)A = AQ(a_i)$. As indicated earlier, this is enough to complete the proof.

References

1. M. Newman and Olga Taussky, On a generalization of the normal basis in abelian algebraic number fields, Comm. Pure App. Math., **9** (1956), 85-91.

2. R. C. Thompson, Normal matrices and the normal basis in abelian number fields, Pacific J. Math., **12** (1962), 1115-1124.

THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA

726