UNIMODULAR GROUP MATRICES WITH RATIONAL INTEGERS AS ELEMENTS

R. C. Thompson

1. Introduction. Let G be a finite group of order n with elements $g_{1}, g_{2}, \cdots, g_{n}$. Let

$$
x_{g_{i}}, \quad 1 \leqq i \leqq n
$$

be variables in one-to-one correspondence with the elements of G. The $n \times n$ matrix

$$
\begin{equation*}
X=\left(x_{g_{i} \sigma_{j}}^{-1}\right)_{1 \leq i, j \leq n} \tag{2}
\end{equation*}
$$

is called the group matrix for G. If numerical values are substituted for the variables (1) in X, we say X is a group matrix for G. In this paper we study group matrices which have rational integers as elements. Let A^{\prime} denote the transpose of the matrix A. A generalized permutation matrix is a square matrix with only $0,1,-1$ as elements and having exactly one nonzero element in each row and in each column. A square matrix A is said to be unimodular if the determinant of A is ± 1. The result obtained in this paper is the following theorem.

Theorem. Let G be a finite solvable group. Let A be a unimodular matrix of rational integers such that $B=A A^{\prime}$ is a group matrix for G. Then $A=A_{1} T$ where A_{1} is a unimodular group matrix of rational integers for G and T is a generalized permutation matrix.

This theorem has already been proved for cyclic groups in [1] and for abelian groups in [2]. The present proof is a modification of the proof in [2].
2. Proof of the theorem. Let

$$
\begin{equation*}
1=H_{0} \subset H_{1} \subset H_{2} \subset \cdots \subset H_{m-1} \subset H_{m}=G \tag{3}
\end{equation*}
$$

be an ascending chain of subgroups of G, where each H_{i-1} is normal in H_{i} with cyclic factor group H_{i} / H_{i-1} of order $\mathrm{n}_{i}, 1 \leqq i \leqq m$. We let $n_{0}=1$, so that H_{i} has order $n_{0} n_{1} \cdots n_{i}$. In order to simplify the proof we take the elements of G in a particular order. This will not affect the theorem as a reordering of the elements of G changes the group matrix X to $P X P^{\prime}$ for P a permutation matrix. Thus let
H_{i} be generated by the elements of H_{i-1} and an element a_{i} such that the coset $a_{i} H_{i-1}$ has order n_{i}. By induction we define column vectors V_{i} of the elements of H_{i}. We let

$$
\begin{equation*}
V_{0}=(1) \tag{4}
\end{equation*}
$$

be the one row column vector whose only element is the identity of G. Suppose

$$
\begin{equation*}
V_{i-1}=\left(h_{1}, h_{2}, \cdots, h_{t}\right)^{\prime} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
t=n_{0} n_{1} \cdots n_{i-1} \tag{6}
\end{equation*}
$$

has been defined, where $h_{1}, h_{2}, \cdots, h_{t}$ are the ordered elements of H_{i-1}. For any $g \in G$ let

$$
\begin{aligned}
g V_{i-1} & =\left(g h_{1}, g h_{2}, \cdots, g h_{t}\right)^{\prime}, \\
V_{i-1} g & =\left(h_{1} g, h_{2} g, \cdots, h_{t} g\right)^{\prime} .
\end{aligned}
$$

Then define V_{i} to be the column vector

$$
V_{i}=\left[\begin{array}{c}
V_{i-1} \tag{7}\\
a_{i} V_{i-1} \\
a_{i}^{2} V_{i-1} \\
\cdots \\
a_{i}^{n}{ }^{n-1} V_{i-1}
\end{array}\right]
$$

For an arbitrary finite group G with ordered elements $g_{1}, g_{2}, \cdots, g_{n}$ we define the left regular representation of G by the matrix equations

$$
\left(g g_{1}, g g_{2}, \cdots, g g_{n}\right)=\left(g_{1}, g_{2}, \cdots, g_{n}\right) P^{L}(g), \quad g \in G
$$

Here $P^{L}(g)$ is a permutation matrix depending on the element $g \in G$. It is straightforward to check that the matrix X of (2) is given by

$$
X=\sum_{g \in G} x_{g} P^{L}(g)
$$

The set of all $P^{L}(g)$ for $g \in G$ is denoted by $L(G)$.
We define the right regular representation of G by

$$
\left(g_{1} g, g_{2} g, \cdots, g_{n} g\right)^{\prime}=P(g)\left(g_{1}, g_{2}, \cdots, g_{n}\right)^{\prime}, \quad g \in G
$$

The set of all permutation matrices $P(g)$ for $g \in G$ is denoted by $R(G)$.
The group ring of the left (right) regular representation is the set of all linear combinations of the $P^{L}(g)(P(g))$ for $g \in G$, and is denoted by $L^{*}(G)\left(R^{*}(G)\right)$. Thus the matrix (2) is the typical member
of $L^{*}(G)$. The following two known facts are vital for the proof of our theorem:
(i) any matrix in $L^{*}(G)$ commutes with any matrix in $R^{*}(G)$;
(ii) any matrix that commutes with all the matrices in $R(G)$ is a member of $L^{*}(G)$.

Notation. We let diag $\left(X_{1}, X_{2}, \cdots, X_{k}\right)_{k}$ denote the direct sum of the square matrices $X_{1}, X_{2}, \cdots, X_{k}$:

$$
\operatorname{diag}\left(X_{1}, X_{2}, \cdots, X_{k}\right)_{k}=\left[\begin{array}{ccccc}
X_{1} & 0 & 0 & \cdots & 0 \\
0 & X_{2} & 0 & \cdots & 0 \\
. & \cdot & \cdot & \cdots & 0 \\
0 & 0 & 0 & \cdots & X_{k}
\end{array}\right]
$$

We set $\left[X_{1}\right]_{1}=X_{1}$. If $k>1$ and $X_{1}, X_{2}, \cdots, X_{k}$ are square matrices of the same size, we set

$$
\left[X_{1}, X_{2}, \cdots, X_{k}\right]_{k}=\left[\begin{array}{cccccc}
0 & X_{1} & 0 & 0 & \cdots & 0 \\
0 & 0 & X_{2} & 0 & \cdots & 0 \\
. & . & \cdot & . & \cdots & . \\
0 & 0 & 0 & 0 & \cdots & X_{k-1} \\
X_{k} & 0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

We construct certain of the matrices in $R(G)$, where now the elements of G are ordered according to (4), (5), (6), (7). Let i be fixed, $1 \leqq i \leqq m$. Since H_{i-1} is normal in $H_{i}, V_{i-1} a_{i}=a_{i} P_{i-1}\left(a_{i}\right) V_{i-1}$ where $P_{i-1}\left(a_{i}\right)$ is a $t \times t$ permutation matrix (t as in (6)). Then, since

$$
\begin{equation*}
a_{i}^{n_{i}} \in H_{i-1} \tag{8}
\end{equation*}
$$

and because of (7), $V_{i} a_{i}=P_{i}\left(a_{i}\right) V_{i}$, where $P_{i}\left(a_{i}\right)$ is permutation matrix with the structure

$$
\begin{equation*}
P_{i}\left(\alpha_{i}\right)=\left[P_{i-1}\left(\alpha_{i}\right), P_{i-1}\left(a_{i}\right), \cdots, P_{i-1}\left(a_{i}\right), \bar{P}_{i-1}\left(\alpha_{i}\right)\right]_{n_{i}} \tag{9}
\end{equation*}
$$

In (9), $\bar{P}_{i-1}\left(\alpha_{i}\right)$ is another $t \times t$ permutation matrix.
Because of (7), we also have for any $g \in H_{i-1}$, that $V_{i} g=P_{i}(g) V_{i}$, where the permutation matrix $P_{i}(g)$ has the structure

$$
\begin{equation*}
P_{i}(g)=\operatorname{diag}\left(P_{i-1}(g), P_{i-1}(g), \cdots, P_{i-1}(g)\right)_{n_{i}}, \quad g \in H_{i-1} \tag{10}
\end{equation*}
$$

In (10), $P_{i}(g)$ is a block scalar matrix. The diagonal blocks $P_{i-1}(g)$ have dimensions $t \times t$. Furthermore, as g runs over the elements of $H_{i-1}, P_{i-1}(g)$ runs over all the matrices of $R\left(H_{i-1}\right)$. Since H_{i} is generated by H_{i-1} and a_{i}, the matrices $P_{i}(g)$ for $g \in H_{i-1}$ and $P_{i}\left(a_{i}\right)$ generate $R\left(H_{i}\right)$.

Because of the ordering of the elements of G, the following block scalar matrices:

$$
\begin{gather*}
Q(g)=\operatorname{diag}\left(P_{i}(g), \cdots, P_{i}(g)\right)_{u}, \quad g \in H_{i-1} \text { or } g=a_{i}, \tag{11}\\
u=n / t n_{i}, \tag{12}
\end{gather*}
$$

are the matrices in $R(G)$ determined by the $g \in H_{i-1}$ and by $g=a_{i}$. Here $Q(g)$ is $n \times n$.

We now prove our theorem by the following induction argument. Suppose for a fixed $i, 1 \leqq i \leqq m$, that $B=A A^{\prime}$ and that

$$
\begin{equation*}
A Q(g)=Q(g) A, \quad \text { for any } g \in H_{i-1} \tag{13}
\end{equation*}
$$

(In particular this is satisfied if $i=1$ since then the only such $Q(g)$ is I_{n}, the $n \times n$ identity matrix.) We shall then show that a generalized permutation matrix T exists such that $B=(A T)(A T)^{\prime}$ and such that $A T Q(g)=Q(g) A T$ for any $g \in H_{i-1}$ and for $g=a_{i}$, and so, in consequence, for any $g \in H_{i}$. Thus the induction will eventually yield a generalized permutation matrix T_{1} such that $B=\left(A T_{1}\right)\left(A T_{1}\right)^{\prime}$ and such that $A T_{1} Q(g)=Q(g) A T_{1}$ for any $g \in G$. It will now follow from (ii) that $A T_{1} \in L^{*}(G)$, and the proof will be complete.

Hence assume $B=A A^{\prime}$ where A satisfies (13). Partition

$$
\begin{equation*}
A=\left(A_{\alpha, \beta}\right), \quad 1 \leqq \alpha, \beta \leqq v=n_{i} u \tag{14}
\end{equation*}
$$

into blocks of dimensions $t \times t$. As $Q(g)$ for $g \in H_{i-1}$ is a block scalar matrix with the blocks $P_{i-1}(g)$ of $R\left(H_{i-1}\right)$ on the main block diagonal, it follows from (ii) and (13) that each

$$
\begin{equation*}
A_{\alpha, \beta} \in L^{*}\left(H_{i-1}\right), \quad 1 \leqq \alpha, \beta \leqq v \tag{15}
\end{equation*}
$$

Since $B \in L^{*}(G), B Q\left(a_{i}\right)=Q\left(a_{i}\right) B$ so that if

$$
\begin{equation*}
M=A^{-1} Q\left(\alpha_{i}\right) A \tag{16}
\end{equation*}
$$

then,

$$
\begin{equation*}
M M^{\prime}=I_{n} \tag{17}
\end{equation*}
$$

As A is unimodular the elements of M are integers. Hence (17) implies that M is a generalized permutation matrix. Partition A, A^{-1}, $Q\left(\alpha_{i}\right)$, and M into $t \times t$ blocks. As each block of A lies in $L^{*}\left(H_{i-1}\right)$ and as A^{-1} is a polynomial in A, each of the $t \times t$ blocks of A, of A^{-1}, and of $Q\left(a_{i}\right)$ is a linear combination of a finite number of $t \times t$ permutation matrices. Therefore each $t \times t$ block of M is a linear combination of a finite number of $t \times t$ permutation matrices. A permutation matrix is doubly stochastic in the sense that the sums across each row and down each column all have a common value.

As linear combinations of matrices doubly stochastic in this sense remain doubly stochastic, each $t \times t$ block of M is doubly stochastic. Let M_{1} be a typical $t \times t$ block in M. Since M is a generalized permutation matrix, M_{1} contains at most one nonzero element in each of its rows and columns. As M_{1} is doubly stochastic, it now follows that M_{1}, if it is not the zero matrix, is either a permutation matrix or the negative of a permutation matrix. Since M is a generalized permutation matrix, it follows that, after partitioning into $t \times t$ blocks, M is a "generalized permutation matrix" in that it has exactly one nonzero block in each of its block rows and in each of its block columns. Each nonzero block is \pm a permutation matrix.

There exists a permutation matrix R consisting of $t \times t$ blocks which are either the $t \times t$ zero matrix or I_{t} such that $R^{\prime} M R$ is a direct sum of cycles. That is, $R^{\prime} M R=\operatorname{diag}\left(E_{1}, E_{2}, \cdots, E_{r}\right)_{r}$ where

$$
\begin{equation*}
E_{\delta}=\left[E_{\delta, 1}, E_{\delta, 2}, \cdots, E_{\delta, e_{\delta}}\right]_{e_{\delta}}, \quad 1 \leqq \delta \leqq r \tag{18}
\end{equation*}
$$

Here each $E_{\delta, \omega}$ is \pm a $t \times t$ permutation matrix.
Note that $R Q(g)=Q(g) R$ for any $g \in H_{i-1}$ since each such $Q(g)$ is block scalar when partitioned into $t \times t$ blocks. Thus

$$
A R Q(g)=Q(g) A R, \quad \text { for any } g \in H_{i-1}
$$

and

$$
(A R)^{-1} Q\left(a_{i}\right) A R=R^{\prime} M R
$$

is a direct sum of $E_{1}, E_{2}, \cdots, E_{r}$. Thus if we change notation and replace $A R$ with A and $R^{\prime} M R$ with M, we have (13), (14), (15), (16), (18) and

$$
M=\operatorname{diag}\left(E_{1}, E_{2}, \cdots, E_{r}\right)_{r}
$$

Our immediate goal is to prove that each e_{δ} is n_{i} and that $r=u$. Because of (8)

$$
M^{n_{i}}=A^{-1} Q\left(a_{i}^{n_{i}}\right) A
$$

$$
=A^{-1} Q(g) A \quad \text { for some } g \in H_{i-1}
$$

$$
=Q(g) \quad \text { by }(13)
$$

Hence each cycle E_{δ} of M has the property that

$$
E_{\delta}^{n_{i}}
$$

is block scalar. This is not possible if $e_{\delta}>n_{i}$. Hence each $e_{\delta} \leqq n_{i}$.
Counting rows in M we get $t\left(e_{1}+e_{2}+\cdots+e_{r}\right)=n$. If any $e_{\delta}<n_{i}$ we would have

$$
\begin{equation*}
r>u \tag{19}
\end{equation*}
$$

Let $A_{\alpha}=\left(A_{\alpha, 1}, A_{\alpha, 2}, \cdots, A_{\alpha, v}\right), 1 \leqq \alpha \leqq v$, be the block rows of A. For each fixed d such that $0 \leqq d<u$ it follows from (9), (11), and $Q\left(a_{i}\right) A=A M$ that

$$
\begin{equation*}
P_{i-1}\left(a_{i}\right) A_{d n_{i}+k}=A_{d n_{i}+k-1} M, \quad 2 \leqq k \leqq n_{i} \tag{20}
\end{equation*}
$$

Let $w_{0}=0$ and let $w_{\delta}=e_{1}+e_{2}+\cdots+e_{\delta}$ for $1 \leqq \delta \leqq r$. Then (20) implies than for $2 \leqq \mathrm{k} \leqq n_{i}$ and $0 \leqq \delta \leqq r-1$,

$$
\begin{align*}
& \left(A_{d n_{i}+k, w_{\delta}+1}, \cdots, A_{d n_{i}+k, w_{\delta}+1}\right) \\
& \quad=P_{i-1}\left(a_{i}\right)^{1-k}\left(A_{d n_{i}+1, w_{\delta}+1}, \cdots, A_{d n_{i}+1, w_{\delta}+1}\right) E_{\delta+1}^{k-1} \tag{21}
\end{align*}
$$

For each fixed d, δ such that $0 \leqq d<u, 0 \leqq \delta<r$, let $F_{d, \delta}$ be the submatrix of A containing the blocks $A_{\alpha, \beta}$ with $d n_{i}+1 \leqq \alpha \leqq(d+1) n_{i}$ and $w_{\delta}+1 \leqq \beta \leqq w_{\delta+1}$. Since each $A_{\alpha, \beta} \in L^{*}\left(H_{i-1}\right)$, each row of a given $A_{\alpha, \beta}$ is a permutation of the first row of this $A_{\alpha, \beta}$. Since $P_{i-1}\left(a_{i}\right)$ and $E_{\delta+1}$ are generalized permutation matrices, this fact and (21) imply that each row of $F_{d, \delta}$ is a generalized permutation of the first row of $F_{d, \delta}$. Thus if we add all the columns of $F_{d, \delta}$ after the first to the first column of $F_{d, \delta}$ we produce a new matrix $\bar{F}_{d, \delta}$ in which the integers in the first column of $\bar{F}_{d, \delta}$ are all equal, modulo 2. Next add the first row of $\bar{F}_{d, \delta}$ to all the other rows of $\bar{F}_{d, \delta}$ to get a new matrix $\widetilde{F}_{d, \delta}$. Then all the integers in the first column of $\widetilde{F}_{d, \delta}$ below the top element are zero, modulo 2.

Now partition $A=\left(F_{d, \delta}\right)$ into its blocks $F_{d, \delta}$. For each fixed $\delta, 0 \leqq \delta<r$, add to that column of A that intersects $F_{0, \delta}$ at the extreme left of $F_{0, \delta}$, all the other columns of A that intersect $F_{0, \delta}$. This produces a new matrix $\bar{A}=\left(\bar{F}_{d, \delta}\right)$. For each fixed $d, 0 \leqq d<u$, add the topmost row of \bar{A} that intersects $\bar{F}_{d, 0}$ to all the other rows of \bar{A} that intersect $\bar{F}_{d, 0}$. We get a new matrix $\widetilde{A}=\left(\widetilde{F}_{d, \delta}\right)$. The r columns of \widetilde{A} that intersect $\widetilde{F}_{0, \delta}$ at the extreme left of $\widetilde{F}_{0, \delta}, 0 \leqq \delta<r$, may now be regarded as vectors in a u dimensional vector space over the field of two elements. As $r>u$, these vectors are dependent and so \widetilde{A} (and hence A) is singular, modulo 2 . This is a contradiction since the determinant of A is ± 1.

Consequently each $e_{\delta}=n_{i}, 1 \leqq \delta \leqq r$, and $r=u$.
Now let $E_{p, q}=\varphi_{p, q} \bar{E}_{p, q}$ where $\varphi_{p, q}= \pm 1$ and $\bar{E}_{p, q}$ is a permutation matrix. Let δ be fixed, $1 \leqq \delta \leqq u$. Suppose that $P_{i-1}\left(a_{i}\right)$ has a one at position $(1, \omega)$ and let $\bar{E}_{\delta, 1}$ have a one at position $(1, \mu)$. Let $K_{\delta, 1}$ be the permutation matrix in $L\left(H_{i-1}\right)$ with a one at position (μ, ω). ($K_{\delta, 1}$ is the matrix in $L\left(H_{i-1}\right)$ representing $h_{\mu} h_{10}^{-1}$; see (2) and (5).) Then $\widetilde{E}_{\delta, 1}=\bar{E}_{\delta, 1} K_{\delta, 1}$ has the same first row as $P_{i-1}\left(\alpha_{i}\right)$. Similarly, by induction, we determine $K_{\delta, s}$ in $L\left(H_{i-1}\right), 1<s<n_{i}$, such that the
permutation matrices

$$
\widetilde{E}_{\delta, s}=K_{\delta, s-1}^{\prime} \bar{E}_{\delta, s} K_{\delta, s}, \quad 1<s<n_{i}
$$

each have the same first row as $P_{i-1}\left(\alpha_{i}\right)$. Then let

$$
S_{\delta}=\operatorname{diag}\left(I_{t}, \varphi_{\delta, 1} K_{\delta, 1}, \varphi_{\delta, 1} \varphi_{\delta, 2} K_{\delta, 2}, \cdots,\left(\prod_{\jmath=1}^{n_{i}-1} \varphi_{\delta, j}\right) K_{\delta, n_{i}-1}\right)_{n_{i}}
$$

and let $S=\operatorname{diag}\left(S_{1}, S_{2}, \cdots, S_{u}\right)_{u}$. Then

$$
S^{\prime} M S=\operatorname{diag}\left(\widetilde{E}_{1}, \widetilde{E}_{2}, \cdots, \widetilde{E}_{u}\right)_{u}
$$

where

$$
\begin{equation*}
\widetilde{E}_{\delta}=\left[\widetilde{E}_{\delta, 1}, \widetilde{E}_{\delta, 2}, \cdots, \widetilde{E}_{\delta, n_{i}-1}, \pm \widetilde{E}_{\delta, n_{i}}\right]_{n_{i}}, \quad 1 \leqq \delta \leqq u \tag{22}
\end{equation*}
$$

In (22) each $\widetilde{E}_{\delta, j}, 1 \leqq j<n_{i}, 1 \leqq \delta \leqq u$, is a permutation matrix with the same first row as $P_{i-1}\left(a_{i}\right)$ and each

$$
\widetilde{E}_{\delta, n_{i}}, \quad 1 \leqq \delta \leqq u
$$

is some unknown permutation matrix.
Now $S Q(g)=Q(g) S$ if $g \in H_{i-1}$ since S is block diagonal with its blocks in $L^{*}\left(H_{i-1}\right)$ whereas $Q(g)$ for $g \in H_{i-1}$ is block scalar with its blocks in $R\left(H_{i-1}\right)$. Thus if we change notation again and replace $A S$ with A and $S^{\prime} M S$ with M we retain the validity of (13) and (16) and now

$$
\begin{equation*}
M=\operatorname{diag}\left(\widetilde{E}_{1}, \widetilde{E}_{2}, \cdots, \widetilde{E}_{u}\right)_{u} \tag{23}
\end{equation*}
$$

Since for any $g \in H_{i-1}, a_{i}^{-1} g a_{i}=\bar{g} \in H_{i-1}$, it follows that for any $g \in H_{i-1}$ there exists a $\bar{g} \in H_{i-1}$ such that $Q(g) Q\left(a_{i}\right)=Q\left(a_{1}\right) Q(\bar{g})$. Hence, using (9), (10), and (11), we find

$$
\begin{equation*}
P_{i-1}(g) P_{i-1}\left(\alpha_{i}\right)=P_{i-1}\left(\alpha_{i}\right) P_{i-1}(\bar{g}), \quad g, \bar{g} \in H_{i-1} \tag{24}
\end{equation*}
$$

If we let $g \in H_{i-1}$ be such that $P_{i-1}(g)$ has a one at position $(1, \omega)$ then (24) says: row ω of $P_{i-1}\left(a_{i}\right)$ is determined in terms of row one of $P_{i-1}\left(\alpha_{i}\right)$.

Now for $g \in H_{i-1}$:

$$
\begin{aligned}
Q(g) M & =Q(g) A^{-1} Q\left(\alpha_{i}\right) A & & \\
& =A^{-1} Q(g) Q\left(\alpha_{i}\right) A & & \text { by }(13), \\
& =A^{-1} Q\left(a_{i}\right) Q(\bar{g}) A & & \text { since } g a_{i}=a_{i} \bar{g}, \\
& =A^{-1} Q\left(a_{i}\right) A Q(\bar{g}) & & \text { by }(13), \\
& =M Q(\bar{g}) . & &
\end{aligned}
$$

Hence, for fixed δ and $j, 1 \leqq \delta \leqq u, 1 \leqq j<n_{i}$, it now follows
(using (10), (11), (22), and (23)) that

$$
\begin{equation*}
P_{i-1}(g) \widetilde{E}_{\delta, j}=\widetilde{E}_{\delta, j} P_{i-1}(\bar{g}), \quad g, \bar{g} \in H_{i-1} \tag{25}
\end{equation*}
$$

As with (24), (25) determines each row of $\widetilde{E}_{\delta, j}$ in terms of the first row of $\widetilde{E}_{\delta, j}$. Consequently

$$
\begin{equation*}
\widetilde{E}_{\delta, j}=P_{i-1}\left(a_{i}\right), \quad 1 \leqq \delta \leqq u, 1 \leqq j<n_{i} \tag{26}
\end{equation*}
$$

We also have (8), hence

$$
M^{n_{i}}=A^{-1} Q\left(a_{i}^{n_{i}}\right) A=Q\left(a_{i}\right)^{n_{i}}
$$

by (13). Hence, for each $\delta, 1 \leqq \delta \leqq u$,

$$
\begin{equation*}
\widetilde{E}_{8}^{n_{i}}=P_{i}\left(a_{i}\right)^{n_{i}} . \tag{27}
\end{equation*}
$$

Each side of (27) is a block diagonal matrix. Equating the topmost diagonal blocks we get

$$
\left[\prod_{j=1}^{n_{i}-1} \widetilde{E}_{\delta, j}\right]\left[\pm \widetilde{E}_{\delta, n_{i}}\right]=P_{i-1}\left(a_{i}\right)^{n_{i}-1} \bar{P}_{i-1}\left(a_{i}\right)
$$

Hence, by (26),

$$
\pm \widetilde{E}_{\delta, n_{i}}=\bar{P}_{i-1}\left(a_{i}\right), \quad 1 \leqq \delta \leqq u
$$

We have now proved that $M=Q\left(a_{i}\right)$. Hence $Q\left(a_{i}\right) A=A Q\left(a_{i}\right)$. As indicated earlier, this is enough to complete the proof.

References

1. M. Newman and Olga Taussky, On a generalization of the normal basis in abelian algebraic number fields, Comm. Pure App. Math., 9 (1956), 85-91.
2. R. C. Thompson, Normal matrices and the normal basis in abelian number fields, Pacific J. Math., 12 (1962), 1115-1124.

The University of British Columbia,
Vancouver, Canada

