ON THE ELEMENTARY RENEWAL THEOREM FOR
NON-IDENTICALLY DISTRIBUTED VARIABLES

WALTER L. SMITH

1. Introduction. Let { X,} be a sequence of independent, iden-
tically distributed random variables with 0 < EFX, < «; write S, =
X, +X,+ -+ + X,; let N, be the number of partial sums S, < z;
write H(x) = EN,. The Elementary Renewal Theorem states that
under certain conditions H(x)/x — { EX,}™ as © — o,

Kawata (1956) has proved a result which, as we shall see below,
is equivalent to a generalization of the Elementary Renewal Theorem
to the case in which the { X, } are non-identically distributed. Unfor-
tunately, he found it necessary to impose quite heavy restrictions
upon the distribution funections involved. In this note we shall also
be concerned with the proof of the Elementary Renewal Theorem for
non-identically distributed random variables, but under substantially
weaker conditions than Kawata’s. This renewal theorem, essentially,
provides an asymptotic estimate to the sum >\7., P{S, =< x}; actually,
we shall discuss in this paper the asymptotic behavior of more gene-
ral sums >, a,P{S, =<2}, for certain general classes of positive
coefficient-sequences {a,}. Such more general sums have also been
considered by Hatori (1959), (1960), who followed Kawata’s general
line of attack, however, and was consequently led to assume unduly
restrictive conditions.

It is well if we point out that there iS another line of inquiry
which could be pursued in the present context, one with which the
present investigation must not be confused. Instead of considering
N,, one could define a random variable M, as the least m for which
S,. > x, and then study the asymptotic behavior of EM,/x. The latter
problem (also for non-identically distributed { X,}) has been tackled
in recent work announced by Robbins and Chow (1962)*. However, as
might be expected, the problem we consider and the problem consi-
dered by Robbins and Chow differ in important respects, in general.
Indeed, a reference to Theorem A, which we quote below, will show
that one can construct a sequence of independent and identically
distributed random variables with a finite first moment, for which
EM, is finite but EN, is infinite. Evidently conditions which are
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674 WALTER L. SMITH

adequate for a study of M, may prove inadequate for a similar study
of N,. However, when all the {X,} are nonnegative we have an
exceptional case; for then M, = N, + 1, and the distinction between
the two lines of inquiry disappears. Our main result, Theorem 1
announced below, is more general than the one announced by Robbins
and Chow, for the case of nonnegative random variables.

Let us write F,(x) = P{ X, < «}and G,(x) = P{S, < «}; we shall
also need the unit function U(x) = P{0 =< « }.

The function L(x), defined for all sufficiently large x, is said to
be a function of slow growth if, for every ¢ > 0

L(cx) _, e
1.1 L@ 1, as « .

It follows from the work of Karamata (1930), that a nonnegative
function of slow growth can always be represented thus:

1.2) L(x) = -g’-xﬁ)— exp {Sx _q,i?:,_) du} ,

1

where a(x) is a function which tends to unity as « tends to infinity.
An easy consequence of this representation (1.2) is that the conver-
gence (1.1) takes place uniformly with respect to ¢ in any interval
not containing the origin.

As a final preliminary we must say a word about the non-nega-
tive coefficient-sequences { a, } which we consider. For such a sequence
we shall suppose there exist numbers a« > 0, v = 0, and some non-
negative function of slow growth L(x), such that

i - a 1 1
(1.3) n;a”x (l—ac)VL(l——x>’ asx—1—0.

By an appeal to a Tauberian theorem due to Karamata (Hardy, 1949,
p. 166) it is possible to deduce from (1.3) that
el aN?L(N)

1.4) a, ~

—_—, aSN—"C’O,
n=1 F(l—l—’)’)

although we shall omit details of this deduction. Conversely, if one
starts from (1.4) then an appropriate Abelian theorem will show that
(1.3) follows. Thus (1.3) and (1.4) are equivalent assumptions on the
nonnegative {a,}. We also note, as an easy deduction from (1.4), that

(1.5) a, = o(n'L(n)) , as m— o .,

In connection with these sequences {a,} we need to define an
index:
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DEFINITION. An index k of the sequence {a,} is any number k
such that a, = O(n*).

If we write k* for the greatest lower bound of the indexes of
the sequence {a,} then k* may or may not be an index itself. From
(1.5) it is clear that k* <. On the other hand, we can infer from
(1.4) that k* =~ — 1 and that v — 1 can only be an index if L(n) is
a bounded function. We have, therefore,

LemMMmA 1. If k* is the greatest lower bound of the indexes of
{a,} then v — 1 < k* <v; the number v —1 cannot be an index
unless L(n) 1s a bounded function.

The main result of this paper can now be stated.

THEOREM 1. Suppose the following conditions hold.

(T1) {X,} is a sequence of independent random variables with
distribution functions {F.(x)} and finite expectations p, = EX,,
such that

(1.6) ﬂ1+ﬂ2;“'+ﬂn—»p, as n— oo

where [t finite and strictly positive.
(T2) For every ¢ > 0

(L.7) Ss%i{l—ﬂ(x)}dx—»O, as n— oo .
(T3) For some a >0, Y= 0, and some monnegative function
of slow growth L(x), the sequence of mnownnegative constants {a,}
satisfies either of the equivalent asymptotic relations (1.3) or (1.4).
(T4) >7ia, diverges.
Then, if we write G,(x) = P{ X, + X, + +-- + X, < x}, in order
that

(1.8) ganGn(x) ~ ??TL% (%)7, as & — oo,

1t 18 sufficient that one of the following two sets of conditions, (T5)
or (T6), hold.

(T5) The X, are nonnegative, in which case it will be proved
that there mecessarily exists some unbounded non-decreasing function
l(n) such that

(1.9) lim L 3 S"””{ 1— F, (a)de = 2.

n—oo W, r=1J0
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(T6) (a) If k is an index of {a,}, then there is a distribution
Sunction K(x) of a megative-valued random wvariable with a finite
moment of order (k + 2), such that K(x) = F,(x) for all n and all
a; (b) If —k is the first moment of K(x), then for some v > k and
every € > 0,

(1.10)  lim infge”“"”_:;_ S U@ — F@)ds > 20/ + Doe.

In condition (T4) above we have required that >\7_, a, shall diverge;
it will be appreciated that this assumption is made only to avoid
triviality. A consequence of the divergence of >y, a, is that the
index k = — 1; therefore the distribution function K(x) which appears
in condition (T6)(a) will always have a finite mean; this justifies the
introduction of —k in condition (T6)(b).

The special case of Theorem 1 in which the {X,} are nonnegative
can be given the following form.

THEOREM 2. Suppose that (i) {X,} 4s a sequence of monnegative
random variables such that (T1) and (T2) of Theorem 1 hold; (ii)
A(n) is a mon-decreasing function of m for which constants a > 0,
v =0, and a nonnegative function of slow growth L(n), can be
Sfound such that

(1.11) A(n) ~ an'L(n) , as n— .,
Then it follows that

(1.12) EA(N,) ~ a(%)’L(x) . oo,

We note that by letting A(n) =7 in Theorem 2 we obtain a
version of the Elementary Renewal Theorem for independent, non-
identically distributed, nonnegative random variables. Alternatively,
by taking a,=1 for all » in Theorem 1, we obtain the following
version for the case when the random variables may assume negative
values.

THEOREM 3. If conditions (T1) and (T2) of Theorem 1 hold; and
if both parts of (T6) hold for k=0, then

(1.13) H®) |1 oo,
@ /«c

where H(x) = v, G,.(x) is the expected mnumber of partial sums
S, = .
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From (1.13) we can infer that, for any fixed h >

1 t+h h
(1.14) _S H@ds — ", ast— e
t Je yis

Therefore

1 S'{H(x +h) — Hede—,  ast—oo
t Jo yi/
or, in other words,

(1.15) lim L[ S Plo < 8. 5 0 + hide = % .
t—oo 0n=1

This last limit (1.15) is the form taken by Kawata’s result (1956);
we see that it is implied by the simpler statement (1.13). On the
other hand it is not difficult to deduce (1.13) from (1.15), so that
(1.15) seems an unduly complicated form for the result. For (1.15)
is equivalent to (1.14); and from (1.14) and the monotone character
of H(x) we can infer that lim sup H(@¢)/t < ¢ and lim inf
H(t + h)jt = .

We close this introduction with some remarks about the conditions
of Theorem 1. The easiest proofs of the Elementary Renewal Theorem
for the case of identically distributed random variables make use of
the weak law of large numbers to show that S,/n— ¢ in probability,
as n— . The present investigation will also depend on establishing
such weak convergence of S,/n, and conditions (T1) and (T2), aided
by (T6)(a) when the random variables can take negative values, are
concerned with this task.

To understand the raison d’étre of condition (T6)(b) it is neces-
sary to inquire a little into our mode of proof. We shall, as just
noted, begin by establishing that S,/n — f¢ in probability. If only
S, would not fluctuate too violently about its expected value n/t our
theorems would then be an easy consequence of this weak law of
large numbers. Unfortunately, considerable deviation of S, from nut
is possible; the main obstacle we have to overcome is presented by
sequences {S,} which tend to decrease steadily over long stretches of
n and then indulge in a rare, but very large, increase in value. This
kind of awkward behavior is exemplified by sequences {F,(x)} which
assign nearly all the probability to the negative values of 2 and
reserve only a very small probability for positive values of x, neces-
sarily located at very high positive values in order to make the ex-
pectations come right. Condition (T6)(b) is concerned with controlling
this kind of awkwardness.
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Condition (T6)(a), which is unnecessary when the random variables
are nonnegative, is introduced to ensure the finiteness of the quanti-
ties with which we deal; it will be understood better in relation to
the following theorem, which we shall use later in this paper but
prove elsewhere (Smith (1964)).

THEOREM A.* If {X,} is a sequence of independent and identi-
cally distributed random variables with 0 < EX, < o, and if k =1,
then a mecessary and suffictent condition for the convergence of the
series

(116) SwPX,+ X+ oo+ X, S0}, — 0 <2< + oo,

18 that E{|min (0, X,) """} < . Furthermore, when this condition
18 met, if X, is any other random variable, independent of the {X,},
such that E{ min(0, X,)|*"} < o, then

117 SwPX, + X+ -+ X, =2}, — 0 <z < + oo,
n=1
1s also convergent.

Thus we see that (T6)(a) must be satisfied when the {X,} are
identically distributed, and it therefore seems reasonable to require
the satisfaction of some condition like (T6)(a) even in the general
case, if we are to ensure the finiteness of the left-hand side of (1.8).

2. Some preliminary lemmas. We begin by showing that the
conditions of Theorem 1 are sufficient to ensure that S,/n— £ in
probability as n— o. This could be done by appeal to classical
results; however, it is not difficult to proceed from first principles,
and our proof conveniently introduces an argument of a sort which
we shall use several times in the course of this paper.

LEMMA 2. If conditions (T1) and (T2) hold, then a sufficient
condition for ensuring that S,/n-— ft in probability as n— co 1is
either: (a) the random wvariables {X,} are monnegative; or (b) condi-
tion (T6)(a) holds with k = — 1.

Proof. Consider first the case of a sequence of independent, non-
negative, random variables {X,} whose distribution functions satisfy (T2)
and whose mean values satisfy the condition that g, + tf+ -« - - + £, =O0(n),
a condition less restrictive than (1.6). Write m,=n""(t4+ ttat+ - - +1£,)

* Footnote: This theorem is also a fairly easy deduction from the recently publi-
shed results of M. L. Katz (1963).
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and let 7 be a small strictly positive number. Then, in virtue of a
familiar inequality, for every fixed ¢t = 0 we have

P(S, = nlm, — 7)} < e Ble~) |
Furthermore, if we make use of the Laplace-Stieltjes transforms
0,t) = | e dF @),
0—
we may rewrite this last inequality thus:
P(S, = n(m, — 1)} < "¢ ] Ot) .
i=1
But, as may easily be verified,
D,(t) < %7 ;
and so we have that
(201) P{Sn § n(mn - 77)} é eWn(t) ’
where, after some integrations by parts, we see that
(2.2) W.(t) = n(m, — 1)t — ¢ 3 S“e—w{l — Fya)dz .
7=1Jo

Choose a small ¢ > 0 and set

00 = | L 31 - i@z ;

ne %‘ J=1
by (T2), 6,(6) — 0 as n— . From (2.2) we then deduce that
2.3) W.(t) = n(m, — n)t — nte[0,(0) — 5,(¢)] .

If we observe that 9,(0) = m, and put t = (nV/¢)~* in (2.3), we find
that

1 m,—7 _ exp(—1'¢) _
@1 W)= L CL) fm, —s.0)

= —— (m.[1 — exp(— V)] + exp (= 12,6 — 7}

Recall that m, is positive and bounded; thus m,[1 — exp(— 1/ ¢ )] can
be made arbitrarily small for all », by choosing ¢ sufficiently small.
Hence the expression in braces in the last inequality can be made
< — /2, for all sufficiently large =, by choice of e, Therefore,
from (2.1), we see that
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for all sufficiently large m. Since ¢ can be chosen arbitrarily small
we are led to the conclusion that

(2.5) P{S, < n(m, —)}—0 as n— o

for every 7 > 0.
Let o > 0 be arbitrarily small. Since ES, = nm, we have that

nm, = n(m, + p)P{S, = n(m, + o)}
+ n(m, — N)P{n(m, — 1) < S, < n(m, + P)},
and from this inequality it follows that
(2.6) (0 + DP{S, = nim, + P)} <7 + m,P{S, < n(m, — )} .

If we choose % arbitrarily small, and observe once again that m, is
bounded, we can infer from (2.5) and (2.6) that

2.7 P{S,zn(m, + p)} —0 as n— oo

for every 0 > 0. The coupling of (2.5) and (2.7) produce the desired
conclusion that for every » > 0

(2.8) P{‘S;:—mn 27]}—»0 as n— o ,

We remark that (2.8) proves the lemma for the case when the
{X,} are nonnegative (see the Corollary 2 quoted on page 141 of
Gnedenko and Kolmogorov (1954)). We turn now to the general case,
and begin by defining

Xr=X,, if X,=20,
=0, otherwise ,

and X, = X, — X,. Thus both X, and X, are nonnegative random
variables and we shall write g = EX}, ¢, = EX,, m,; =n"(¢4 +
p e ), my =T (et + -+ - +£27), and, of course, m, =
N+ o+ ).

Since (T6)(a) holds for k = — 1, the mean of K(x) is finite; if
we call this mean —£ then it also follows from (T6)(a) that #, =&
for all », and hence m, =< k. Moreover, the fact that K(x) = F,.(x),
for all n and all «, ensures that (1.7) will hold when the {F,(x)} in
that condition are replaced by the corresponding distribution functions
of the variables {X,}. We can now infer from the result established
for nonnegative random variables at the start of this proof that, if
we write S, = X7 + Xy + -« + X,
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’

2.9) P{ ' _%_- —m

gp}~»0 as n — oo

for every 7 > 0.

Let us turn now to a consideration of S, = X;* + X, + -+« + X/ .
We note first that, since g — ¢, = ££,, we have m; = m; + m,.
But we have just shown that m, is bounded by k; and we may now
suppose m, — [t as n— o, by (1.6). Thus m; is a bounded function

of the integer ®m, and we can appeal to our preliminary result to
deduce that

(2.10) P{‘ﬁ"i —m:

n

for every 7 > 0. The lemma follows from (2.9) and (2.10).

LemMA 3. Under the conditions of Lemma 2,

@.11) S“’{l — Gma)dr—0  as @— oo .

Proof. It is easy to verify that
m, = | U@ - G.(nada,
:r{l — G.(no))de +§“{1 — G.(nw))de
13 0

— SO_ G.(nx)dr — S:K G.(nx)dx ,
(2.12) = An + Bn - Cn - Dn ’ say .

By Lemma 2, G,(nx) — 0 as n— o, for all < ¢, Thus B, — ¢
and C,—0 as n— o, by bounded convergence. But m,— p, by
(1.6). Thus we can see from (2.12) that in order to establish the
required result, 4, — 0, we need only prove that D,— 0. In the
case when the {X,} are nonnegative there is, of course, no need for
further argument.

Write K,(x) for the familiar n-fold Stieltjes convolution of K(x)
with itself. Then plainly, since K(x) = F,(x) for all n and all =z,
K,(x) = G,(x) for all = and all x. Thus it will be enough if we can
prove that

(2.13) S: K, (na)de—0  as n— oo .

However,
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So K, (nx)dx = & , for all n,
so that (2.13) would follow if we proved that
(2.14) S‘) Kna)ds — & as 1 — oo .
To prove (2.14) we need only remark that, by the weak law of large
numbers for identically distributed random wvariables, K,(nx) —1 as
n— o for all x> — k; thus (2.14) follows from the theorem on

bounded convergence. This proves the lemma.

LEMMA 4. If the nonnegative constants {a,} satisfy (1.3) then,
as s— 0+,

S~ 2o L(>).

Proof. Plainly, e**—1 — 0 as s — 0 4. Therefore, as s— 0 +,

So ~ Ty Ui=ew)

QA — ey 1 — e+
o 1
sy L<1 - e"“> )

But, as we have remarked in our introduction, L(rx)/L(x)— 1 as
& — oo uniformly for  in any interval not containing 0. Thus it

transpires that
Ly=)~ 1(3)

as s— 0 +, since 1 — e** ~ ps for small s. Thus the lemma is proved.

LEMMA 5. Under the same conditions as Lemma 4, as s— 0 +,

S —wen X 1
n;,nane t e L( S ) .

Proof. Choose 7,0 <7 <1, Then
gHsnn . g—psn

neF"*
# @ —s

Thus

i i a,e e — f], a,e "
#. na e—p.ns < n=1 n=1
2" L —ns
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and so
/’8871‘*'1 i nane_.,,,m < s - {i @, e rm — i ane—p.sn} .
L<——- n=1 _ L n=1 n=1
L) a - L)
It follows therefore, from Lemma 4, that
} v+l |
(2.15) lim sup (s 2 na,e Tt < — {77 } .
s—0+ L<.1—> n=1 ‘Lc‘/ 1 _— v
s

If we let »—>1 — 0 in (2.15) we obtain

1 oo
(2.16) lim sup psv Zna e < ar

) o

Similarly, by taking 7 > 1 and using the fact that
gTHsT __ g—Hsny

ne rne
Mne > 7= 1

we can show

ay

(2.17) lim inf 4= psr 5’; na,e~*" = W

50+ L<—1—> %

The lemma follows from (2.16) and (2.17).

3. Proof of Theorem 1. We shall write B for an upper bound
to the numbers {a,/n*}, where k is the index of the nonnegative
coefficient sequence {a,}; we shall also write 7 > 0 for an arbitrary
small number; it is supposed that 7 < p.

Consider, to begin with,

G.1) K, = S"“e-w G.(@)de |
nn
- ng“e—ma,,(m)dx .
n
Evidently,

0=K,= ne"”””SMGn(nw)dw .
n

But G,(nx) -0 as n— oo, for all x < ¢t, by Lemma 2. Hence we
can appeal to bounded convergence and write
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(3.2) K, = ne—"g,

where 0, — 0 as % — oo, uniformly in s = 0.
Next consider

(3.3) L, = S” {1 — G.(@))de
- nre—"”{l — G (na)dz .

In view of Lemma 3 and the assumption that 7 < ¢ we may thus
conclude that
(3.4) L, = ne~""0, ,
where 0, — 0 as n — oo, uniformly in s = 0.
Thus, if we write 4, = 0, — 4.,
(3.5) S ay L, — K,) = S na,d,e .
n=1 n=1

Given an arbitrary € > 0, we can find n¢) such that |0,| <e
for all n >n,. Moreover we can assume that s7L(s™) — « as s—0 +,
since we suppose >a, to be divergent. Thus

(3.6) i‘, N0, 0,6~ """
n=1

no oo
< Sina,|d, | e + e > na,e ",
m=1 n=1

Therefore, by Lemma 5,

3.7 lim sup sy i na,0,e”" | < eva .
8—0+ L l n=1
s

But ¢ is arbitrary, and we can therefore deduce from (3.7) and
(3.5) that, as s— 0 +,

(3.8) % 2 an(L, — K,)—0.

S

Now consider the function
(3.9) H@) = 3 0,G.@) U — n) .

Evidently H,(x) is non-decreasing, since each term in the summa-
tion is non-decreasing. We also note that

(3.10)  Hya) = i a, U@ — np)

- 3 a{U@ — ng) — G,@) U — 1) .
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Let us denote the Laplace transform of a function A(x), say,
thus:-

A%s) = S”e—wA(x)dx :
0
Then, from (3.10), we have

(3.11) e =L Saem + Sal, - K);

the term-by-term integration being justified by monotone convergence.
From (3.11), (3.8), and Lemma 4, it now appears that

(3.12) (/’L)l’“ﬂ,y(s)—»ay, as s— 0+ .
()
An appeal to Doetsch (1950, p. 511) then allows the inference

(3.13) W—%(j—)ﬁﬂn(t)—»a as t— o ,

But, by (3.9),

(3.14) 5 0,G.(@) = @) + V(@) ,  say,
where
(3.15) v, (x) = “g 0.G.(@){1 — Ulx — n7)} .

If we were to prove that

. ,(2)

lim 1 ) g
(3.16) nlgl im sup L)
then the theorem would follow from (3.14) and (3.13). The proof of
(3.16) under fairly weak hypotheses is quite involved, however, and
we therefore present it in the following two separate sections.

4. Completion of proof under (T6). If{X,}is the renewal sequence
under study let us write X, = — X, when X, <0, X, =0 when
X, = 0. When (T6) holds we can introduce the distribution funection
K(x) which, as has already been explained in §1, may be assumed
to have a finite first moment —k. Therefore, if we write v, = EX,,
we have 0 < v, < k£ for all n.

Let us also write X, =X, + X,,S; =X+ X;"+ -+ + X,
and S, =X+ X;7+ --- + X5
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LEMMA 6. When (T6) holds we can find 7 > 0, 6 > 0, such that
1
@D PSTS vk v ek =0,
where Ik is the index of the coefficient sequence {a,}.
Proof. Let us write ¥, = n~(v, + v, + +++ +v,). Then, for any
t=0, 7 >0, it is plain that
P{S; < n(@, + 7))} < e+t Plg—ts )
(4.2) = et T 05(t)
i=1
where
05(t) = Fy0 +) + | e aF (@)
0+

If we now use the familiar inequality already employed in §2
we can deduce from (4.2) that

(4.3) P{S,; = n(v, + N} = ",

where, after some integrations by parts, we now have

(4.9) W) = nn + 50t — ¢ 33 [ o1 — Fw)da .
j=1Jo

In this section we are assuming (1.10) to hold, and so, given any
fixed ¢ > 0, we have for all sufficiently large » that

2’;; g: "(Uw) — Fy)de > 20V + Doe,

where v > £ is independent of e.
We can rewrite this last inequality as follows.

n en/logn
(4.5) $ S " (1 — Fy@)ds > n5, + 20V F Doe
=1 Jo
Thus, from (4.4), it is plain that
W.(t) < n(®) + V)t — nte~t=' s, + 21/ (& + 1)ve) .
If, in the latter inequality, we make the substitutions
N logn

t=t, = 208"
&n

v /T

and if we note incidentally that £ = v, for all #, and 1 —e™* <%
for all @ > 0, then we find that

W) M? PN p
(4.6) g <t —2e (k+1)]/?,
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By taking ¢ sufficiently small we can make e~ arbitrarily near
unity and thus make

(k+1)—2e‘*(k+1)1/%< — (k + 25 + 1)

for some small § > 0 (recall that v > k). Next choose 7 so small
that A» < ¢ and it follows from (4.6) that

4.7) W.it,) < —(k+0+1)logn.

Lemma 6 follows from (4.7) and (4.3).

In what follows we denote the familiar Stieltjes convolution of
two distribution functions, say A(x) and B(x), by A*B(x). We denote
AxA(x) by A**(x), and, generally, AxA**(x) by A*"+Y(x), for n =
1,238, .-,

LEMMA 7. When (T6) holds

o

S\ nEP{S,y > n(Y, + 0)}

n=1

18 convergent for every 6 > 0.

Proof. Define Z, = 6/2 + v, — X, and write L,(x) = P{Z, < «}.
If we recall that v, < £ for all », then we easily see that

U(e- %5 - fc) < L,@) = K().

This proves that Z, is a stochastically stable sequence as defined by
Smith (1962), whose Theorem 7 allows us to draw the following con-
clusion,

For every integer p there is a distribution function K,(x) such
that

(4.8) PlZ, + Zpss + ++ + Zpipy = v} < K ()

for all m and all x, where

0

(4.9) L=| K@i
18 finite for all p, and I,— 0 as p— co.

Thus we can find p,(3/2) such that I, < d/2. If Y is a random
variable with distribution function K,, then it follows from (4.9) that
EY > — /2. Moreover, it is clear that E{ min (0, Y)[***} < o,
since we can certainly suppose K,(x) < K*?(px).

Write M(x) for the supremum of P{Z, + Z, + -+ + Z, < pu} for
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r=1,2 +++,p9 — 1. Then if Y, is a random variable with distribu-
tion function M(x) it is also apparent that E{| min (0, Y;) |*+*} < oo.

Now choose and fix r =0, or 1, or 2, ---, or p, — 1. It follows
from what we have established so far that

npy+r
(4.10) P{ S Z = pax} = MxK ;M) .

j=1

Let Y, Y, --- be a sequence of independent random variables,
identically distributed, with distribution function K, (x); let Y, Y, -
be independent of Y,. Then E(Y;-+/2) >0, for 7=1,2,8, --- and
E{min(0, Y; + 1/20) |*"*} < © for §=0,1,2,--.. Thus it follows
from Theorem A, quoted in §1, that

S’;nkp{Yo + (Y, +8/2) = 0} <,
n=1 Jj=1
that is,

(4.11) 5 nkM*K;f;(— %m) <o

From (4.10) and (4.11) we conclude that

e 1 - _
Syt P{@py+ (15 +7000) = Siper — S0} < o0,

whence,
(4.12) S RPS G Z (D) + 16 + Tage)} < o -

The lemma follows from (4.12) by letting »r =0,1,2, «--, p, — 1
in turn.

LEMMA 8. When (T6) holds we can find 7 > 0 such that
S WG () < oo

Proof. We observe that

P{S, < np} = P{S;; = nn + S;}
S P{S;=ny+ Sy, S; < n(@d + v,)}
+ P{S; = n(0 + v,)}

for every ¢ > 0. Hence

P{S, = np} < P{S; = n(®m + 6 + U,)} + P{S; = n(0 + v.)} .
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The lemma now follows from Lemmas 6 and 7 if we make 7 + 6
sufficiently small.

The proof of (3.16) is now straightforward. We see from (8.15)
that

V@) = 3 a.G.()

for all x. Therefore, since k is the index of the {a,} sequence, it
follows from Lemma 8 that ¥,(x) is bounded above. Since x?L(x)— oo
as © — oo, the truth of (3.16) is established.

5. Completion of proof under (T5). We begin by showing that,
once we have proved (1.9), we can assume, with no loss of generali-
ty, certain convenient properties for the function I(n). All that
actually matters are the values taken by l(n) for integer values of
n; but we may clearly assume I(x) to be a continuous function defined
for all + = 1. More to the point, we observe that if (1.9) holds for
the function I(x) then it also holds for any function I(x) < I(x). In
this connection we prove the following;

LemmA 9. If, for x = 1, l(x) 1s an unbounded, continuous, and
non-decreasing function of x then we can find another such function
lL(x) = l(x), defined on the same domain, with the additional proper-
ty that l(x)/x is mon-increasing for all sufficiently large x, and
tends to zero as ¥ — oo,

Proof. For x = 1 define

(5.1) bx) = log @ + inf {i(y) — log ()} .

We shall show that [,(x) has all the requisite properties.

To begin with, since l(y) — log ¥ is a continuous function in [1,
2] it attains its lower bound; we shall write y(x) =<« for the largest
y-value at which this lower bound is attained. Then

(5.2) li(x) = log  + l(y(x)) — log y(x) .

Evidently y(x) is a non-decreasing function of x. If y(x) — o
as £ — oo then the fact that l(x) is unbounded shows, in (5.2), that
l,(x) is also unbounded; if y(x) tends to a finite limit as £ — o, then
the fact that logx is unbounded shows, also in (5.2), that l,(z) is
unbounded. Incidentally, it is an easy deduction from (5.1) that
L(z) = U(=).

Next choose an arbitrary value of z, x, say. Our argument will
be given in two cases.
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Case y(x;) < x;,. The continuity of I(y) — logy ensures the ex-
istence of some open interval G, containing x,, within which y(x) =
Y(x)). Hence, in G,

lLi(x) = logx — log o, + I(x) ;
from this equation it is clear that [,(x) is increasing in G and, by
simple differentiation, I,(x)/x is decreasing in G.
Case y(x,) = «,. In this case, for any & > 0, y(x, + h) = «,; thus
I(y(®, + h)) = Uz,) = l,(x,). Hence, by (5.2),
(5-3) ll(xl +h) = log (xl + h/) + ll(xl) — IOg (y(x1 + h)) .

Since @, + h = y(x;, + k), it follows from (5.3) that l(x, + k) = l,(z),
i.e. l(x) is increasing at «,. But, from (5.1),

l(%, + h) — log (%, + h) = l,(x,) — log 2,
from which we can infer that

L(x, + h) . ly(x,) < _ hl(x,) h
x + h x xy(®, + h) xy(%, + h)

(5.4)

The right hand side of (5.4) is negative for all sufficiently large x,,
because l,(x) is unbounded and non-decreasing. Thus [l,(x)/x is non-
decreasing at «,.

Finally, we remark that

L(x) = loga + 1),

from which it is obvious that l(x)/x — 0 as x — .

Let us next establish that conditions (T1) and (T2) of Theorem
1 do indeed imply the existence of some unbounded increasing func-
tion I(n) for which (1.9) holds. We see that since (1.7) is true for
every € > 0, there must be an unbounded increasing function w(n),
say, such that

1 i r {1 — F(x)}de— 0 as n— o ,
N r=1Jn/w(n)

Therefore, because of (1.6), it follows that

1s §”'""”’{1 —F@)de— g  as n— oo .
n r=1Jo

Let I(n) be some other unbounded increasing function; we leave

this function somewhat arbitrary for the moment except for the

supposition that it increases very much more slowly than w(n). Let

t(n) be such that r/l(r) = n/w(n) for all » > t(n). Then we can infer
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that, for any positive ¢, and all sufficiently large =,

t(n) Sn/w(n)

(—e <L
n 0

r=1

t-Feye+= 3 (" - Foe

r=t(n)+1 J0
= Ty(n) + Ty(n),  say.
But

1 t(n) (n/win) 1

LS a-repr =@t m+ o+ ),

and so we could conclude from (1.6) that T)(n) — 0 as »— oo if only
we could be sure that t(n)/n—0. It would than follow that
Tym) > (2 — 2¢) for all large n; the desired conclusion (1.9) would
then be proved, in view of the arbitrariness of e.

For large m, since w(n) is increasing,

log w(n)
w(n) = w(n —W>

and so, if we put s(n) = n(log w(n))/w(n),

s(n) n
log w(s(n)) — w(n)

\Y

It is clear from Lemma 9 that we may assume n/w(n) to be increas-
ing for all large n; from this it is easily seen that n/(log w(n)) is
also increasing for all large n. Therefore, if we let I(n) = log w(n)
we have that 7/l(r) = n/w(n) for all » = s(n). Hence t(n) < s(n), and
it is plain that s(n)/n — 0 as m— o; thus we have a function I(n)
which exhibits the desired behavior, and (1.9) is proved.

We now turn to the proof of (3.16) under the condition (T5) that
the {X,} are nonnegative; for this proof we may, by the immediately
preceding discussion, assume that x/l(x) is unbounded and non-decreas-
ing. We can then define * = r*(x) as the greatest integer such that
r*[l(r*) < x. We also write s* = s*(x) = r*((1 + e)x); thus s*(x) is
the greatest positive integer such that s*/I(s*) =< (1 + e)x.

Choose a large positive C and consider the following three cases,
in all of which « is assumed to be large.

(i) ex =mn = r*(x). By considerations similar to those in the
proof of Lemma 2 we have

(5.5) G.(x) = €™,

where

(5.6) Wat) =t —t 3 S“ {1 — Fi(u)du .

j=1
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If we substitute ¢ = 1/(2x) and truncate the integrals at x in

(5.6) then we find

12

(6.7 W.(1/(2x)) =

S - .

1
2 2 =1

Since (T5) is assumed to hold we can, by (1.9), find ¢ > 0 such
that

n (g

(5.8) )y So {1 — Fyw)du > nd
for all sufficiently large n. But n < r* so that (since x/l(x) is non-
decreasing) j/l(j) <« for j=1,2, -+, n. (Actually we have only
shown that x/l(x) is non-decreasing for all sufficiently large x; but
this is adequate for our purpose if we note that x/l(x) — o as £ — o
and assume 7 large). Hence we can infer from (5.8) that

(5.9) ; S:{l — Fiu)du > né

and so, from (5.7), that

1 L ()
w.1/2x)) = = —
(1/(2x)) 5 Py

If we use this last inequality in (5.5) we deduce that

n < r*.

—1/2
(5.10) G (z) < exp {% -2 2;”5 } ,

(ii) 7r*(x) <m = s*(x). For this case we modify the kind of
inequality we have been using on G,(x). Plainly

P(S, < @} < P{X; < o for all j} = [[ Fi(x)

< exp{— J_anzl[l - Fj(x)]} .

By forming the geometric mean of this last inequality and (5.5)
we obtain a new inequality:

(5.11) G.(x) < ettt
where

1 1, & (" g
(5.12) Rf) = >t — 213 [[er 1 — Fiw)du

n

% {1 — Fya)} .

j=1
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If we truncate the integrals in (5.12) at « and substitute ¢t = 1/x
then we can infer

(5.13) R () =+ - 2 3 | - Fiw)du
2 22 i=1 Jo
-+ 3 - F@).

At this point it is convenient to write
31(3)
=~ Fawdu s
0
then (5.9) can be rewritten

(5.14) A+ N+ o +N,) >n0, n sufficiently large.

We shall also write
@) = | {1 - Fiw)du.
Therefore, for 5 > »* (and, consequently, j7/I(7) > x) we have
[0 = Py = - a) .
A consequence of the last equation is that
(5.15) (TZ—?—)— - 90)(1 — Fy()) = N — o) .

However, if j < s*(x), then j/I(j) < (1 + e)z, and from this ine-
quality it follows that

J )<
( 1) x) <ex.
Thus we have, from (5.15), that
1_Fj(x)g&f_—_“1(i),r*<jés*,
ex
Using the last inequality we can infer from (5.13) that

Ry <t - L s -1 3 o
2 2ex ‘1

2ex 11
1 n
- o ;1;1 (n; — aj(x)
1 1 G
2 2ex T
1 n
<= = — ’
2 2ex

by (5.8).
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Therefore, from (5.11), we discover that

(5.16) G.(x) < exp {L - —@6—} r*<mn = s*,
2 2ex

From (5.10) and (5.16) we can conclude that

(5.17) sz 0.G0) < ¢ 3, a, exp{ no }
2ex
We quote here a theorem which can be immediately deduced from
some results of Karamata (Hardy (1949), pp. 166-169, especially
Theorems 110, 111).

THEOREM B. Suppose that a(t) is a mon-decreasing function of
t and that I(y) = S e V'da(t) is convergent for y > 0, and that
0

(5.18) i)~ e yoq,
Y

where v = 0 and L(x) is a function of slow growth. Then, if g(x)
18 o continuous function of bounded wvariation in (0,1), as y— 0+
we have

(a) im case v > 0;

| erateridat) ~ — | e tglenat

L(y'l) ()

(b) tn case v = 0:

1 —yt —yt ~
T ), ¢ 0 ~ o)

Let us put, in this theorem,

al) =X a, .

n=t

Then Lemma 4 shows that a relation like (5.18) holds.
Define

g@) =1, 0Zz=a,
=2-% g<z=2a
a
=0, 2e=2x=1,

Clearly this g(x) satisfies the conditions of Theorem B. Thus, when
¥ > 0 we can deduce that



ON THE ELEMENTARY RENEWAL THEOREM 695

lim sup e~

Yy
Y0+ L(y—l) n=(1/y)log(1/a)

é—“—r et |
W(y) Jogaia

In this last result, substitute y = 6/(2ex) and log (1/a) = Co/(2¢).
On being given any prescribed ¢ > 0 we can choose C sufficiently large
for us to deduce, via (5.16), that

. 1 s*(x)
(5.19) luiquup W ”_Zo,m a,G.(x) < €.

When v = 0 a similar result to (5.19) can also be proved by appeal
to Theorem B.

(iii) s*(x) < m. For this range of values for n we always have
n/l(n) > x. If we define R, and N, as for case (ii) then by arguments
similar to the ones employed in that case we find

1 1 & 1 &
R <———2N——2> &
@) < 2 26x ; 2ex 1 (@)
1 & (M —ai@)
2 s 11 j — .‘
1(J)

(5.20) <—3— — x) > ex

and deduce therefore that

1 1 & 1 & \;
5.2 n -1 _— Ny — — S S——
G2 RED <5 =g 3N 22{ i |

TN
Write
Tﬂ="{ 2 }
8%41 J _
I(7)

and

F= M T At e A
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Then
Tn — -An . - As*
o, s*+1 x
l(n) I(s* +1)
+ a1 1 :
st _;77_ — X _& —
i(39) Wj+1)

We may assume s* to be large, so that, by (5.14), 4; > j0 for
all 7 in the range of consideration. Thus

T > no S Ay
CE s+l
l(n) I(s* + 1)
n—1 . 1 1
+0 2,7 - - ;
i(J) g +1
__ (9s* — 4,) S 1
S*+1 _x—l— sgll{ J _x}.
I(s* + 1) e

If we use this last inequality in (5.21), and also make use of (5.20),
then we find

2R, (o) <1— 80 o (— 1
s*+1 . s J_ _
I(s* +1) (7
) & L)
1— 8 —o > A9
< s* +1 - s%l j
I(s* +1)
* n+1
1~ 5 — 8l(s* + 1)1 .
< s*+1 _ 6" + )Og<s*—l—1>
I(s* + 1)

We may therefore conclude, from (5.11), that

(5.22) G.(z) < < - -—||-— 11 )ulmmﬁﬂ)e‘““", n > s*,
n
where
1 )
x) = — —
() 5

* 1 *
2< s* + . x)
I(s*+1)
At this point in our argument we need information about the
order of magnitude of
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Qan

UN = o

’

=M

for o > v + 2. To this end, define «a(t) = 23,.,a,, as before. Then
there is some constant ¢ such that a(t) < c¢tL(t) for all large ¢, by (1.4).
Evidently

U, = &H et .

= [—ulTa(u)] + ‘OS ) g,

uPtt
< oo L0 gy,

uP—vH

if we ignore a negative form. Hence, by an obvious substitution in
the integral, we have

cPL(N) (~L(Nv) _dv
(5.23) Us <4235 S TN o

But, from (1.2),

L(Nv) _ a(Nv) | ¥ a(w)
LN)  a@) v P {SN Td“}’

where a(x)—1, as x— o. Therefore, given an arbitrarily small
€ > 0, we can choose N so large that for all v =1

L(Nv) _ (1 +5e) du
Ny o P {(1 + S)S 7}
=1+ ey .

Hence we can appeal to dominated convergence to infer that

S‘”L(Nv) dv __)g” dv
U L(N) vt e

as N— oo, It then transpires, from (5.23), that

(5.24) Uy = 0(%%’}) :

For all sufficiently large x we shall have (1/2)0l(s* + 1) > + 2,
and hence may infer from (5.22) and (5.24) that

S, 0,G.(@) = O((s* + 1)7L(s* + 1)e¥)
n=s¥+1

and hence that
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(5.25) ﬁ@ S a,6.@ = 0<< s* ; 1 >7L<s2(:) 1) ew@) _
Since
Z(Zi j_— i) - < S*sj : ><l(sl>fs.? 1))(1(8:*))

<S*+1>(1+e)x,

3*

IA

it is clear that for all large «
s*+1
ls* +1)

Therefore, from the definition of +(x) which follows (5.22) we infer
that

<A+ 2e)x.

1 )
5.26 x —_ —

In addition, we can deduce from (1.2) that

L(s* +1) _ a(s* +1) < @ )exp{ss*“&‘t‘_)du}

L(x) a(x) s* 4+ 1 .
and so,
L(s* +1) s* + 1Y
(.21 = o)

for any ¢ > 0.
If we combine (5.26) and (5.27) with (5.25) we discover that

528 —L % anGn(x)—;O((S—*;——l—)yHexp(— 8*d ))

2 L(x) nZs1 dex

But (s* + 1) > (1 +e)xl(s* + 1), so that (s* +1)/x — = as & — oo,
We can therefore deduce from (5.28) that
1 co
L@ nz%:,ﬂ a,G,(x) >0, as x— oo,
On combining this last result with (5.19) we find that given any
e > 0 we can choose a sufficiently large C > 0 so that

oo

. 1
hl’il_)iup m n;(m anGn(x) <e.

This result establishes (3.16) and completes our proof, since

T = 3 a,G. ).

n>(x/7n)
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