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1. Introduction* Let {cn}, for n = 0, ± 1 , ± 2 , , be a sequence

of real numbers satisfying c0 = 0, C-n =cn and 0 < ΣJC%

2 < co, and

let f(θ) ( ί 0) be the even function of class L\—π, π) defined by

(1) f(θ)~ Σ cne
ίnθ = 2Σ

n — — °o n—1

Define the Toeplitz matrix T and the Hankel matrices H and K by

( 2 ) Γ = ( c w ) , H = (c<+y_,) and iΓ = (c i + ί), where i, i = 1, 2, .

Then

( 3) T = F+K, where .F = [ f(θ)dE0(θ) ,
JO

and {Ĵ o(̂ )} is the resolution of the identity of the matrix belonging
to the quadratic form 2^nZ1xnxn+1. (See [12], p. 837.)

A self-adjoint operator A on a Hubert space, with the spectral

resolution A = VλdE(X), will be called absolutely continuous if || E(X)x ||2

is an absolutely continuous function of λ for every element x of the
Hubert space. If the function f(θ) of (1) is (essentially) bounded
then T must be bounded (Toeplitz). Since F must also be bounded,
so also are H and K. It was shown in [12], p. 840, using methods
involving commutators of operators, that if the function g(θ) defined
by

( 4 ) g(θ) ~ jticj"

is bounded (hence f{θ) is also bounded) then T must be absolutely
continuous if either

( 5 ) 0 is not in the point spectrum of H (that is, if"1 exists) ,

or

{ 6) F is absolutely continuous .

Rosenblum [17] has shown, using results of Aronszajn and Donoghue
[1], that in fact T is always (with no restrictions) absolutely continuous.
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In addition, it was shown in Putnam [12], using a theorem of Rosenblum
[16], and generalized by Rosenblum in [17] using results of Kato [7], that
if Σ » = i n I on+11 < co or, equivalents, if

( 7 ) Σ n \c J < oo ,

and if (6) holds, then T and F are unitarily equivalent, so that

(8) T = UFU* , U unitary .

The absolute continuity of F is equivalent to the requirement,
that

( 9 ) meas { θ : f(θ) eZ} = 0 whenever meas Z = 0 .

In the present paper a sufficient condition, involving the negation of
(5), for (6), that is, for the validity of (9), will be obtained.

Before stating the theorem it will be convenient to define the
operators Fk(k = 0,1, 2, •) by

(10) Fk = \ fk(θ)dE0(θ) , where fk(θ) ~ Σ W* cos nθ .
JO n = l

(In particular, Fo = F.)
There will be proved the following

THEOREM 1, Suppose that

(11) 0 is in the point spectrum of H.

Then,
(a) the point spectrum of F is empty, and
(b) each of the operators F2, F3, is absolutely continuous.
(c) If, in addition to (11), it is assumed that Σ™=ilc™l < °°r

then F1 is absolutely continuous.
(d) If, in addition to (11), relation (7) is assumed, then (6)

holds.
From part (d) of the theorem and the results mentioned earlier

there follows the

COROLLARY. Relations (7) and (11) imply (8).
It will remain undecided whether (11) alone, without the addi-

tional assumption (7), is sufficient to imply not only the assertion of
(a) but also (6). It is interesting to observe though that, if the im-
plication (11) —* (6) is valid, then either (5) or (6) must hold, and, at
least if g(θ) is bounded, the absolute continuity of T (cf. [17]) can
be deduced from the commutator methods of [12] (cf. also [11]) as.
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noted above.
It is to be noted that the function f(θ) determines explicitly the

operator F and its spectrum. On the other hand, the structure of
T as determined by f{θ) is not so clear. It is known however that
the spectrum of T, in case T is self-adjoint, is the interval [m, M],
where m and M denote the essential lower and upper bounds of f(θ)
(Hartman and Wintner [6], pp. 868, 878). Although necessary and
sufficient conditions involving /(#), or rather g(θ), for the boundedness
of H (Nehari [10]) and the complete continuity of H (Hartman [4])
are known, apparently no similar results are known relating the spect-
rum of H to the function f(θ). Concerning the spectrum of H in
certain specific cases, see, e.g., Hartman and Wintner [6], p. 366,
Magnus [8].

2 Proof of (a) of Theorem 1Φ Let {xn} and {dn}, for n = 1, 2, ,
be two sequences of complex numbers satisfying Σ~=i I χn I2 < °° and
ΣΓ=i I dn Γ < «, let x(θ) ~ ΣΓ=i χ

ne
inθ and h(θ) ~ Σ A dne

inB. Then it
is easily verified that

(12) (2ττ)-1Γ x(θ)(g*(θ) + h(θ))eίjθdθ = Σ,cn+jxn

J — π n — \

holds for j = 0, 1, 2, , where the asterisk denotes complex conjuga-
tion. If dn=cn then g*(θ) + h(θ) = f(θ) and so 0 is in the point
spectrum of H if and only if

(13) Γ x(θ)f(θ)eijθdθ = 0 , where j = 0, 1, 2, ,

holds for some x(θ) ΐ θ as defined above. Relation (13) implies that
the function x(θ)f(θ), of class L{—π, π), has a Fourier series of the
form

(14) x{θ)f(θ) ~ ±ane™ .

For a fixed constant p, 0 < p < co, consider the class Hp (after
Hardy; see, e.g., Zygmund [19], p. 158) of functions A(z) analytic in

S π

| A(reίθ) \pdθ remains bounded for
0 ^ r < 1. If p ^ 1, the class Lp+ of functions B(θ)εLp(-π, π) with
Fourier series of the form

(15) B(θ) ~ Σ Keinθ (K = (27Γ)"1 \* B(θ)e-ίnθdθ) ,
n—0 J —it

coincides with the class of boundary functions B{θ) = A(eiθ); see
Rogosinski and Shapiro [15], p. 293. Furthermore, it is known that
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if p > 0 and if A(z) is of class Hp and if A{z) & const., then A(eiθ) =
α, for an arbitrary constant α, can hold at most on a set of measure
zero. For p = 2, this result is due to F. and M. Riesz ([14]); for
p Φ 2, see F. Riesz [13].

Returning to (14), since x(θ)f(θ)εL1+, it follows that f(θ) Φ 0
almost everywhere. A similar argument with x{θ)f(θ) replaced by
χ(θ) (f(θ) — a)y for any constant a, shows that f{θ) Φ a almost every-
where, that is,

(16) meas {θ:f(θ) = α} = 0 .

But (16) holds if and only if the operator F has no point spectrum
and the proof (a) is complete.

3 Proof of (b) of Theorem 1. In order to show that F2 is
absolutely continuous, it must be shown that the set S2 = {θ : f2(θ) e Z}
is a zero set whenever Z is a zero set. Since Σ~=i i onn"1 I < ^y
f2{θ) is continuous and the set {θ :f2(θ) Φ 0} is open. If its canonical
decomposition is the finite or infinite union of open intervals In (n =
1,2, •••), then f2(θ) is strictly monotone on each In. Also, on In,
both / 2 and its inverse gn are absolutely continuous. Since In Π S2 is
the image under gn of a subset of Z, it follows (cf., e.g., Natanson
[9], p. 249) that

(17) In Π S2 has measure 0 .

If it is shown that fj(θ) φ 0 almost everywhere, it will follow from
(17) that meas S2 = 0, as was to be proved.

In order to prove that f2'(θ) φ 0 almost everywhere, note that
//(#) is absolutely continuous and that f2"(θ) = ( — l/2)/(0) almost
everywhere. Hence, if /2'(0) = 0 on a set of positive measure, then
also f{θ) — 0 on a set of positive measure, a contradiction. Hence
JP2 is absolutely continuous.

Next, it will be shown that FΆ is absolutely continuous. In the
definition of h(θ), choose dn = - cn, so that in (12), k(θ) = g*(θ) + h(θ) =
2>i Σn=i cn sin w^. The argument of § 2 shows that x(θ)k(θ) is of class
L1+ and hence k(θ) Φ 0 almost everywhere. Since fz'(θ) is continuous,
and since fz"{θ) = (l/2i)fc(β), an argument similar to that used above
shows that Fs is absolutely continuous.

In like manner, it follows that FA9 F5, are absolutely continu-
ous and the proof of (b) is complete.

4. Proof of (c) of Theorem 1. In order to prove the absolute
continuity of Fl9 it must be shown that the set Sx = {θ : fλ{θ) e Z} is
a zero set whenever Z is a zero set. The hypothesis of (c) implies
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that fί(θ) = (— l/2i)fc(0) is continuous. Since k(θ) Φ 0 almost every-
where, a relation similar to (17) implies that meas SΊ = 0, and the
proof of (c) is complete.

5. Proof of (d) of Theorem l Since (7) implies that f'(θ) is
continuous, then x\θ)fr(θ) is of class L{ — π, π). It will be shown
that x\θ)f'(θ) is also of class L1+, so that

(18) aW(*)~ ΣM'"',

and hence (cf. the above reference to [15]) the F. and M. Riesz theorem
can be applied to yield f'(θ) Φ 0 almost everywhere. Once this has
been shown, the absolute continuity of F follows by an argument
similar to that used above.

There remains then to prove (18). Since f(θ) is now bounded, it
follows from the definition of x(θ) and (14) that both x(θ) and x(θ)f(θ)
belong to L2+. Let u(z) and v{z) denote the functions analytic in
| z | < 1 and possessing the respective boundary functions x(θ) and
x{θ)f(θ). Let 17(0) - u(eiθ) and V(θ) = v(eiθ), so that x\θ)f\θ) =
U\θ){V{θ)jU{θ))r.

A heuristic argument leading to (18) is the following. Let U'
and V be defined by the formal trigonometrical series obtained by
term by term differentiation of the corresponding series for U and
V, and suppose that U\V\U)' = UV - U'V is meaningful. Since
the trigonometrical series for U, V, Ur and V are of the type
Σ ~ = o / ^ θ then so also are the products UV and U'V as well as
their difference.

A rigorous proof of (18) can be given as follows. Let the Fourier
series of U(θ) and V(θ) be given by

(19) U(θ) ~ £ ane™ , V(θ) ~ Σ bne
inϋ .

Since V(θ) = U(θ)f(θ), where U(θ) and f(θ) each belongs to class
L\~π, π), then Σ"=o a>ιfi«-k = K for n = 0,1, 2, , and

(20) Σ ahcn-.h = 0 for n = - 1 , - 2 , -

cf. Zygmund [19], p. 90. Note that the convergence of the series
defining the bn is assured by the Schwarz inequality. Similarly, the
Fourier series of U\θ) is given by

(21) U\θ) ~ Σ Ane™ , An = Σ an-kak .

Since, by (7),
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(22) f'{θ) ~ Σ incne
inβ ,

n ——oo

and, since x\θ) = U\θ) is of class L(—π, π) and f'(θ) is bounded, the
Fourier series of x\θ)fr(θ) is given by

cf. Zygmund [19], p. 90.
Since U\θ)εL{-~π, π) then, by the Riemann-Lebesgue lemma,

Aw —> 0 as w —* oo 9 and the absolute convergence of each of the series
defining the Bn is assured by (7). Also the same assertion holds for
the series corresponding to the above Bn but where U(θ) is replaced
by the function with the Fourier series Σ~=o I CLn I e

ίnθ Since Bn =
iΣm=o Am(n — m)cn-m, this implies that each of the iterated series

oo oo

m=0 k=0

is absolutely convergent. Consequently, an interchange of the order
of summation leads to

Γ oo η

\CiO) ±Jn — 0 J_ι LVk\ \fV t\j) ^U LLpiyn—jc—p 2-X P^p^n—k—p I
fc=0 L P=0 P=0 J

On reversing the order of summation in the second iterated sum,
it follows from (20) that Bn = 0 for n = 0, - 1 , - 2 , , so that (18)
follows from (23). This completes the proof of Theorem 1.

6. Some dual results* A theorem similar to Theorem 1 but with
the cosines replaced by sines is valid. In particular, whereas (a) of
Theorem 1 states that (11) implies (16) while (d) states that (11) and
(7) imply (9), the duals of these assertions become the following

THEOREM 2. Let j(θ) be defined by

(26) j(θ) - 2 Σ cn sin nθ ,
71 = 1

and suppose that (11) holds. Then, for every constant a,

(27) meas {θ : j(θ) = α} = 0 .

If, in addition to (11), relation (7) is assumed, then

(28) meas {θ : i{θ)εZ] = 0 whenever meas Z = 0 .

The proof follows from the observation that the function k(θ) =
ij(θ) considered in the beginning of § 3 plays a role similar to that
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Of f(θ).

7. Remarks. If A(z)εHp, then B(θ) = A(eίθ) satisfies, for every
constant oc, not only

(29) meas {θ : B{θ) = a} = 0, unless B{θ) = a ,

but even

(30) [ \log\B(θ) -a\\dθ < « .
J — π

This result was proved by Szego [18] for p = 2. Its validity for
arbitrary p > 0 was pointed out by F. Riesz ([13], pp. 91-92) to be
a consequence of his factorization theorem for functions of class Hp.
Thus, for every constant a, relations (16) and (27), and even

(31) \π \\og\f(θ)-a\\dθ < «> and Γ [ log \j(θ) - a \\ dθ < co ,
J —x J—π

are seen to be necessary conditions in order that 0 be in the point
spectrum of H, or, what is the same thing, in order that the trans-
lated sequences (clf c2, •••), (ca, c3, •••), ••• fail to form a fundamental
set for the Hubert space I2 of vectors x = (xl9 x2j •) with Σn=i I χn I2 < °°.
(In connection with this latter form of (11), it is interesting to com-
pare the present situation relating to the completeness of shifted
sequences, with a similar, but different one considered in the papers of
Beurling [2] and Halmos [3].) That the condition (31) is not sufficient
for 0 to be in the point spectrum of H can be seen for the case cn =
1/n (n = 1, 2, •). Then f(θ) of (1) becomes - 2 log (2 | sin (0/2) | and
j(θ) of (26) becomes the odd function on (—π, π) defined on (0, π) by
j(θ) = π — θ, and so (31) holds for every constant a. However, 0 is
not in the point spectrum of H = ((ί + j — I)"1); in fact, the spectrum
of H is known to be purely continuous (Magnus [8]).

Since (7) holds if, say, /"(0) is continuous, it follows from the
Theorems 1 and 2 that for such functions /, in order that (11) hold,
not only (16) and (27), but even the more restrictive conditions (9)
and (28) must be satisfied. It is to be noted that even if, say, /"(0)
is continuous, (16) does not imply (9). In order to see this, let C
denote a closed, nowhere dense (Cantor) set of positive measure on
[0, TΓ], and define a function q(θ) so as to have a continuous deriva-
tive on [0, π] and satisfy q(θ) = 0 on C and q(θ) > 0 on [0, π] — C.

S Θ

q(u)du is a strictly increasing
function on [0, TΓ]; hence, if f(-θ) = / ( 0 ) for 0 ^θ ^ τr,/(0) is of
the form (1), has a continuous second derivative, and satisfies (16).
If T denotes the image under / of the set C, then T is measurable
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and meas T =[ \df\ = [ q(θ)dθ = 0, so that (9) fails to hold with
Jc Jc

T=Z.
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