ATOMIC ORTHOCOMPLEMENTED LATTICES

M. DoNALD MACLAREN

Introduction. The lattice of all closed subspaces of a separable
Hilbert space has the following properties. It is complete, atomic,
irreducible, semi-modular, and orthocomplemented. The primary
purpose of this paper is to investigate lattices with these properties.

If L is such a lattice, there is a representation theorem for L.
The elements in L of finite dimension or finite deficiency form an
orthocomplemented modular lattice. It follows that if the dimension
of L is high enough, then there is a dual pair of vector spaces U and
W such that L is isomorphic to the lattice of W closed subspaces of
U. Because L is orthocomplemented the spaces U and W are iso-
morphic. This isomorphism establishes a “semi-inner product” on U,
and L may be described as being the lattice of closed subspaces of a
semi-inner product space.

The contents of the paper are as follows. Section 1 contains some
definitions and establishes notation. Section 2 is concerned with the
completion of an orthocomplemented lattice and § 3 with the center of
such a lattice. With the exception of Theorem 3.2 the techniques
used in 8§82 and 3 are standard, and many of the results are widely
known. To the best of the author’s knowledge, however, the theorems
have not previously appeared in print. Therefore we state and prove
them in some detail. The representation theorem and other results
centering about the semi-modularity condition are proved in §4. With
the other conditions holding for L, semi-modularity is equivalent to
certain covering conditions. Because this is not true for arbitrary
complete atomic lattices, the results seem to be of some interest.
Finally, in §5, semi-inner product spaces are discussed. A theorem
is given relating the existence of a semi-inner product on U to the
existence of an orthocomplemented lattice of subspaces of U. This is
an easy generalization of a theorem of Birkhoff and von Neumann [4]
(Appendix). In two other theorems we investigate the exact relation
between the semi-inner product on U and the orthocomplemented
lattice L.

1. Definitions and some elementary lemmas. Let S be a partially-
ordered set. If a and b are elements of S, we denote the least upper
bound or join of @ and b by @ \ b, provided that the join exists. We
denote the greatest lower bound or meet of @ and b by ab, provided
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that the meet exists. If A is a subset of S which has a least upper
bound, we denote the least upper bound by V A. If the elements of
A are indexed by a set J, we may also write A = V;a;. If A has
a greatest lower bound, it is denoted by A 4 or Aja;.

The symbols U and M) will be used to denote set union and set
intersection respectively.

If @ and b are elements of a partially ordered set S with a < b,
we will denote the set of all xe€ S such that ¢ < x < b by [a, b].

A partially-ordered set S is said to be orthocomplemented if it
contains at least element 0 and a greatest element 1, 1 -+ 0, and if
there exists a map a — a’ of S onto itself which satisfies

(1.1) a =< b implies o’ = ¥/,

1.2) a" =a,

(1.3) o' is a complement of a, i.e., aa’ =0 and a V o’ = 1.

The mapping a — a’ is called an orthocomplementation, and a’ is called
the orthocomplement of a.

Two elements a and b of S are said to be orthogonal if a < ¥
In this case we write @ | b. The relation of being orthogonal is
obviously symmetric.

We will use the following simple lemmas throughout this paper.

LeEMMA 1.1. Let S be an orthocomplemented partially-ordered set,
and let {a;} be a subset of S such that V ;a; exists. Then A;a; exists,

and (V;a)' = A;a;.

LemMmA 1.2. Let A be a subset of an orthocomplemented partially-
ordered set S, and suppose that \ A exists. Then if b 1 a for all
acA,b | VA

An tsomorphism of a partially-ordered set S onto a partially-
ordered set R is a one-to-one mapping 6 from S onto R, such that
O(x) = 6(y) if and only if x < y. An isomorphism preserves any meets
and joins which exist. When S and R are orthocomplemented we will
say an isomorphism 6 is an ortho-tsomorphism if 6(x’) = 6(x)’ for all
xin S.

LemMmA 1.3. Let S and R be orthocomplemented lattices, and let
0 be a one-to-one map of S onto R. Then 6 is an ortho-isomorphism
if and only if (1) 6(x') = 6(x)" for all x in S and (2) 6(xy) = 6(x)0(y)
Sfor all x and y in S or 0(x \ y) = 0(x) V 0(y) for all z and y in S.

Let a and b be elements in a partially-ordered set S. a is said
to cover b if @ > b, and there does not exist ¢ in S with a > ¢ > b.
If S has a least element 0, an atom is an element of S which covers
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0. A lattice S is atomic if every element of S is the join of some
set of atoms.

2. Completion of an orthocomplemented partially-ordered set. A
partially-ordered set S is said to be complete if A A and VY A exist
for all subsets A of S. If S has both a least element and a greatest
element, then VY A exists for all subsets A of S if and only if AA
exists for all subsets A of S. The standard method for embedding a
partially-ordered set S in a complete lattice is to use the completion
of S by cuts.® If S is orthocomplemented, the completion can be
constructed in another way by using the orthogonality relation. This
is just the construction used in the standard proof that the completion
of a Boolean algebra is a Boolean algebra.

In Theorems 2.1 and 2.2 we show that the partial ordering in an
orthocomplemented partially-ordered set can be found if one knows
only which elements are orthogonal. This fact suggests that we define
an abstract notion of an orthogonality relation.

Let S be any set. We will say that the binary relation | is an
orthogonality relation if it has the following properties.

(1) a 1 b implies b | a.

(2) a 1 a implies a | b for all b in S.

(3) (¢ L aif and only if ¢ 1 b) implies a = b.

THEOREM 2.1. If S is a set with an orthogonality relation (L),
then a partial ordering (<) may be defined on S: a < b if and only
of d 1 b tmplies d | a.

Proof. If a=<b and b=<a, then d | a if and only if d 1 b.
Therefore @ = b, by the definition of an orthogonality relation. If
a=<band b=c,a = c¢ by the definition of < in S.

THEOREM 2.2. If S is an orthocomplemented partially-ordered
set, then the relation 1, where a 1 b if and only if a <0V, is an
orthogonality relation. Further the partial ordering induced by this
orthogonality relation coincides with the original partial ordering.

Proof. The relation | is symmetric, because ¢ < b’ if and only
if b<a’. If a La,a=<a. Hence a <aa’=0, and 0 | « for all «
in S. Finally suppose that ¢ and b are elements of S such thatc¢ | a
implies¢ 1 b. Thena' | b, i.e., b < a. Thus the relation | induces
the original partial ordering in S. Further if @ and b are such that
d 1 o if and only if d | b, we have b <a and a b, i.e.,, a = b.

1 See Birkhoff [3], Ch. 4, sec. 7.
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We will now assume that S is a set with an orthogonality relation
(L), and that the partial ordering of Theorem 2.1 has been defined
on S. S may be an orthocomplemented partially-ordered set, but it
does not have to be. For any subset A of S let A+ be the set of all
2 in S such that « | a for all ¢ in A. Let A~ = A'L, and call a
subset closed if A= A-.

We will use the following simple lemma throughout this paper.
Its proof uses only familiar arguments.

LEMMA 2.1. Let S be a set with an orthogonality relation. Let
A and B be subsets of S. Then the following relations hold.

(1) If A B, B A*

(2) AL = AL

(3) A< A~

(4) A—=A"

(5) If ASB, A~ =B~

(6) (AUB)=A*NB*.

An orthogonality relation is just a special type of polarity as
defined by Birkhoff.? Thus in the following theorem the assertion that
the closed subsets of S form a complete orthocomplemented lattice
follows from Theorem 9 and Corollary Ch. 4, of [3]. Since the rest
of the proof is quite standard, we omit it.

THEOREM 2.3. Let S be a set with an orthogonality relation and
with the partial ordering induced by the orthogonality relation. Then
the closed subsets of S, partially ordered by inclusion, form a complete
lattice L(S). If {4;} is a family of closed subsets, A;A;, the meet
of the A; in L(S), is just (; A;. The mapping A — At is an ortho-
complementation in L(S). Further there exists a one-to-one mapping
of S into L(S) which preserves orthogonality, order, and all existing
meets in S. If S is orthocomplemented this map also preserves
orthocomplements and all joins existing in S.

From now on we will always use L(S) to denote the lattice of
closed subsets of S. The following theorem justifies our calling L(S)
the completion of S.

THEOREM 2.4. If S ts an orthocomplemented partially-ordered
set, L(S) is the completion of S by cuts.

Proof. If A is a subset of S, let A* ={xeS|zx=a for allain
A} and let A° ={xeS|2x < aforallain A}. The completion by cuts

2 [3], Ch. 4, sec. 5.
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of S is the lattice of all subsets A of S such that A*° = 4%, We need
only show that A++ = A*° for all subsets A of S. Let yc A*. Then
¥y =a for all @ in A, and hence ¥’ =< a’ for all ¢ in A. This means
y' is in At. Therefore if xe A*+, 2 | ¥/, ie., < y. Thus if xe AL,
x =<y all y in A% i.e., xe A*°, This proves that A++<S A*°. Now
if yeAt,y’ = a for all @ in A, ie. y €A*. Thus xze A*° implies
x =<9y all ye AL, i.e., xe A**. Therefore A*° S A+ A*° = ALY,

We will say that a subset I of a partially-ordered set S is join
dense if every element of S is the join, perhaps infinite, or elements
in I. The advantage of using the orthogonality relation to construct
the completion of S is that only a join-dense subset of S is actually
needed for the construction.

THEOREM 2.5. Let S be an orthocomplemented partially-ordered
set, and let I be a join-dense subset of S. Let | be the orthogonality
relation in S. Then restricted to I, 1 is an orthogonality relation.
Further the partial ordering induced in I by the orthogonality
relation | coincides with the partial ordering imherited from S.
Finally L(S) and L(I) are ortho-isomorphic.

Proof. (2.1) and (2.2) in the definition of an orthogonality re-
lation are obviously satisfied, because | is an orthogonality relation
in S. Let a and b be elements of I such that for ce I,¢ 1 a if and
only if ¢ | b. Let d be an element of S such that d | a. Since [
is join-dense in S, there exist ¢; in I such that d = V;¢;. For each
¢j,c; 1L a. Hence ¢; | b. Therefore in S d | b. Similarly d | b
implies d 1 a. Therefore @ = b. This proves that (2.3) is satisfied by
the relation restricted to I and thus proves that it is an orthogonality
relation on I. Now let =< be the partial ordering in S, and let < be
the partial ordering induced in I by the orthogonality relation. If
x,¥y,% are all in I with x <y and z 1 v, then 2z | 2. Thus if z and
y are in I with # < y we have x < y. Now suppose that < y. Since
I is join-dense y' = V;z; with z;e I. Clearly z; | y for each j, and
hence #z; 1 . Therefore « | V,2;, =¥, i.e. © < y. This proves that
the two partial orderings < and < are the same. To complete the
proof of the theorem we must prove that L(S) and L(I) are ortho-
isomorphic. We first show that if A is a closed subset of S, AN I is
closed in I. Note that if B is any set closed in S, and if « | y for
all ye BN I, then « | y for all ye B, because I is join dense. In
other words, if Be L(S), (BN I)* = B*+. Now the closure of AN I in
I'is (AnD*nDh*nlI If AeL(S), we have (AND*nDH*+nI=
A'nNnDhtnI=A*NI=AnI iee. ANIis closed in I. Now for

3 See [3], Ch. 4., Sec. 7.
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any subset B of S, let B~ denote the closure of B in S. We next
show that if B is closed in I, B~ N I= B. Suppose that xe B—N I,
Then « | y for all ye B, In particular « | ¥ for all ye BN I
Therefore x € B, because B is closed in I. Clearly B B~ N1, so we
have B= B~ N I. Now define a map 6 from L(S) to L(I) by 6(4) =
ANI We have shown above that if Ae L(S),ANTI is in L(I). If
BeL(I),0(B)=B NI=0B, so 0 isonto. If Ac L(S),(ANI)~ = A4,
because I is join dense in S. Therefore 6 is one-to-one. Clearly
07(B) = B~, and therefore 6(A) < #(B) if and only if A < B. Thus
0 is an isomorphism. Finally note that the orthocomplementation in
L) is A—-A*NI But 6(AY)=A*NI=ANIDH*NI Therefore
0(AY) = (0(A)* N 1. Thus 6 preserves orthocomplements.

3. Center of an orthocomplemented lattice. Let S;(j€J) be a
family of lattices. Let P be the Cartesian product of the S;, i.e., P
is the set of all functions f from J to |J,; S; such that f(j)€ S, for
all j in J. P has a natural partial ordering: f < g in P if and only
if f(J) =9(9) for all j in J. It is easy to verify that this ordering
makes P into a lattice. Meets and joins are: (f9)(J) = f(J)9(J) and
(fV ) =1 Vg(j). P is sometimes called the cardinal product
of the S;, but we will follow von Neumann and call P the direct sum
of the S;. We will write P= XY@ S;. We will denote the direct sum
of S, and S, by S, S,. S, P S, may be regarded as the set of all
ordered pairs (x,, «,) with x,€ S, and x,€ S,. The following Theorem
is obvious.

THEOREM 3.1. Let S; be a family of lattices. Then P=23 P S;
18 orthocomplemented if and only if each S; is orthocomplemented.
P is complete if and only if each S; is complete.

Now suppose that P is ortho-isomorphic to the direct sum of two
orthocomplemented lattices, P = S, S,. Let a¢ be the element of P
corresponding to (1, 0). Then a’ corresponds to (0, 1), S, is ortho-iso-
morphic to [0, ¢], and S, is ortho-isomorphic to [0, a’]. In this case
it will be convenient to write P = [0, a] @ [0, a']l. The center of Pis
the set of all elements a such that P = [0, a] @ [0, a’]. The elements
0 and 1 are always in the center. If the center of P contains only
0 and 1, will say that Pis irreductble. The next theorem is suggested
by a similar result of von Neumann on the center of a continuous
geometry.

THEOREM 3.2. Let P be an orthocomplemented lattice. Then for
an element a of P the following three conditions are equivalent.
(1) «=uxa\V 2a’ for all © in P,
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(2) (@Vay=uway\Vay for all x and y in P.
(3) a is in the center of P.

Proof. That (1) and (2) hold for central elements is well known.
Suppose that a has property (1). Letx <aandy < a’. Thenz = o’
and ¥ = a, so 2’y'a’ =y'a’ and *'y’'a = ¢’a. Thus 2y’ = 2'y'a V 2'y'a’ =
2’a VV y'a’. Taking orthocomplements, we get that for x < a and
y=<a,@xVy=(Va)yVa). Now define a map 6 from P to
[0,a] B0, a'] by 0(x) = (xa, xa’). If 6(x) = 6(y), xe = ya and xa’ =
ya'. Hence by (1) x = xa V xa’ = ya V ya’ = y. Thus 6 is one-to-one.
Let (x, y) be an element of [0,a] P [0,a’]. Then x=<a and y < a'.
?Va=2aVvaradVvae =aaVa. Taking orthocomplements, we get
ra = (x \V a')a. As was shown above, (x Vy) = (x V a/)(y V a). Thus
@V yae=(@Va)yVaa =@V a)==2xae Similarly (xV y) =y,
ie.,, 0V Yy = (x,y). It is now clear that 67'((x, %)) =« VV vy, and
that 6(x) < 6(y) if and only if x <y. Thus 6 is an isomorphism, and
obviously it is an ortho-isomorphism. P = [0,a] P[0, a’], i.e., a is in
the center. Now if a has property (2), (a V @')x = ax \V a’x for all
in P. Thus a has property (1); a is in the center.

THEOREM 3.3. If P is a complete, atomic orthocomplemented
lattice, the center of P is a complete, atomic Boolean algebra.

Proof. To prove that the center is a complete Boolean algebra,
we need only show that for any subset A of the center V A is in the
center. Let b =V A4, and let p be an atom such that pb = 0. Then
pa = 0 for all @ in A. Therefore p" = a for all a in A, because p =
pa \ pa’ for all @ in A. Thus ' = b, ie.,, p=b'. If pb+0,p <D,
because p is an atom. Thus for every atom p, p < b or p < V. Be-
cause Pis atomic this means x = xb VV «b’ for all x in P, i.e., b is in
the center. To show that the center is atomic, let » be any atom in
P, let A be the set of all central elements a such that p < a, and
let b = A A. Then b is in the center, and b = 0. Further b must be
an atom of the center, for if not there exists ¢ in the center such
that 0 < ¢ <b. Then p = pb = pbc \/ pbc’, so either p < c or p < ¢'b.
Thus either ce A or ¢’be A, so either b < c or b < ¢’b. This contradicts
the assumption that 0 < ¢ < b.

LEMMA. Let L be a complete orthocomplemented lattice, and let
a be in the center of L. Then for any family {x;} of elements in

L, a(V ;%) =V, (ax;).

Proof. a(V;z;) = a{V;(@a V x;0')) = a(V; (x;a) V V; (w;a")
= a(V; @) V a(VY; (@;a)) = V;@a).
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THEOREM 3.4. Let L be a complete, atomtic, orthocomplemented
lattice. T hen L is ortho-isomorphic to the direct sum of irreducible,
atomic, orthocomplemented lattices.

Proof. Let {a;} be the set of all atoms of the center. Let S; =
[0, @;]. Define a mapping 6 from L to X S, by 0(x)(j) = xa;. Let
Yy be in D S;, and let x = V,;y(5). Then O(=x)k) = (V;¥y(5))a, =
V., w(Ha,) = y(k). Thus 6(x) = y; 6 is onto. Let p be an atom, and
a; be an atom of the center. Then p = pa;, or p | a;. Since
Via;=1,p=V,;(pa;). Since L 1is atomic it follows that z =
V;(xa;) = V; 0(x)(5). Therefore 6 is one-to-one. Clearly 6(x) < 0(y)
if and only if # <y, so ¢ is an isomorphism. Further #(z)'(j) =
(xa;)a; = 2'a; = 0(x")(j). Thus 6(2') = 0(x). To complete the proof
we need only show that each S; is irreducible. Suppose that 0 =<
b < a;, and that b is in the center of S;. Then for 2 < a; =
xb \V xb'a;. Hence for all  in L,

x=2xab \V xa;b V xai = bV (@b V a)r = ab\/ xb .

Thus b is in the center of L. Since a; is an atom of the center, this:
means that b =0 or b = a,;. This proves that [0, a;] is irreducible.

4. Semi-modular, atomic, orthocomplemented lattices. Let S be
an atomic lattice. Let x, <z, < -+ < &, be a finite chain of elements.
in S. We will call the integer n the length of chain. The chain is.
a covering chain if x,,, covers z, for72 =0,1, ---. We define a function
d on the set of ordered pairs (x,y) of elements in S with x <y as
follows. If there exists a finite covering chain connecting « and ¥,
d(x, y¥) is the length of the shortest such covering chain. If no such
covering chain exists, d(x, y) = oo.

We will call an element x< S finite if « is the join of a finite
number of atoms. Clearly if d(0,z) is finite, then « is finite. We
will let F'(S) denote the set of e S such that « is finite or «’ is
finite.

THEOREM 4.1. Let S be an atomic lattice such that if a and b
are finite elements of S which both cover ab, then a \/ b covers a and
b. Then the set of all finite elements of S is an tdeal. For any
finite elements a < b, d(a, b) is finite, and all covering chains con-
necting o and b have the same length.

Proof. We first show that if p is an atom, d(0, @) is finite, and
pa = 0, then p V a covers a. We will prove this by induction on
d(0,a). If d(0,a) =1, a and p both cover ap = 0. Therefore a V p
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covers a and p. Suppose the statement is true for d(0,a) = n. Let
d0,a) =n + 1, and let p be an atom with pa = 0. We need only
prove that » VV @ covers a. Because d(0,a)=n + 1, there exists b
such that a covers b, and d(0,b) =n. Now »\V b covers b, and
(p V ba=>b. Therefore (p Vb) V a covers a, i.e., p\V a covers a.
Next we show that if a is finite d(0, @) is finite. For finite a let
N(a) be the smallest number N such that a is the join of N atoms.
We will prove this lemma by induction on N(a). Clearly if N(a) =1,
d(0,a) = 1. Suppose the statement is true for N(a) < n, and let a
be a finite element with N(a) = n + 1. There exists atoms py, +++, D11
such that a =9,V +++ V 0,4,. Let b=pV --- V p,. Then b <a,
and N(b) = n. Therefore d(0, b) is finite, and & = p,., V b covers b.
Therefore d(0, @) < d(0, ) + 1, i.e., d(0, @) is finite. Now it follows
from the above that d(a, b) is finite if ¢ and b are finite with a < b.
To complete the proof of the theorem we need only prove the state-
ment, “if d(a, b) = %, then all chains connecting @ to b have length at
most n.” That the finite elements form an ideal follows immediately
from this. We will prove the statement by induction on n. If
d(a, b) =1, b covers a and the statement is clearly true. Suppose the
statement is true for d(a,d) < n. Let d(a,d) =n 4+ 1. Then there
exists @ covering chain a <, < --+- <2, < b. Note that d(x,, b) = n.
Let a <y, < +++ <9, <b be any chain connecting a to b. We need
only prove that m < n. If y, does not cover a, there exists an atom
p such that pa = 0 and p < ¥,. Then p \V a covers a. Replacing ¥,
by » V a we get another chain of length m. Thus we may assume
that y, covers a. If y, = x,, we have d(y,, b) = d(x,, b) = n. There-
fore by the inductive hypothesis m < n. If v, # 2, ¥, and x, both
cover Y&, = a. Therefore ¥,V 2, covers %, and x. Now let
YV, <w < o <w, =0b be any chain joining ¥, V «; to b. Then
<YV, <w< o < w, joins x, tob. Sinced(x,d) =n,k+1=
n,ie., k =n — 1. It follows that d(y, VV @, b) < n — 1. Since ¥, \V ,
covers ¥, this means that d(y,, b) < n. But m < d(y,, b), so m < n.

LemMA 4.1. Let S be an atomic orthocomplemented lattice. T hen
the following covering conditions on S are equivalent.

(*) If @ and b are in F'(S), and both cover ab, then a \V b covers
both a and b.

(**) If @ and b are in F'(S), and a \V b covers both a and b, then
a and b both cover ab.

Proof. Suppose that (*) holds in S, that ¢ and b are in F'(S),
and that a \V b covers @ and b. Then &' and b are in F'(S), and both
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cover a'd’, Therefore by (*), a’ \V b’ covers o’ and b'. Hence a and b
cover ab, Thus (*) implies (**). A dual argument shows that (**)
implies (*).

LEMMA 4.2. Let S be an atomic orthocomplemented lattice in
which the covering condition (*) holds. Then the finite elements of
S form an atomic modular lattice.

Proof. This follows immediately from Theorem 4.1, Lemma 4.1,
and Theorem 3, Ch. 5 of Birkhoff [3].

Two elements (b, c) in a lattice are said to form a modular pair
if for all @ < ¢, (@ V b)c =a V be. A lattice S is semi-modular if the
relation of being a modular pair is symmetric in S. Two elements
(a, b) form a d-modular pair if for all ¢ = a,(a V b)c =a \VV bc. S is
dual semi-modular if the relation of being a d-modular pair is symmetric.

In general semi-modularity is stronger than the covering condition
(*). We want to show that with one additional condition (*) implies
semi-modularity. Our proof is suggested by the proofs of Theorems
IIT-1 and III-6 of Mackey [5]. We introduce the following notation.
If x is in the atomic orthocomplemented lattice S, .27 (x) is the set of
all atoms p such that p < x. ¥ (x) + 7 (y) is the set of all atoms
p such that for some ge &/ (x)and re 7 (y),p < qV r. If Xisa set
of atoms, X' is the set of all atoms p such that » | ¢ for all ¢ in X.
It is easy to verify the rules &7 (x') = &7 (x)", ¥ (2y) = ¥ () N & (¥),
(¥ (@) + ) = 7 (@) N ().

LEMMA 4.3. Let S be an atomic orthocomplemented lattice in
which the covering condition (*) holds. Assume further that if a
and b are atoms in S with a %= b,a’'(a V b) 0. Then if » is an
atom in S, 7 (pV x) = (&) + &7 (p) for all x in S.

Proof. We need only show that &7 (x V p) € .97 (2) + &~ (p). Let
» be an atom with px = 0. First note that if ¢ and r are atoms with
g+ 7, then p(qV )= 0. This is immediate if p<gqgVvr. If p £
gV r,lete=pVaqgVr. Lett =0®V4Q),andt,=9®Vr). Then
[0, ¢] is a modular lattice of length 3, d(0, ¢, \VV ¢,) = 2, and d(0, ¢ \V 7) =
2. Hence (t, V t,)(q V r) # 0, which means p'(q V 7) # 0. Now let s
be any atom, ¥ any element such that y > ys’, and » any atom in
7 (y) but not in % (ys). If ge & (y), and g = r, then x = s'(¢ \V 1)
is in &7 (ys’), and ¢ < r V 2. Thus &7 (y) = & (ys') + 7 (r). Apply-
ing this to 2’ and », we have ¥ (¢') = ¥ (¢'p’) + & (r) for some 7.
Now () = (@) = @) N ()= w((xVp)n )=
& ((xV p)r). But & (xVp)=((xV o)+ 7 ([®),s0o @V p=
() + 7 (p).
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THEOREM 4.2. Let S be an atomic orthocomplemented lattice
satisfying the covering condition (*). Assume further that, if a and
b are atoms in S, a # b, then a'(a \V b) = 0. Then if a s finite
(a, x) 18 a d-modular pair for all x im S.

Proof. We need only show that forc=a, (e V )¢ = a V xc. It
follows from Lemma 4.3 that &7 (x \V a) = 7 (z) + ¥ (a). Leta =Z ¢,
and let pe & ((@ VV x)c). Then pe ¥ ((a V x)), and hence p=qV r
where ge .97 (a) and re 7 (x). If p=qorp=r7r, pe ¥ (xc) + ¥ (a).
If p is different from ¢ and », then » < p V ¢ < ¢. Thus re % (xc),
which means pe . (a) + & (x¢). This proves that (a V x)c =< a V zc.

THEOREM 4.3. Let S satisfy the hypotheses of Theorem 4.2. Then
F(S) is an atomic, orthocomplemented, modular lattice.

Proof. We need only show that F'(S) is modular. Let a, b, ¢ be
in F(S) with a =<e¢. If a is finite, (¢ \V b)c = a \V be by the preceding
theorem. Otherwise a’ is finite, which means ¢’ is finite. Then we
have [(a@ V b)c] = (¢' V b)a’ =¢" Vv b'a’. Thus (a V b)c = a V be.

Let V be a left vector space over a division ring E. Let V* be
the space of all linear functions from V to R. If W is a total sub-
space of V*, ie., f(x)=0 for all fe W implies « = 0, then we say
that V, W is a dual pair. If X is a subspace of V, let X' = {fe W:
f(@) =0 for all xe X}. Similarly define Y’ for Y a subspace of W.
Then we say that a subspace X of V is W-closed if X = X",

McLaughlin [6] has given a representation theorem for the com-
pletion by cuts of a complemented modular point lattice. Since a
complete atomic orthocomplemented lattice S is the completion by cuts
of F'(S) we can apply the theorem to obtain:

THEOREM 4.4. Let S be a complete, trreducible, atomic, ortho-
complemented lattice in which the covering condition (*) holds. As-
sume further that the d(0,1) = 4, and that if p and q are atoms with
P#q, 0@V q #0. Then there exist a pair of dual vector spaces
U, W over a divistion ring D such that S 1s isomorphic to the lattice
of W-closed subspaces of U.

COROLLARY. Let S be a complete, irreducible, atomic, orthocom-
plemented lattice. Then the following three statements about S are
equivalent.

(1) S is semi-modular

(2) If pis an atom in S and pa = 0 then p \/ a covers a.

¢ Note that this condition holds if L is weakly modular, i.e., if (@, a’) is a d-modular
pair for all ¢ in L.
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(3) Covering condition (*) holds im S; and if p and g are atoms
with p # q, then p'(P V q) # 0.

Proof. 1t is well known that (1) implies (2) and (2) implies (*).
Suppose (2) holds and that p» and ¢ are atoms with » # ¢q. Then
PV p'q covers p'¢’. But ¢ < pV g, so p'¢ <¢q', which shows that 1
does not cover p’q’. Therefore, »p VV p'q¢’ # 1, i.e. p'(p VvV q) = 0. This
proves that (2) implies (3). Now suppose that (3) holds. If d(0, 1) is
finite, S is actually modular (Theorem 4.3). If d(0, 1) is infinite, we
can apply the theorem above. Mackey ([5], Theorem III-6) has shown
that in such a lattice of closed subspaces the relation of being a d-
modular pair is symmetric. Since S is orthocomplemented, this means
that the relation of being a modular pair is also symmetric.

THEOREM 4.5. The completion of a semi-modular atomic ortho-
complemented lattice 1s semi-modular.

Proof. If S is semi-modular the covering condition (*) holds in
F(S). Also if p is an atom and px =0, p \V « covers «. If » and ¢
are atoms, p # q,p covers p'q’. Hence pV p'q¢’ <1, which gives
PPV q) #0. Let L(S) = ¥ @ R, be the direct sum decomposition of
the completion L(S) into irreducible components. Since F'(L(S)) and
F'(S) are ortho-isomorphic, the covering condition (*) and the condition
P'(®V q) # 0 hold in each R;. If the dimension of R; is finite, E; is
actually modular. If the dimension of R; is infinite, R, satisfies the
hypotheses of Theorem 4.4, so R; is semi-modular. Thus L(S) is the
direct sum of semi-modular lattices; L(S) is semi-modular.

5. Semi-Inner Product Spaces. Let V be a left vector space over
a division ring R. A semi-bilinear functional B on V is a map
(x, y) — B(x,y) of V x V into R such that

(1) forall z, x, ¥, and ¥, in Vand a in R, Blax, + x,, ¥, + ¥,) =
aB(x,, y,) + aB(x, ¥,) + B, ¥,) + B(%,, ¥,), and

(2) There exists an anti-automorphism ¢ of R such that for all
® and ¥ in V and « in R, B(x, ay) = B(x, y)0(x). We will say that
a semi-bilinear functional B is a semi-inner product if it satisfies the
following conditions.

(1) The anti-automorphism 6 associated with B is involutory.

(2) B(x,y)=0(B(y, x)) for all x and y.

(3) B(x,x) =0 implies = = 0.

(4) For some z B(zx, x) = 1.
A left vector space together with a semi-inner product will be called
a semi-inner product space.

If V is a semi-inner product space, define an orthogonality relation
in Vby « | yif and only if B(x, y) = 0. If X is a subset of V define
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X"+ just as in §2. It is easy to verify that X*! is always a subspace.
The orthocomplemented lattice of all closed subspaces of V will be
denoted by L(V).

THEOREM 5.1. Let V be a left vector space over a division ring
R. Then V is a semi-inner product space if and only if there exists
a dual space W such that V, W is a dual paitr and the lattice, S, of
all W-closed subspaces of V ts orthocomplemented.

Proof. Suppose that W exists and that S is orthocomplemented.
Let R* be the ring which is identical with R as an additive group and
in which multiplication (o) is @of = Ba. Then W is a left vector
space over R*. If neR* fe W, (A f)x) =f(@)n. For xeV, let [x]
denote the one-dimensional subspace spanned by «. Let [x]* be the
one-dimensional subspace of W spanned by those linear functionals
whose nullspaces is [¢]*. In an obvious way one verifies that [«] — [x]*
is a one-to-one map of the one-dimensional subspaces of V onto those
of W which preserve linear dependence and independence. Hence there
exists a semi-linear transformation 7' from V onto W such that [z]* =
[T(x)]. Clearly [x] L [y] if and only if T'(y)(x) = 0. Thus if x, + 0,
T'(2o) () # 0.

Let ® be the isomorphism from R to R* associated with 7. Then
® may also be regarded as an anti-automorphism of R. Let 6 be the
inner automorphism of R: 8 — (T (x,)(@,)B(T (x,)(x,)) . Let B(x, y) =
(T W) (@) (T (x,)(x,))". It is a matter of routine to verify that B is a
semi-inner product with anti-automorphism ¢ = fop. If A is any
finite-dimensional subspace of V containing =z, B defines an ortho-
complementation in the lattice of all subspaces of A, and B(x,, x,) = 1.
Hence by proposition 1, page 110 of Baer [1], the anti-automorphism
o associated with B is involutory and o(B(z, ¥)) = B(y, x), for all x
and ¥ in A. Thus B is a semi-inner product. Now suppose that B
is a semi-inner product on V. For z in V let f, be the member of
V*: fo(y) = B(y, x). It is clear that the set W of all such f, is a total
subspace of V* and that L(V) is identical with the lattice of W-closed
subspaces of V.

Suppose B and B’ are two semi-inner products on V which de-
termine the same orthogonality relation. Then there exists @ in R
such that B(x, y) = B'(x, y)x for all x and y in V°, It is quite possible,
however, to have two semi-inner products on V, which are not equiva-
lent in this way, but whose associated lattices are ortho-isomorphic.
Our last two theorems explore this possibility.

THEOREM 5.2. Let V, be a semi-inner product space over a division

5 Baer [4], page 105, Proposition 3.
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ring R. Let B, be the semi-inner product in V., let 6 be the anti-
automorphism associated with B, let o be an automorphism of R,
and let T be an inmer automorphism of R. Then there exists a
semi-inmer product space V, over R whose semi-inner product B, has
anti-automorphism @ = tocgofloo™ such that L(V,) and L(V,) are
orthoisomorphic.

Proof. Let x; (jeJ, where J is some indexing set) be a maximal
set of nonzero mutually orthogonal vectorsin V,. Forye V, let T'(y)
be the function from J to R such that T'(y)(j) = o(By(y, x;)). Let V,
be the set of all such functions T'(y). It is clear that V, is a left
vector space over R, and that 7T is a semi-linear transformation with
automorphism ¢ from V, onto V,. Further T is one-to-one. For if
T(y) =0, theny | «;all € J; and this means ¥y = 0, because {x;} was
a maximal orthogonal set. Let the inner automorphism 7 be 7(B) =
a'Ba. For fand ¢ in B, let BJ(f, 9) = o(B(T7f, T 9))a. It is easy
to verify that B, is a semi-inner product. We include only the proof
that By(f, 89) = By(f, 9)»(8). We have

By(f, B9) = o(B(Tf, T (Bg))a = o(B(Tf, o7(BUT "g))x
= 0(B(Tf, T~'9)0(c7(B)))x
= o(B(T~f, T'g))o(6(a7(B)x
= BJ(f, g)a~'o(0(c(B)))x = B(f, 9)P(B) .

Since B,(f, g) = 0 if and only if B,(T'f, T7'g) =0, it is clear that
T induces an ortho-isomorphism between the L(V,) and L(V,).

THEOREM 5.3. Let V; and V, be semi-inner product spaces of
dimension greater than two, over division rings R, and R, respec-
tively, such that L(V)) and L(V,) are ortho-isomorphic. Let B, and
B, be the semi-inmer products in V, and V, respectively, and let 6
and @ be the associated anti-automorphisms. Then there exists an
isomorphism o from R, onto R, and a semi-linear transformation T
from V, to V, with isomorphism o such that T induces the lattice
isomorphism. Further there exists an inner automorphism t of R,
such that @ = togofoc™.

Proof. Since L(V,) and L(V,) are isomorphic, the lattice of all
finite-dimensional subspaces of V, is isomorphic to the lattice of all
finite dimensional subspaces of V,. It follows from this that the
lattice of all subspaces of V, is isomorphic to the lattice of all sub-
spaces of V,. Therefore the isomorphism o and the semi-linear trans-
formation 7T exists. To prove the final assertion, let  be a vector in
V. such that Bi(x, ) = 1. Let y be a nonzero vector in V, with ¥ | =«.
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Let " = T'(x), and ¥’ = T(y). Since T induces the lattice ortho-iso-
morphism, " | y’. Now for any A e R with A == 0,

r+ay Lae— 0By, )Y .
Therefore T(x + \y) L. T(x — 0N")By(y, ¥)'y), i.e.,
&'+ oy Lo — o(@(N))o(By, v) ™Y .

Therefore Bz’ + o(\)y', ' — a(0(A")a(B(y, ¥y)™)y’) = 0 for all » =0
in R,. Since «’ 1 y’, this gives

By, @) + o(\NByy', ¥ )P(o(By, ) ")NP(e((X)) = 0

for all A = 0 in R,. Now let a = Bya’,«'). Taking A =1, we get
a — B, ¥)P(e(B(y, y)™) = 0. Thus a — oMap(a(@(\)) =0 for
alln = 0in R,. Let = be the inner automorphism of R,: z(8) = a 'S«
for all 8in R,. Then taking A" = 07(B), we get 8 = (v o@ofoo)(B)
forall 8+ 0in R,, i.e., T 'o@ooofoo™ is the identity automorphism
of R,. Since gofoo~ is an involutory anti-automorphism of R,, this
gives @ = Togofoc™,

COROLLARY. Let n be an integer greater tham 2. Then there
exist semi-inner product spaces V, and V, of dimension n over the
complex numbers such that L(V.) and L(V,) are not ortho-isomorphic.

Proof. There exists a real closed subfield K of the complex
numbers C such that K(¢) = C, and K is not isomorphic to the real
numbers. Let ¢ be the involutory automorphism of C which has K
as its field of fixed points. Let 6 be the usual conjugacy automorphism.
Let V., be an n-dimensional Hilbert space over the complex numbers.
Let V, be the set of all ordered n-tuples of complex numbers. Let
B((ay, ++-, &), (By, +++, B,) = Ja,p(B;). It is easy to verify that B is
a semi-inner product with anti-automorphism @. If L(V)) and L(V,)
were ortho-isomorphic, we would have @ = gofoo™' for some auto-
morphism ¢ of C. But this would mean that K was isomorphic to the
field of fixed points of 6, i.e., the field of real numbers. This contra-
diction proves the corollary.

This corollary points up the fact that lattices L(V,) and L(V,) may
be isomorphic without being ortho-isomorphic.
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