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l Introduction^ First we consider the following question, where
F is any field. For what pairs P and Q of polynomials in two vari-
ables with coefficients in F do the definitions

(I) α φ 6 = P(α,6), aQb = Q(a,b),

for all a and b in F yield a field (F, 0 , 0)? It turns out that the
answer is different for infinite fields than for finite fields, as shown
in §§2 and 3.

Next let R be the field of real numbers. For what quadruples
Pu Pz> Qu Qz of real polynomials in four variables is (R x R, 0 , 0 ) a
field, when we set

(α, 6) 0 (c, d) - (Pτ(a9 b, c, d), P2(a, b, c, d)) ,

(α, b) 0 (c, d) = (Q^α, 6, c, d), Q2(α, 6, c, d)) ,

where (x, y) denotes an ordered pair of real numbers? This question
is partially answered in §§ 4 and 5, and in § 6 it is shown that the
polynomials may be of arbitrarily high degree. In §7 it is proved
that if definitions (II) do give a field, it must be isomorphic to the
field of complex numbers.

2 The one*dimetision.al case

THEOREM 1. Let F be an infinite field. The system (F, 0 , 0 )
in (I) is a field if and only if

P(a, 6 ) - α 0 δ - α + 6 + 7

Q(a, b) = a Ob = yσ(a + b) + σab + Ύ2σ - Ύ ,

where ye F, σe F and σ Φ 0. When these conditions are satisfied
the field (F, 0 , 0 ) is isomorphic to F, thus (F, 0 , 0 ) = (F, +, •)•

Proof. We first assume that (F, 0 , 0 ) is a field and show that
the polynomials P and Q have the prescribed form. By associativity
we have P(P(a, 6), c) = P(a, P(b, c)) identically in a, b, c. Now if P
is of degree n in a, the degrees of the left and right sides of this
identity in a are n2 and n respectively. Since F is infinite it follows
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that n2 = n and hence n = 1. We conclude that P(a, b) is linear in
a and b, and the same holds for Q(a, 6).

Using this linearity and also the commutative properties, we can
write

a 0 b = a(a + b) + βab + λ ,

a 0 b = p(a + b) + σαδ + τ .

Now /3 = 0, for if β Φ 0 we would have

(-α//3)06= -α2//3 + λ,

and the right member is independent of b.
Suppose first that the additive and multiplicative identities are 0

and 1. Then the equations

show that a — 1 and λ = 0, that p = 0 and τ = 0, and that σ = 1.
Thus we have

α φ 6 — α + 6, α © 6 = α 6 ,

so that 0 and 0 are simply the ordinary operations.
But now suppose that z and u denote the additive and multiplicative

identities of the field (F, 0 , 0 ) . Then the mapping

a —>/(α) — (u — z)a + z

gives /(0) = z and /(I) = u. Since / is a one-to-one mapping of F
onto -F, the operations 0 ' and 0 ' defined by

χ®fy=f

χQ'v=f

yield a field (F, 0 ' , 0 ') which is isomorphic under / to (F, 0 , 0 ) .
But it is easily checked that 0 ' and 0 ' are again polynomial operations
in the sense of (I). Furthermore note that

and so by the argument of the preceding paragraph we conclude that
0 ' and 0 ' are just + and . Now if we substitute x = f~\a) and
y = /-1(6) into equations (2) and apply / to both sides we get

a®b / ( / ( α ) +f-\b)) = a + b-z,
aQb= f{f~\a) -f-\b)) = (α - z)(b - z)(u - z)-1 + z .

Writing 7 for — z and σ for (u — z)~ι we see that equations (3) are
the same as (1).
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Conversely, given any elements 7 and σ Φ 0 of F we see that
the operations defined by equations (1) give a field isomorphic to
(F, + , •)> because the mapping f~x is an isomorphism:

3. Finite fields* The restriction of Theorem 1 to infinite fields
was necessary because in the proof use was made of the fact that
polynomials agreeing on infinite sets must be identical. Now for a
finite field F of order q = pn we see that a system (F, 0 , 0 ) in (I)
is a field with

P(α, 6) = a 0 b = aq + bq , Q(a, b) = aQb = agbq .

But these are artificial definitions since aq — a identically in a in the
finite field. However, Theorem 1 fails in a genuine sense for all cases
except q = 2, 3, 4, as can be seen as follows.

Let g be any permutation on F leaving 0 and 1 invariant. Now
g is a polynomial function because we can construct a polynomial to
agree with g over the q elements of the field. Similarly the operations
0 and 0 defined by

a θ b = g-\g{a) + g(b)) ,

aQb = g-1(g(a)-g(b))9

are polynomial functions. If Theorem 1 were true for the finite field
F then equations (4) would be of the form (1) for some 7 and σ.
But from (4) we see that a 0 0 = a and a 0 1 = a, so that 0 and 1
are the additive and multiplicative identities of {F, 0 , 0 ) . Hence in
(1) we see that 7 = 0 and a = 1. Thus 0 and 0 would be the ordinary
operations and (4) would be

a + 6 = g-\g(a) + g{b)) ,

It follows that g is an automorphism of (F, 0 , 0 ) . But there exist
exactly n automorphisms of a field with pn elements [4, §38], Since
there are (pn — 2)! permutations g of F leaving 0 and 1 invariant,
and since (pn — 2)! > n if pn ^ 5, it follows that Theorem 1 fails for
finite fields of order q = pn ^ 5.

On the other hand suppose that F is a finite field of order q =
pn = 2, 3, or 4. Suppose further that there are polynomials P and Q
for which the operations a 0 b = P(a, b) and aQb — Q(a, b) yield a
field (F, 0 , 0 ) . Using the mapping f(a) = (u — z)a + z, we apply f'1

.as in equations (2). Thus we move from (F, 0 , 0 ) to {F, 0 ' , 0 ')
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having 0 and 1 as additive and multiplicative identities. Now simple
examination of the addition and multiplication tables for finite fields
with 2, 3 or 4 elements shows that the operations 0 ' and 0 ' must
be the ordinary operations of addition and multiplication. Thus we
can get equations (3) and the rest of the proof follows as in Theorem
1. We have proved the following result.

THEOREM 2. Theorem 1 holds for only those finite fields with
2, 3 or 4 elements.

4. The complex case: a simplification^ The definition (II) allows-
considerably more latitude for the operations 0 and 0 than exists in
the one-dimensional case, and the problem appears to be correspondingly
more difficult. To simplify things we show first that there is no great
loss in generality in presuming that the additive ard multiplicative
identities of the field (R x R, 0 , 0 ) are (0, 0) and (1, 0). For let the
zero and unity of the field be denoted by (p, q) and (r, s). We define

( 5 ) [a, b] = (ar — ap — bs + bq + p, as — aq + br — bp + q) ,

and note that

[0, 0] - (p, q), [1, 0] = (r, s) .

The right member of (5) is simply

(a, b)(r - P,s - q) + {p, q) ,

where the multiplication and addition are as in the field of complex:
numbers. Since (p, q) φ (r, s) we see that (r — p, s — q) Φ (0, 0) and
so (5) is a one-to-one mapping of R x R onto Rx R. If we extend the
multiplications 0 and 0 to the pairs [α, b] by the use of (5) we see
that

[0, 0] 0 [α, b] = [1, 0] 0 [α, 6] = [α, b] .

Furthermore, [α, b] = (x, y) implies not only that x and y are poly-
nomials in a and b by (5), but also that a and b are polynomials in
x and y. Hence any system of pairs {a, b) with 0 and 0 defined by
(II) can be transformed into an isomorphic system of pairs [α, b] with
0 and 0 defined by (5) and (II). Thus all fields of the required sort
can be generated in a simple way as in § 2 from those having (0, 0)
and (1, 0) as zero and unit.

5* The complex case with linearity*

THEOREM 3. Let the operations 0 and 0 be defined as in (II),
and assume that each of Pu P2, Qu Q2 is linear in each argument
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separately. Then (R x R, 0 , 0 ) is a field with (0, 0) and (1, 0) as
zero and unity if and only if

(a, b) 0 (c, d) = (a + c, b + d) and

(α, b) 0 (c, d) = (ac + ibd, ad + be + δbd)

for some y e R and δ e R with δ2 + Art < 0. When these conditions
are satisfied, (R x R, 0 , 0 ) is isomorphic to the field of complex
numbers, that is, (R x R, 0 , 0 ) = (C, +, •)•

Proof. First we assume that (i? x R, 0 , 0 ) is a field. By the
commutative property Px{a, b, c, d) is symmetric in a and c and also
in 6 and d; likewise for P2, Qλ and Q2. Thus we can write

Px{a, b, c, d) = ao + ax{a + c) + a2(b + d) + au(ab + cd)

+ a13ac + aMbd + au(ad + be) + a12Z{abc + acd)

+ a12i(abd + bed) + a12Mabcd .

We represent P2, Qx and ζ)2 by similar expressions with the a's replaced
by /5's, τ's and S's respectively. From the relation (a, b) 0 (0, 0) =
(α, 6) we deduce

P1(a9 b, 0, 0) = a , P2(a, b, 0, 0) - b ,

from which it follows that

«! = β2 = 1 and a0 = /30 = α2 = ft = α ia - /S12 = 0 .

Now define (h, k) by the relation (1, 0) 0 (1, 0) = (h, k). Then the
distributive property implies that

(a, b) 0 (h, k) = (a, b) 0 (a, b)

and so we obtain

Px{a, b, a, b) = Qx{a, b, h, k)

= 2α + α1 3α2 + α2 4δ
2 + 2α14α6 + 2α123α

2δ

+ 2a124ab2 + a12Ua2b2 .

But Qi(α, 6, Λ, fc) is linear in a and 6, and hence

^13 ~ ^24 ~ ^14 r = : ^123 = : ^124 = = ^1234 : = : 0

The relation P2(&, δ, α, 6) = Q2(a, b, h, k) yields an analogous result for
the /3's, and so we get

(a, b) 0 (c, d) = (α + c, b + d) .
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Next, from the relation (α, 6) 0 (0, 0) = (0, 0) we see that

Qx(a, 6, 0, 0) = Q2(α, 6, 0, 0) = 0 ,

and so

7 0 = 7 i = 7 2 = 7i2 = So = #i = δ 2 = <512 = 0 .

From Qx(α, 6,1, 0) = α and Q2(α, 6,1, 0) = 6 we obtain

7i3 = O14 — 1 , O13 — 7 H = 7 i 2 3 = O 1 2 3 = 0 •

Thus we have

Qx{a, b, c, d) = αc + 7246cί + Ύ12i(bcd + αδd) + ΊUZ4abcd ,

Q2(α, 6, c, d) = αd + 6c + δ24bd + δUi(bcd + α6d) + δmiabcd .

Also the equations

(α, 6) 0 (1,1) - (α, 6) 0 (1, 0) 0 (α, 6) 0 (0, 1)

- (α, δ) 0 (α, 6) 0 (0,1)

imply that

Q1(af 6,1,1) = α + ^ ( α , 6, 0,1), Q2(α, 6,1,1) - & + Q2(α, 6, 0, 1) .

This yields

7χ
2
4 — 7χ

2
34

 =
 O

1 2 4
 = O

1 2 3 4
 = U ,

and so we have, removing subscripts,

(α, b) 0 (c, d) = (αc + 7δd, αd + be + δbd) .

Finally, if (α, 6) =£ (0, 0), there must exist real numbers x and y
such that (α, 6) 0 (x, y) = (1, 0). This gives a pair of linear equations
with determinant α2 + δab — 7&2. This must not vanish except for
a = 0 and 6 — 0, and so we conclude that

δ2 + 47 < 0 .

Conversely, to prove that the operations 0 and 0 in the statement
of the theorem do give a field isomorphic to the field of complex
numbers, define a and β by

2

Since β Φ 0 the mapping

Φ: (a, b) — (α + αδ, βb)
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is one-to-one from C onto itself. As in Theorem 1 we point out that
by a not difficult calculation

(a, b) 0 (c, d) = φ-\Φ(a, b) + 0(c, <Z))

and

(a, 6) Θ (c, rf) - r m &) Φ(c, d)) .

Thus the mapping φ is an isomorphism from (R x iϋ, 0 , 0 ) to (C, + , •)•
As a variation on Theorem 3 we prove the following; see [2, p.

251] for a related result.

THEOREM 4. In Theorem 3 replace the hypothesis that Pu P2, Qi
and Q2 are linear by the assumption

( 6 ) (a, 6) 0 (c, 0) - (αc, be)

for all a, 6, c in R. Then the conclusion of Theorem 3 holds.

Proof. If first we assume the definitions of 0 and 0 as in the
equations of Theorem 3, then we have a field, and we note that (6)
follows. Conversely, suppose that (R x R, 0 , 0 ) is a field with the
usual zero and unity and such that (6) holds. Then we note that

(aP^x, y, z, w), aP2(x, y, z, w))

= (α, 0) 0 (Pi(α, y, z, w), P2(x, y, z, w))

- (a, 0) 0 {(x, y) 0 (z, w))

= (ax, ay) 0 (az, aw)

- (Px(ax, ay, az, aw), P2(ax, ay, az, aw)) .

Thus Px and P2 are homogeneous and linear.
Turning to the operation 0 we note that

(aQτ(x, y, z, w), aQ2(x, y, z, w))

- (a, 0) 0 ((x, y) 0 (z, w))

= (ax, ay) 0 (z, w)

= (Qx(ax, ay, z, w), Q2(ax, ay, z, w)) .

Applying the commutative property we get

(a2Qx(x, y, z, w), a2Q2(x, y, z, w))

= (Qχ(ax, ay, az, aw), Q2(ax, ay, az, aw))

and hence Q2 and Q2 are homogeneous of degree 2. Now the relations

Qι(a, b, 0, 0) - Q2(a, b, 0, 0) - 0
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show that Qχ(α, 6, c, d) and Q2(α, 6, c, d) have no α2 or b2 terms. From
the commutative property it follows that Q1 and Q2 have no c2 or d2

terms. Thus Qx and Q2 are linear in each argument separately, as
also are Px and P2, and so we can apply Theorem 3 to complete the
proof.

6Φ Linearity not necessary* Here we show that (R X R, 0 , 0 )
with operations defined by (II) may be a field with the usual zero and
unity even though Plf P2, Qx and Q2 are not linear in the separate
arguments. For let T be any polynomial in one variable with real
coefficients and set S(x) — x(x — l)T{x). Define the mapping Φ by

Then φ is a one-to-one mapping of C onto itself which leaves (0, 0)
and (1, 0) invariant. Thus if we define

(α, b) 0 (c, d) = φ-\φ(a, b) + φ(c, d)),

(a, b) 0 (c, d) = φ~\φ(a, b), φ{c, d))9

we get (Rx R, 0 , 0 ) isomorphic to (C, +, •)> the two field represen-
tations having common zero and unity. It is clear that the polynomials
P\9 P*, Q\ and Q2 may be given arbitrarily high degrees by the proper
choice of T.

7. A general theorem* A question left unanswered in the pre-
ceding three sections is whether any field satisfying (II) must be iso-
morphic to the complex numbers. That the answer is yes is a special
case of the following result.

THEOREM 5. Let f and g be continuous mappings from Rn x Rn

into Rn, and suppose that the binary operations 0 and 0 defined
on Rn by

xφy = f(χ, y), x 0 y = g(χ, y)

make (Rn, 0 , 0 ) a field. Then n = 1 or 2 and the field is the real
field or the field of complex numbers accordingly.

Proof. Let Q x and x* denote the inverses of x under 0 and
0 respectively. We will show that the maps

x —• θ # and x —• #*

are continuous and thus (Rn, 0 , 0 ) is a topological field. Then the
known result that any locally compact connected topological field
satisfying the first axiom of countability is either the real or the
complex numbers will yield the theorem; cf. [3, p. 173].



FIELDS DEFINED BY POLYNOMIALS 545

Consider the map T: R2n -> R2n defined by T: (x, y) ->{x,x@ y),
where x and y belong to Rn. It is easily seen that T is continuous,
one-to-one and onto. It is claimed that T is a homeomorphism. For
suppose that A is an open subset of R2n and ae A. Let K be a compact
neighborhood of a contained in A. Then T is a homeomorphism of K
onto T[K] and so by Brouwer's theorem [1, p. 100] on the invariance
of domains the interior of K maps onto an open set. Thus T(ά) is
an interior point of T[A]; we see that T takes open sets onto open
sets.

Now Γ"1 is the mapping (x, s) —>(x,sQx), and so, letting s be
the additive identity of (Rn, φ , 0 ) , we see that the map x —> Qx is
continuous. The verification that x —> x* is a continuous map runs
along the same lines. Thus with the usual topology (Rn, 0 , 0 ) is
either the reals or the complexes. Since Rm homeomorphic to Rn

implies m = n, the theorem follows.
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