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l Introduction. The mean value theorem of Gauss, and its con-
verse, due to Koebe, have long been known to characterize harmonic
functions. Since any second order homogeneous elliptic operator L
can, by an appropriate linear change of variables, be reduced (at a
given point) to the Laplacian, it seems reasonable to expect that so-
lutions of Lu = 0 should, when averaged over appropriate small el-
lipsoids, satisfy an approximate Gauss-type theorem, and one could
hope that such a mean value property would characterize the solutions
of the equation.

It turns out that this is the case. In fact the operator need not
be elliptic, but may be parabolic, or of mixed elliptic and parabolic
type. While the methods used here do not permit the weak smoothness
conditions on the solutions admitted by Koebe's theorem, the result
is stronger than might be expected in that no smoothness, not even
measurability, is required of the coefficients of L: they need only be
defined.

Since the result applies to parabolic equations, it seems of interest
to examine the heat equation, for it can be cast in the required form.
This leads to a characterization of its solutions in terms of averages
over parabolic arcs.

2. The basic theorem. In the following A = 9/%», A; = θ2lθyβyj9

utij = Di3 u, and Vy is the gradient operator with respect to the com-
ponents of y.

It is convenient to consider equations of the form Lu = /, where
/ need only be defined, and may depend on u and any of its derivatives.

LEMMA. Let A = [αίy] be an n x n constant nonnegative definite
symmetric matrix, and denote by B — [b{j] the unique nonnegative
definite symmetric square root of A. Let u be defined in a neighbor-
hood of a point y in Enj and be twice differentiable at y. For this
y define the quadratic function q of x by

q(x) = (Bχ.Fyfu(v)

Then the sum of the coefficients of the squared terms of q(x) is
Σ i)
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Proof. We have

q(x) = (Bx Ffu = ( Σ δ, A A ) ( Σ bjkxkD3)u = Σ ( Σ bimbjku,i3)xkxm .
\i,m / \j,k J k,m \ ίj J

The sum of the coefficients of the squared terms is then

Σ ( Σ bikbjk)utij = Σ ( Σ bikbkλutij = Σ auu.ij .

THEOREM. Let L = Σ*,; ai3 (y)Di3 be a well defined symmetric
differential operator with a nonnegative definite matrix A(y) =
[ai3(y)] in an open region R in En. Let B(y) = [bi3(y)] be the unique
nonnegative definite square root of A, and for y e R and r sufficiently
small, define

(1) ur(y) = 4 " t u(y + B{y)x)dQ
Ω J l l

r(y) = 4 " t u(y + B{y)
Ωr Jl*l=r

where Ωr is the area of the sphere {| x \ = r}. Let u be a function
defined in a neighborhood of a point y0 e R, which is twice differenti-
able at y0. Then for u to be a solution of Lu = / at y0 it is neces-
sary and sufficient that

(2) ur(y0) = u(y0) + Cnr
2f(yQ) + o(r2) α s r - 0 ,

where Cn is a certain constant depending only on n, in fact it is
easily verified that

C - n ( ^
2n Γ((n

Proof. Denote the constant matrices A(y0), B(y0) by A and B
respectively. Since u is twice differentiable at y0 we have

( 3) u(y0 + B(yQ)x) = u(y0 + Bx) = u(y0) + (Bx-Fy)u(y) \yQ

± + o(\Bx\>) .
2

But |Bx | ^ | | B | | \x\. Thus on {|*| = r}, (3) becomes

(4) u(y0 + B(yo)x) = u(y0) + (Bx-Vy)u(y) L

Dividing (4) by Ωr and integrating over {| x \ = r} we get

FyYu(y) \y0 dΩr + o(r2) .
ϋl* |=r
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We next observe

Ur J l * l = r2Ω,

where Cn is a constant depending only on n. Thus (5) becomes, by
the lemma,

( 6 ) ur(y0) = u(y0) + Cnr
2 Σ a

» i

But (6) is compatible with (2) if and only if Lu = / at yQ.

3. The heat equation* As an application of the main result let
us consider the heat operator Hu = uxx — ut. If we make the change
of variables given by x = ξ, t = τ — (l/2)^2 and set u(a;, ί) = ^d1, r)
then we see that our operator takes the form vξζ + 2ξvξτ + ξ2vττ. In
this case the matrix A is given by

To compute B we observe that A2 = (1 + |2)A, so that B =
Tψψ. Then

/r cos ^ \ 1 /r cos β + ξr sin (9

\r sin θ ) " l / Γ T f \f r cos <? + f r sin θ J '

For each ξ, there is an a satisfying — (τr/2) g <x ̂  (τr/2) for which

c o s ^ + g s i n g = e 0 B ( < ? - α ) >

so that (7) takes the form

cos θ \ (r COS (ί — a)

\r sin <̂  / \rξ cos (^ — a)

Then ^(lo, τ0) becomes

1 Γ2:c

^r(^o, τ0) = — . I v(ξ0 + r cos (θ - a), τ0 + rξ0 cos (6> - a))dθ .
2π Jo

Replacing θ — a by θ and using the symmetry of the cosine function
this reduces to

1 f*
Vri&f τo) = — I (̂̂ o + r cos <9, τ0 + rξ0 cos ί)dί .

π Jo

By changing back to (x, t) coordinates and defining x0 = f0, t0 =
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τ 0 - (1/2) ξl and ur(x0, ί0) = vr(ξ0, τ0) we get

ur(x0, t0) = — 1 w( #0 + r cos 0, To + r#0 cos 5 (xQ + r cos θf)dθ ,
π Jo V 2 /

-1 ί*^χ 0 + r cos 5, t0 - —
π Jo V 2

= -1 ί*^χ 0 + r cos 5, t0 - — r 2 cos2 θ)dθ ,
π J V 2 /

or finally

dz
9 (a;0, t0) = — I ^(^o + r«, ί0 - ^ -

7Γ J-i V 2 i / l - z2

which is easily seen to be a weighted average of u over the tip of a
parabola with vertex at (x0, t0), having the line t = t0 as its axis and
opening down.

This gives us the following theorem.

THEOREM. If u is twice differentiable at a point (x0, ί0), then a
necessary and sufficient condition that Hu — f at (xQ, t0) is that

ur(x0, ί0) = u(x0, ί0) + C2r
2f + o(r2) as r -> 0 ,

where ur(x0, tQ) is given by (9).

To study the heat equation in higher dimensions one can make
similar transformations. But it is easier to guess the form the pre-
vious theorem would take and verify it directly by the methods
which established our basic theorem. The result is given below where
Δu is the ^-dimensional Laplacian, and Ω is the area of the unit
sphere in n + 1 dimensions.

THEOREM. // u is twice differentiable at a point (x0, t0) in n + 1
dimensions, then a necessary and sufficient condition that Δu — ut —
f at (x0, t0) is that

ur(x0, ί0) = u(x0, ί0) + Cn+ιr
2f + o(r2) as r -> 0

where

ur(x0, ί0) = 77 \ ^ o + zr9 ί0 - ~ z2r
Ω JUKI V 2n

Vl-\z\

with dz — dzxdz2 dzn.
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