
THE SIMPLE CONNECTIVITY OF THE SUM
OF TWO DISKS

R. H. BING

1. Introduction* The following question was called to the
author's attention several years ago by Eldon Dyer.

Question. Is the sum of two disks simply connected if their
intersection is connected?

Later, the author saw a communication in which an erroneous proof
was given that Example 1 of the present paper is not simply con-
nected. We show in §2 that Example 1 is simply connected. How-
ever, we give some examples (Examples 2, 3, 4) in §§3, 4, 5 that
are not simply connected.

A topological characterization is given in § 4 of intersections that
will prevent closed curves which finitely oscillate between two disks
from being shrunk. If the intersection is snake-like or arcwise con-
nected, such finitely oscillating curves can always be shrunk but there
are examples in which infinitely oscillating curves cannot. It is the
topology of the intersection which prevents the sum of two disks
from being simply connected rather than the embeddings of the
intersection in the disks as shown in §§4 and 5. In fact, as pointed
out in §6, much of what we have learned about the sums of disks
applies to the sums of continuous curves.

We use Example 1 in § 7 to construct a peculiar group and show
that a certain relation kills it.

All sets treated in this paper are metric.
Let In denote an n-cell and Bd In its boundary. A set A is

n-connected if each map (continuous transformation) / of Bd In+1 into
A can be extended to map In+1 into A. We say that f {Bd In+1) can
be shrunk to a point if the map can be extended. A set is called an
ε-set if its diameter is less than or equal to ε. A set A is n-ULC if
for each ε > 0 there is a δ > 0 such that each map of Bd In+1 onto a
δ-subset of A can be shrunk to a point on an ε-subset. A compact
continuum is called a continuous curve if it is Q-ULC. A set is
simply connected if it is 1-connected. It is uniformly locally simply
connected if it is 1-ULC. We shall not treat higher types of con-
nectivity in this paper.

We find it convenient to consider an abstract disk D rather than
the square P. A map of Bd D is a closed curve. If h is a homeomor-
phism, h(BdD) is a simple closed curve.
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We shall use cylindrical coordinates (p, θ, z) to describe examples
in Ez (Euclidean 3 space). If no z coordinate is given, it is under-
stood that z = 0. When we use D alone without subscripts it i&
understood that we mean the unit disk (p ^ 1) in the z = 0 plane.

Let / be a map of Bd D into E2 so that the p value of each
point of f(Bd D) is positive. Let k(θ) be a map of the reals into
the reals such that k(θ) mod 2π is the θ value of /(I , θ). We say
that / circles the origin n times if k(2π) — k(0) = 2πn.

2* A false example* Let α, b be fixed numbers with 0 < a < b < 1
and Kx be a spiral connecting the circles p = a and p ~ b as shown
in Figure 1 and given by the following formula.

Figure 1

= <*, δ, or (6 + aeθ)/(l + <>} .

M. K. Fort showed [3] that any bounded plane continuum which ha&
Kx as a continuous image separates the plane.

EXAMPLE 1. Let Dx be a disk in Ez defined by

A = {(ft θ, z)IP ̂  1, s = distance from (p, θ, 0) to
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Let A be the reflection of A through the z = 0 plane. Then A + A
is the sum of two disks whose intersection is the connected set Kx.

THEOREM 1. Example 1 is simply connected.

Proof. Let / be a map of Bd D into A + D2. We show that
A + A is simply connected by showing that / can be extended to
map D into A + A

With no loss of generality we suppose that the p value of each
point of f(Bd D) ^ a.

Special case. (The θ value of each point is fixed under / and
the p value of each point of f(Bd D) < 6.) In this special case we
start by extending / to the circle p = a by insisting that / is fixed'
on this circle.

For each point q = (1, θq) of Bd D such that f(q) e Kl9 let Sq be
the spiral from q about the circle p — a described by the formulas
p^l, p = (2-a + ae{θ-θ^)l(l + e^-^), θq ^ θ. Let / be extended
to map Sq into Kx so that / preserves the θ value of each point of
Sq. This extension is made for each such spiral Sq for each point q
of Bd D such that f{q) e Kx. Note that we have mapped a closed
subset of D into Kx and each component of D — f~\Kl) other than
the interior of p = a intersects Bd D in an open arc.

Let gx be the map of f~\Kx + A . f(Bd D)) = /"'(A) into A
given by extended /. Then gx can be extended to take D into A
For convenience we also call this extended map gx. Similarly there
is a map g2 of D into A such that g2 = / on f~\Kx + A f(Bd D)) =
f~\D2). Let g be the map of D into A + A given by g1 on each
component of D — /"^(Jζ) which has an arc which goes into A under
/ and g = #2 on the rest of Zλ

Less special case, (f circles the origin once and the p value of
each point of f(Bd D) is less than b.) We show that there is a
homotopy ht(0 ^ t ^ 1) of Bd D into A + A such that fe0 = /, hλ

preserves the θ value of each point of Bd D while the p value of
each point of hx(Bd D) is less than b. The less special case then
follows from the special case.

Let k(θ) be the function that shows that / circles the origin
once. For convenience we suppose that k(0) = 0, k(2π) — 2π. Let
kt(θ) = t0 + (1 - t)k(θ)9 (0 ^ t ^ 1). As ί goes from 0 to 1, fc«(0)
goes from &(#) to θ. For each point p = (1, 0P) of f~\K^) we define
fct(j)) as a point in l^ so that the θ value of ht(p) is A X^p). The ^
value of ht(p) is uniquely determined since the three arc components
of Kx are 1-manifolds almost normal to lines through the origin.
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The homotopy ht o n / - 1 ^ ) is extended to Bd D so that ht(p) e Di (i = l, 2)
if f(p) e Di9 hλ preserves the Θ value of points of BdD and the value
of each point of hx(Bd D) is less than b.

The following version of the less special case follows by a similar
argument.

Alternative less special case, (f circles the origin once and the
value of each point of f(Bd D) is greater than α.)

General case. We suppose that f(Bd D) intersects the
spiral of K± in at least three points. Subdivide Bd D into arcs
a?i»2, α?2a?8, , #»#i(w Ξ> 3) so that no f(XiXi+1) (addition on subscripts
is mod n so that xnxn+1 = xnXj) intersects both circles in Kx but each
f(Xi) is on the spiral of Kλ. Let xfox^ be the chord in D from x{ to
xi+1.

Extend the map / of Bd D into D± + D2 to map the chord
XiZiXi+1 into A so that /(a^α^) misses the circles in Kx and / on
XiXi+x+XiZiXi+x circles the origin once. It follows from applications of
the less special case and its alternative form that we can extend /
to take the interiors of the (XiXi+1 + XiZiXi+iys into Dx + D2. We
can then extend / to the disk in D bounded by the chords into Dλ.

3. A true example* Let C be a Cantor set on the numbers
between 1/2 and 1. Let K2 be the set in the plane consisting of the
sum of circles in the plane with centers at the origin and radii in
C and spirals joining adjacent circles as shown in Figure 2 and given
by the following formula.

K2 = {(ft θ)lp e C or p = (b + aeθ)l(l + eθ)}

where a, b are adjacent numbers of C with a < b.

EXAMPLE 2. Let E1 be the disk in E2 defined by

Ex = {(ft θ, z)lp ^ 1, z = distance from (ft θ, 0) to K2} .

Let E2 be the reflection of Ex through the plane z = 0. Then Ex + E2

is the sum of two disks whose sum is the connected set K2.
Before proving that Example 2 is not simply connected we in-

vestigate an interesting property of K2. M. K. Fort, Jr. showed
[3] that any compact continuum in the plane separates the plane if
it maps onto Kx. We modify his argument slightly to show the
following.

THEOREM 2. // / maps a closed bounded connected subset of the
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Figure 2

plane onto K2 then for each circle J in K2y each component of f~~\J)
separates the plane.

Proof. Let S1 be the circle p = 1 and define g: K2 —> S1 by
g(p, θ) = (1, θ). It is easy to verify that (K2, S\ g) is a locally
trivial fiber space with totally disconnected fibers.

Suppose X is a component of f~\J) that does not separate the
plane. There is a homotopy pulling the map gf of X into S1 to a
constant map. Since S1 is an ANR there is a neighborhood N oΐ X
such that the map gf of iV f~\K^) into S1 is homotopic to a con-
stant map. Take ΛΓ so close to X that N does not cover f~\K2).

Let F be a continuum in f~\K2) irreducible from E2 — N to X.
Note that F c AT, Γ X Φ 0, and Γς£ X It follows from the lemma
on page 542 of [3] that f(Y) is contained in an arc component of
K2. This violates the condition that the arc component of K2 con-
taining J does not intersect K2 — J.

THEOREM 3. Example 2 is not simply connected.

Proof. Let x and y be points on the inner and outer circles in
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K2 and xz{y be an arc in Έ{ from x to y. Let / be a map of Bd D
onto xzxy + xz2y so that the upper half of Bd D goes homeomorphically
onto xzM and the lower half of Bd D goes homeomorphically onto
xz2y. We show that Example 2 is not simply connected by showing
that / cannot be extended to map D into E1 + E2.

Assume that / can be extended to send all of D into Ex + E2.
We show that under this false assumption that p = (1,0,0) and
q — (1, π, 0) belong to the same component of f~\K2). If they did
not belong to the same component, it follows from Theorem 14 on
page 171 of [6] (Theorem 10 on page 185 of 1932 edition) that there
is a simple closed curve J in the plane z — 0 which misses f~\K2)
and separates p from q in this plane. There would then be an arc
A in J D that intersects both the upper and lower halves of Bd D.
This is impossible since / takes the upper half of Bd D into Eλ and
the lower half into E2 but no point of A into Ex E2 = K2.

Let Y be the component of f~\K2) containing p and q. Let Z
be a subcontinuum of Y irreducible from p to q. Note that / maps
Z onto K2.

If F is a subcontinuum of Z which separates the plane E2, no
bounded component of E2 — F intersects Z since Z is irreducible
from p to q and neither p nor q is in a bounded component of
E2 — F. Hence Z does not contain uncountably many mutually ex-
clusive subcontinua each of which separates E2. This contradicts
Theorem 2 which says that for each circle J in K2, Z f~\J)
separates E2.

4. Finitely oscillating curves* A map of a simple closed curve
J into the sum of two disks has only finite oscillation with respect
to the two disks if J is the sum of a finite number of arcs such
that the image of each lies in one of the disks. In some examples
(Examples 3, 4, 5 to follow) finitely oscillating curves can be shrunk
to points but some others cannot. The proof of Theorem 3 showed
that Example 2 contained a finitely oscillating curve which could not
be shrunk to a point.

We shall show that whether or not all finitely oscillating curves
in the sum of two disks can be shrunk to points in the sum is
dependent on whether or not the intersection has a certain extremal
inverse property. A set X has the extremal inverse property with
respect to its points p, q if there is a continuum Z in disk D with
points p', qr on Bd D and a map of Z into X that takes p', q' to
p, q respectively.

Let iΓ3 be the sum of a triod T and a spiral S about T as shown
in Figure 3 and given by the following equations.
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T

Figure 3

T = {(p, θ)lp g 1, 0 = 0, 2τr/3, or 4ττ/3} ,
S - {(/o, θ)lp = | cos 30/2 |β + 1/5, 0 ^ 2π} .

EXAMPLE 3. Let Dl9 D2 be two disks whose intersection is K3.

THEOREM 4. Ks has the extremal inverse property with respect
to each pair of its points.

Proof. We consider only the case where pe T and qe S. Let
S' be another spiral about T which misses S,f be a retraction of
S' + T onto T, and pf be a point of S' that maps onto p under / .
Extend / to the identity on S + T. There is a disk containing
T + S + S' which has pτ and q on its boundary.

THEOREM 5. Each snake-like continuum has the extremal inverse
property with respect to each pair of its points.

Proof. Apply the following result to a subcontinuum of the
snake-like continuum irreducible between the two points under con-
sideration.

THEOREM 6. Each snake-like continuum is the image of a
pseudo-arc.
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Proof. This theorem has been proved by each of Fearnley [2],
Lelek [4], and Mioduszewski [5] but we include a slightly different proof.

Let A, A, be a sequence such that A is a 1/i chain properly
covering snake-like continuum X and such that A+i is a refinement of
A It follows from Theorem 7 of [1] that if P is a pseudo-arc there is
a sequence of proper open coverings Elf E2, of P such that Et has
the same number of links as A and for the ith link of A+i there is
an integer n(i, j) such that the ith link of A+i lies in the n(i, j)th
link of A and the jth link of Ei+1 lies in the n(i, j)t\i link of E{.

For each point p of P let e(p, i) be the sum of the links of Et con-
taining p and d(p, i) be the sum of the corresponding links of A Note
that e(p, ί + 1) c e(p, i) and d(p, i + 1) c c?(p, i). For each point p of
P let f(p) be the intersection of the closures of d{p, i)'s. Then / is
a continuous transformation of P onto X.

THEOREM 7. // α se£ /&αs the extremal inverse property, so does
each of its continuous images.

THEOREM 8. Each arcwise connected set has the extremal in-
verse property with respect to each pair of its points.

Note that the following theorem applies to simply connected and
uniformly locally simply connected continuous curves as well as merely
to disks.

THEOREM 9. Let Alf A2 be two compact sets each of which is
O-connected, 1-connected, 0-ULC, and 1-ULC. A necessary and
sufficient condition that each finitely oscillating curve with respect
to Alf A2 can be shrunk to a point in A1 + A2 is that Aλ A2 has the
extremal inverse property with respect to each pair of its points.

Proof. If A1 A2 does not have the extremal inverse property
with respect to point x, y of Ax A2, let / be a map of Bd D into
Ax + A2 such that the upper half of Bd D goes into a path in Ax

from x to y and the lower half of Bd D goes into a path in A2 from
x to y. It follows from the proof of Theorem 3 that f(Bd D) cannot
be shrunk to a point in A1 + A2.

To prove the sufficiency case consider a map / of Bd D into
Aλ + A2 so that Bd D is the sum of arcs xxx2, x2%s, , # A so that
each f(xi) lies on Ax A2 and each /(α?ia?i+1) lies in one of Al9 A2.
Just as we used chords in the general case of the proof of Theorem
1, we consider continua Zl9 Z2, , Zn in D so that Z< contains xt and
xi+1 and / can be extended to take Zx + Z2 + + Zn into Ax- A2.
Then as in the proof of the General Case of the proof of Theorem 1
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we extend / to take the components of D — (Z± + Z2 + + Zn)
which intersect Bd D into the appropriate one of Al9 A2 and then
extend / to take the rest of D into Ax. To extend / to take D into
Ai for example, one would add a null sequence of arcs in D to
Zx + Z2 + " - + Zn to get a set ZQ so that D — ZQ is a null sequence
of open disks, use the fact that Ai is O-connected and 0-ULC to
extend / to Zo, and finally use the fact that Ai is 1-connected and
1-ULC to extend / to take D into A{.

THEOREM 10. Suppose Dlf D2 are two disks whose intersection
is a continuum X and axb is an arc in D1 that intersects X only
at a and b. If f is a map of Bd D into Dλ + D2 such that f takes
the upper half of Bd D onto axb and the lower half into D2, then
f(Bd D) can be shrunk to a point in Dx + D2.

Proof. Since X has the extremal inverse property with respect
to a and b as shown by its embedding in Dlf there is a continuum
Xf in D intersecting the inverses under / of a and b such that /
may be extended to Xr + Bd D. Then / is extended to take the
part of D in component of D — Xr that contains upper arc of Bd D
into A and the rest of D into D2.

Question. The question suggests itself as to which continua have
the extremal inverse property with respect to each pair of their
points. Example 2 does not have it. Example 1 and 3 do. So do
Examples 4 and 5 to be given in the next section. Perhaps Example
2 is unnecessarily complicated as an example of a continuum without
the extremal inverse property in that it separates the plane into
infinitely many pieces. Perhaps there is an example that does not
separate the plane. Does each three branched tree-like plane continuum
have the extremal inverse property with respect to each pair of its
points? (A compact continuum is a three branched tree-like continuum
if it is not snake-like but for each positive number ε it has an
ε-cover whose 1-nerve is a triod.)

5 Infinite oscillation* We use rectilinear coordinates to define
the two sets shown in Figures 4, 5.

KA = {(a?, y)l(x = 0,-2^y^2),(y = l + sin I/a?, 0 < x rg 1) ,

or (y = - 1 + sin I/a;, - 1 ^ x < 0)} .

K5 = sum of points of K3 on or to the left of the vertical line
through (1, 0) plus the interval from (1, 0) to (1,1).

Theorems 5 and 8 show that iΓ4 and K5 have the extremal
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Figure 4

Figure 5

inverse property with respect to each pair of their points. It follows
from Theorem 9 that finitely oscillating curves in the following two
examples can be shrunk to points in the examples.

EXAMPLE 4. Two disks sewed together along ϋΓ4.

EXAMPLE 5. Two disks sewed together along Kδ.

THEOREM 11. Examples 3, 4, 5 are not simply connected.
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We only prove the first third of this theorem since the other
parts are analogous. We suppose that the disks Dl9 D2 of Example 3
are obtained by pushing parts of a circular disk in the z = 0 plane
up and down respectively as done in Examples 1 and 2. Theorem 13
shows that there is no loss of generality in supposing this. The
disks would be larger than those in Examples 1 and 2 since KB is
larger than those disks.

Proof that Example 3 is not simply connected. Let alf a2,
be the points of K3 on the open ray θ = ττ/3 ordered inversely accord-
ing to their distances from the origin q0. Let bu b2, be the
corresponding points of K5 on the open ray θ = π and cu c2, be
the corresponding points on the ray θ = 5π/3.

Let Pi be the point of Bd D whose θ value is 1/i. Let p0 be the
point of Bd D whose θ value is 0. Use p$ά to denote the arc on
Bd D in a clockwise direction from p4 to Pj.

Let / be a map of Bd D into A + A satisfying the following
conditions.

f(Pj) = Qo (origin) (j = 0, 2, 4, 6, .) ,

f(Pei-ύ = bi ,
f(Pβi-i) = Ci ,

/(ί>2i-22>2i-l) C A ,

f(V2i-lP2i) C A .

The 0 value on each f(PiPi+1) is a constant and / takes the 0 values
of PiPi+1 linearly onto the p values of f(PiPi+1).

Assume / can be extended to take D into A + A We call the
extended map /. In this extension we suppose that no component of
f~\Qo) separates the z = 0 plane. (If a component X did separate
the plane, we could modify / to map X plus each of its bounded
complementary domains in z = 0 into q0.)

Let F be the part of A + A whose /> value is less than or equal
to 1. A finite number of spanning arcs in D separates p0 from
f~\D1 + D2 — F) in D so that no one of the arcs intersects f~\q0).
Hence, we can cut down the disk D to a disk E such that E agrees
with D i n a neighborhood of po,f(E)c:F, each point of Bd E f~\qQ)
lies on Bd D, and E agrees with D in a neighborhood of each such
point. Let Z be the closure of Bd E - Bd D. Note that qo$f(Z).
We shall obtain a contradiction to the assumption that / can be
extended to take D into A + A by showing that the map / o f JBcZ E
into i*7 cannot be extended to take E into F.

With no loss of generality we suppose that p09 pu p2, all
belong to Bd E. Note that no component of E-f~\K3) intersects
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two Pi's unless perhaps they both have even subscripts since no two
of al9 α2, , bl9 b29 , cl9 c2, belong to the same component of
Kd F. For i odd, the component Y{ of E f~\K^) containing pi

separates Bd E since f(Bd E) crosses from A to A at f(Pi). Since
Bd D intersects Y{ in at most a finite number of points and f(Bd D)
does not cross from A to A at the image of any of these points
other than pif Yi must intersect Z. Let q{ be a point of Yt Z.

Note that since al9 a2, , 6^ 62, , cl9 c2, belong to different
components of F K39 Y{ Φ Y3 if i, i are different odd positive integers.
Let gΌo be a limit point of ql9 q39 g5, . Since for i sufficiently large
Yi+2 separates Yt from p0 in E, ql9 q3, converges to q^ from the
clockwise side. Since q^ is a limit point of each of ΣYu_δ9 ΣYU^9

2Tβ 4_ l f then /(g..) is a limit point of each of /(2T 6 ΐ_ 5), /(2T 6 i_ 3),
f(ΣYti-ύ The only point common to the closures of these sets is
the point q0, so /(goo) = q0. However, f(qoo)φq0 since q^eZ and

THEOREM 12. T%β s^m o/ ί^o disks is simply connected if their
intersection is connected and locally arcwise connected.

Proof. Let / be a map of Bd D into the sum of two disks
Dl9 D2 such that D1 A is a continuous curve. For each arc ab of
Bd D which intersects f~1(D1 A) only in its end points, extend / to
map the chord acb of D into an arc in A A such that the diameter
of f(acb) is no more than twice the diameter of any other arc in
A A from f(a) to f(b). Let ft be a mapping of D into A that
agrees with / on the part of D going into A under /. Then the
extended / is fλ on the components of D minus the chords which
contain a point of Bd D that / sends into A — A and is f2 on the
rest of D.

THEOREM 13. The topology of the intersection of two disks
determines whether or not their sum is simply connected.

Proof. Suppose Dl9 D29 El9 E2 are disks and h is a homeomorphism
of A ' A onto E1 E2. Let D be a circular disk and / a map of
Bd D into A + A We assume that 2^ + E2 is simply connected
and show that this assumption implies that / can be extended to map
D into A + A We assume there are at least three points of Bd D
that / sends into A A

Let g be a map of /" ' (A A f(Bd D)) into £Ί E2 given by
0 = hf. For each arc αδ of Bd D which intersects f~\ A A /CBd 2?))
only in its end points, extend g to map the chord acb of D onto an
arc in E{ if /(αδ) c A with the restriction that the diameter of
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g(acb) is not more than twice the diameter of any other arc in E{

from g(a) to g(b). Let E be the subdisk of D such that g has been
defined to map Bd E into Ex + E2.

Since Ex + E2 is simply connected, we extend g to map E into
Ex + E2. Call the extension g. Consider g~1(E1 E2 g{E)) = X.
No two points of Bd D can be joined by an arc in D — X unless
the points go into the same one of Dl9 D2 under /.

Define / on X to be h~τg. Let fi be the extended / restricted
to /-2(A f(X + Bd D)). Extend /< to map Z> into A and call the
extended map f{. The extended map / is fλ on each component of
D — X which has points of Bd D which are sent by / into Dx and is
/2 on the rest of D.

6» Adding continuous curves • What we have learned about the
sum of disks partially applies to the sums of other continua. If the
intersection of two disks is so bad as to make the sum of the disks
not simply connected, it is bad enough to keep any two continuous
curves whatever with the same intersection from being simply con-
nected. The following example illustrated in Figure 6 shows that
the converse is not true.

Figure 6
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EXAMPLE 6. Let C< (i = 1, 2, 3, •) be the circle in the x, y
plane with equation (x — 1/ίf + y2 — (1/i)2. Denote the origin by q0.
Let Z"6 = d + C2 + + q0 + C_! + C_2 + . The cone Xx • over
C\ + Ca + + ?o from a point above the ## plane is simply con-
nected as is the cone X2 over q0 + CU + C_2 + from a point
below the xy plane. Although Xx X2 is a point, X1 + X2 is not
simply connected.

THEOREM 14. Suppose Du D2 are two disks and Fl9 F2 are two
continuous curves such that D1 D2 is homeomorphic with Fx F2.
Then Dx + D2 is simply connected if Fx + F2 is.

Proof. The proof is the same as the proof of Theorem 13 except
that g maps Bd E into Fx + F2 instead of into Eλ + E2.

THEOREM 15. Suppose Gu G2f Gs, GA are four simply connected
and uniformly locally simply connected continuous such that Gλ G2

is topologically equivalent to G3 G4. Then the fundamental group
of Gx + G2 is isomorphic to the fundamental group of G3 + G4.

Proof. Whether or not a loop in G1 + G2 can be shrunk to a
point depends on how it crosses back and forth between Gx and G2.
Suppose h is a homeomorphism of Gx G2 onto G3 G4 and xQ is a
point of G2 G2 that acts as a starting point of loops in Gx + G2 to
determine the fundamental group of Gx + G2. We use h(x0) as a
starting point for the loops in G3 + G4 to determine the fundamental
group of G3 + G4.

Let {/} be an element of the fundamental group of Gλ + G2. It
is an equivalence class of maps of the interval [0,1] into Gx + G2

such that the ends of [0,1] go into x0. Let / be an element of {/}.
Let / ' be a map of [0,1] into G3 + G4 such that

Xf(x)eGι G1,
f'(x)eGi+2 if f(x)eGi.

Although these two conditions do not precisely define / ' , any two
maps satisfying this condition are homotopic in G3 + G4. The element
of the fundamental group of G3 + G4 corresponding to the element
{/} of the fundamental group of Gx + G2 is the equivalence class of
loops containing / ' .

Question. The preceding theorem suggests a topological invariant
of compact closed sets. Two sets A, B are alike in a certain sense
provided the sum of two Hubert cubes sewed together along A have
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the same fundamental group as the sum of two Hubert cubes sewed
together along B. Is there a simpler characterization of this
property?

7 An interesting group. One might attempt to compute the
fundamental group of Example 1 by cutting it into two pieces with
a vertical plane through the origin, fatten each piece to make them
intersect in an open subset of their sum, find the fundamental group
of each piece, and then apply Van Kampen's theorem to get the
fundamental group of Example 1. We ignore the fattening since,
being equivalent to taking the slice slightly to one side of the origin,
it does not change the fundamental group of the pieces.

Each piece can be folded like a fan and deformed onto a set
topologically equivalent to a set K7 shown in Figure 7 and defined as
follows.

C_

Fignre 7

K7 = closure of ( d + C2 + + CU + C_2 + •)

where C< is the circle in the xy plane with [(i — l)/i, i/(ί + 1)] as
diameter and C-{ is the circle with [( — (i — 1)1%, —ij{% + 1)] as
diameter. (We used [α, b] to denote the interval on the x axis from
a to b.) The fundamental group of each piece into which we cut
Example 1 is the same as the fundamental group of K7.

Consider the origin as the starting point of loops in K7 to deter-
mine its fundamental group G(K7). Then a loop is a map of the
interval [0,1] into KΊ that sends the ends of the interval to the
origin and an element of G(K7) is an equivalence class of loops. We
can associate words with loops. If a loop goes across the top semi-
circle of d from left to right we write ί; if it goes across this
semicircle from right to left we write i and say i inverse. We call
i and i letters and say that the letter is positive or negative accord-
ing as i is positive or negative. Since we are permitting C/s with
negative subscripts, i inverse differs from — i. The inverse of i is i.
A loop then corresponds to an ordered collection of letters (called
a word) with the following restrictions.



454 R. H. BING

a. No letter appears in any word more than a finite number of
times.

b. There is not infinite oscillation between positive and negative
letters.

Let us consider what words are equated if two pieces into which
we divided Example 1 are joined together again. If a loop is slid
from one piece to the other until it comes back to the first in one
direction, each letter i (or i) in it has been changed to i + 1 (or
i + 1) and if the loop is slid in the other direction, these are replaced
by i — 1 (or i — 1). Since we skipped 0 in putting subscripts on the
Ci'a we suppose —1 + 1 = 1 and 1 — 1 = —1. When we replace
each i or i in a word W by i + 1 ov i + 1, we have produced a
right shift and call the new word R(W). We note that if Wx =
R(W2), then W2 may be obtained from WΊ by a left shift and say

Let us change the group G {equivalence classes of W«/s} by also
putting words in the same equivalence class if they are equivalent
after a shift. This shifting operation is to be permitted in equating
words only a finite number of times as opposed to cancellation which
was permitted infinitely often. We call the resulting group G {equiva-
lence classes of Wa'alR(Wa) = Wa}. Since the fundamental group of
Example 1 is trivial, it follows that this group is trivial.

The inverse of a word is obtained by reversing the order of the
letters and replacing each letter with its inverse. If in a word there
appears two adjacent subwords which are inverses of each other,
the word obtained by canceling the subwords belongs to the same
equivalence class with the original word. Infinite cancellation is
permitted so that for example (1, ϊ, 2, 2, 3, 3, •) is equivalent to
the trivial word.

Two words are, equivalent if and only if they can be cancelled
down to a common word. (We could have given more extensive rules
but they boil down to this.) To multiply two words, we write one
after the other. If {Wω} denotes the collection of words and
G {equivalence classes of Wa

y&} denotes the group of equivalence classes
of words, then

G(K7) = G {equivalence classes of Wa'&} .

To show algebraically that G{equivalence classes of Wa'&IR(Wa) =
Wa} is trivial, consider a word W. Since we did not permit infinite
oscillation between positive and negative letters of W, we can express
W as WΊ W2 Wn where each Wt has either all positive or all
negative letters. We show that W is trivial by showing that each
Wi is. We consider only the case where Wt consists of positive
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letters since the other case is analogous.
Consider X = W.RiWdR'iW^R'iW,) . It is a word since it

only contains positive letters and none appears more than a finite
number of times. Then

W, = W{XX = RiWJRXWt) X = R(X)X = XX = 1 .

One might wonder what would have happened if we had not
imposed the condition that there is not infinite oscillation between
the positive and negative letters in words. This would have been
equivalent to the fundamental group of K7 after the sum of the
bottom simicircles were shrunk to a point. Even after a shift, it
seems that the group is not killed. After the shift we would have
the fundamental group of Example 1 if the annulus in D2 outside
p = a is shrunk to the circle p = α.
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