ON THE FUNCTIONAL EQUATION
F(mn)F ((m, n)) = F(m)F(n)f((m, n))

ToM M. APOSTOL AND HERBERT S. ZUCKERMAN

1. Introduction. Letf be a completely multiplicative arithmetical
function. That is, f is a complex-valued function defined on the
positive integers such that

Sfmn) = f(m)f(n)

for all m and n. We allow the possibility that f(n) = 0 for all .
(If f is not identically zero then we must have f(1) = 1.) Given such
an f we wish to study the problem of characterizing all numerical
functions F which satisfy the functional equation

(1) Fmn)F((m, n)) = F(m)F(n)f((m, n)) ,

where (m, n) denotes the greatest common divisor of m and . When
f(n) =n for all n, Equation (1) is satisfied by the Euler ¢ function
since we have

d(mm)p((m, n)) = p(m)p(n)(m, n) .

More generally, it is known (see [1], [2]) that an infinite class of
solutions of (1) is given by the formula

Fn) = S 7@)e(2)o( %),

where £t is the Mobius function and g is any multiplicative function,
that is,

g(mn) = g(m)g(n) whenever (m,n) =1.

Some work on a special case of this problem has been done by P.
Comment [2]. In the case f(1) = 1 he has investigated those solutions
F of (1) which have F'(1) # 0 and which satisfy an additional condition
which he calls “property O”: If there exists a prime p, such that
F(p,) = 0 then F(py) = 0 for all « > 1. Comment’s principal theorem
states that F' is a solution of (1) with property O and with F'(1) == 0
if, and only if, F' satisfies the two equations

F(mn)F (1) = F(m)F(n) whenever (m,n) =1
and
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F(p®) = F(p)f(p)** for all primes p and all a = 1.

In this paper we study the problem in its fullest generality. In
the case of greatest interest, F'(1) = 0, we obtain a complete classifi-
cation of all solutions of (1).

2. The solutions of (1) with f(1) = 0. If the given f has f(1) =0
then f is identically zero and Equation (1) reduces to

(2) F(mn)F((m, n)) = 0

for all m, n. To characterize the solutions of (2) we introduce the
following concept.

DEFINITION 1. A (finite or infinite) set A = {a,, a,, a;, ++-} of
positive integers is said to have property P if no a; is divisible by
any ai.

Two simple examples of sets with property P are the set of primes
and the set of products of distinet primes. The solutions of (2) may
now be characterized as follows: ‘

THEOREM 1. A numerical function F satisfies (2) if, and only
if, there exists a set A with property P such that F(n) = 0 whenever
n¢A.

Proof. Let A = {a,, a,, a;, --+} be a set with property P. Define
F(a), F(a,), F(a,), -++, in an arbitrary fashion and define F(n) = 0 if
n¢A. We shall prove that F satisfies (2).

Choose two integers m and » and let d = (m,n). If d¢ A then
F(d) =0 and (2) holds. If de A then mn¢ A since d*|mn. In this
case we have F'(mn) = 0 and again (2) holds. Therefore F satisfies
(2) in all cases.

To prove the converse, assume F' satisfies (2) and let A be the
set of integers » such that F(n) # 0. We shall prove that A has
property P. Choose any element b in A. If b were divisible by k*
for some k in A, say b = qk? then we could take m =qk,n =k in
(2) to obtain

FO)F(k) =0

which is impossible since both b and k¥ are in A. Therefore A has
property P and the proof of Theorem 1 is complete.

3. The solutions of (1) with f(1) = F'(1) = 1. Since we have
characterized all solutions of (1) when f(1) = 0 we assume from now
on that f(1) = 0 which means f(1) = 1. We divide the discussion in
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two parts according as F'(1) = 0 or F(1) = 0. In the first case we
introduce G(n) = F(n)/F(1) and we see that (1) is equivalent to

G(mn)G((m, n)) = Gm)G(n)f ((m, n))

with G(1) = 1. This means that the case with F'(1) = 0 reduces to
the case F'(1) = 1. In this case we make a preliminary reduction of

the problem as follows.

THEOREM 2. Assume f(1) =1. A numerical function F satisfies
1) with FQ) =1 ¢f, and only if, F is multiplicative and satisfies
the equation

(3) F(p*")F(p") = F(p")F (") f(p")

for all primes p and all integers a = b = 1.

Proof. Assume F satisfies (1). Taking coprime m and % in (1)
we find F(mn) = F(m)F(n), so F' is multiplicative. Taking m = p°%,
n = p® in (1) we obtain (3).

To prove the converse, assume F' is a multiplicative function
satisfying (3) for primes p and ¢ = b = 1. Choose two positive integers
m and n. If (m,n) =1, Equation (1) is satisfied because it simply
states that F'is multiplicative. Therefore, assume (m, n) = d > 1 and
use the prime-power factorizations

D3

—

il
-

m:l‘[lpgi, n:IIlpi?i’ d =
1= =

k3

where a; = 0, b, = 0, ¢; = min (a;, b;), the products being extended over
all primes. Since F' is multiplicative we have

Fnm)F(d) = [ P 9F ()
= I Fut)Fpr)- I1 Fps)F(py) .

0=sb5=a; 0=a;<b;
The factors corresponding to b, = 0 or a; = 0 are

I F(ps)- 11 F(pr) = 11 F(p#)F (0 f (05)

0=b;<a; 0=a;<b; azb;=

since F'(1) = f(1) = 1. For the remaining factors we apply (3) to each
product and we obtain

FmmF@) = II F@HF @ (). 11 F(oi)Feh)f(p)

0<b;=say 0=<a;<b;

= Il Fo)F () (o) = Fm)F(m)f (@) .

This completes the proof of Theorem 2.
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We turn now to the problem of finding all solutions of (3). If »
is a prime for which f(p) = 0, then for this prime (3) becomes

(4) Fp*")F(p’) =0 whenever a =2b=1.

For a fixed p the solutions of (4) may be characterized as follows:

THEOREM 3. An arithmetical function F satisfies (4) for a given
prime p if, and only if, there exists an integer ¢ = 1 such that

(5) Fp)=0 forr1=<i1=c—1 and for v = 2c.

Proof. Assume F'gatisfies (5) for some ¢ = 1. Choose two integers
@ and b with a 2b=1. If b <c¢— 1 then (5) implies F(p’) =0 so
(4) is satisfied. If b = ¢ then a + b = 2b = 2¢ so F'(p*™) = 0 and (4)
is again satisfied.

To prove the converse, assume F' is an arithmetical function
satisfying (4) for some prime p. If F(p’) = 0 for all integers t =1
then (5) holds with ¢ = 1. Otherwise, we let ¢ be the smallest £ = 1
for which F(p') # 0. Then F(»') =0 for all 4 <¢ — 1. Now take
any ¢ = 2c¢ and write 2 = a + ¢ where a = ¢. Taking b = ¢ in (4) we
find F'(p*) = 0 for © = 2¢. Therefore (5) is satisfied for this choice of
¢ and the proof of Theorem 3 is complete.

We consider next those primes p for which f(p) = 0. For such
p the problem of solving (3) may be reduced as follows:

THEOREM 4. Let p be a prime for which f(p) = 0. An arithme-
tical function F satisfies (3) if, and only if, there exists an arithme-
tical funmction g (which may depend on p) such that

(6) F(p%) = g(@)f(p)* forallaz1,
where g satisfies the functional equation

(7) g(a + b)g(d) = g(a)g(d) for all a=b=1.

Proof. Assume there exists a function g satisfying (7) and let
F(p*) = g(a)f(p)®. Then if ¢« = b =1 we have

F(p*")F(p") = g(a + b)f(p)***g(b)f(p)®
and
F()F (") f(®") = g(a)f(0)*9(b)f (p)'f (D)® .

1 If ¢ =1 the inequality 1 =<4 < ¢ — 1 is vacuous; in this case it is understood that
(5) is to hold for all ¢ = 2.
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Using (7) we see that F' satisfies (3).
To prove the converse, assume F' satisfies (3) and let

_ F®)
9@ = oy

for « = 1. From (3) we see at once that g satisfies (7), so the proof
of Theorem 4 is complete.
Next we determine all the solutions of the functional equation (7).

THEOREM 5. Assume g is an arithmetical function satisfying
(7). Then there exists an integer k=1, a divisor d of k, and a
complex number C such that

(8) gm)=0 forl=n=k—1, and for n =k, n #= 0(modd),
(9) gn)y=C for n=k,n=0(modd).

Conversely, choose any integer k = 1, any divisor d of k, and any
complex number C. For those n satisfying n =k and n =0 (mod d)
let g(n) = C, and let g(n) = 0 for all other n. Then this g satisfies (7).

Proof. Assume ¢ satisfies (7). If ¢ is identically zero then (8)
and (9) hold with any choice of k¥ and d and with C=0. If ¢ is not
identically zero, let &k be the smallest positive integer » for which
gn) =0 and let C=g(k). Then gn)=0 for 1=n=<k-—1. If
n = 2k we may write n =k + r,r =k, and use (7) witha =»,b=F%
to obtain the periodicity relation

(10) gk +ry=9@) forr=k.

In particular, g(2k) = g(k). Therefore, to completely determine g we
need only consider g(n) for n in the intervalk +1=n <2k — 1. If
g(n) = 0 for all » in this interval then g(n) = 0 for all » % 0 (mod k)
and (8) and (9) hold with d = k, C = g(k). Suppose, then, that g(n) # 0
for some 7 in the interval ¥ +1 <% <2k — 1 and let k + d be the
smallest such n. Then 1 =d <k — 1. We prove next that d | k, that
gm) =0 if » = 0 (mod d), and that g(n) = C if » = 0 (mod d).
For this purpose we define a new function 2 by the equation

hm) = 9+ E) w0,

g(k)
Then the periodicity property (10) implies
(11) hn +k)y=hn) if n=0.

We also have
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(12) hO)=h(k) =1, h(n) =0 if1=<n<d, hid)=0.

Now for n = 0 we have

hn + d) = h(n + d + 2k) = 90+ d + 3k) n(d) = 9@t k)
(n = d) = hn + d + 2k) e

Since n + 2k > d + k > 1 we may use (7) witha =n + 2k, b=d + k,
to obtain

hn + dyh(dy = 9+ 4+ 3k)g(d + )

g(k)?
g+ 200 + 1) _ i 4 Iyi(d) = h(nyh(d) .
g(k)*
Since h(d) # 0 this implies
(13) hn +d) = h(n) if n=0.

Using (13) along with (12) we find
hn) =0 if = 0(modd), h(n) =1 if n =0 (modd).

Also, d |k since h(k) = 1. This implies that g(n) = 0 if % == 0 (mod d),
and that g(n) = g(k) = C if n = 0 (mod d).

Now we prove the converse. Given k = 1, a divisor d of %k, and
a complex number C, define g as indicated in (8) and (9). We must
prove that this g satisfies (7). Choose integers ¢ and b witha = b = 1.
If a<k—1 then b=k —1 and g(a) = g(d) = 0 so (7) is satisfied.
Suppose, then, that @ = k. We consider two cases: (i) @ % 0 (mod d),
and (ii) @ = 0 (mod d).

If @ # 0(mod d) we have g(a) = 0 and the right member of (7)
vanishes. If @ + b #= 0 (mod d) then g(a + b) = 0. If ¢ + b = 0 (mod d)
then b0 (mod d) and g(b)=0. Therefore we always have g(a + b)g(b)=0
so the left member of (7) also vanishes. This settles case (i).

In case (ii), @ = 0 (mod d), we again consider the two alternatives
a+b*x0(modd),a +b=0(modd). If a +b=0(modd) then b=
0 (modd) and both sides of (7) vanish. If a + b = 0(modd) then
b = 0 (mod d) so g(a) = g(b) = g(a + b) = C and Equation (7) is satisfied.
This completes the proof of Theorem 5.

Theorems 2 through 5 give us a complete classification of all solu-
tions of (1) in the case f(1) = F(1) = 1.

4. The case f(1) =1, F'(1) = 0. In this case any F' which satisfies
(1) must also satisfy

(14) F(m)F(n) =0 whenever (m,n)=1.
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These functions may be characterized by means of sets of integers
with the following property.

DEFINITION 2. A (finite or infinite) set S ={k, ky, ks, +++} of
positive integers will be said to have property @ if 1 < k; < k;;; and
(k;, k;) > 1 for all ¢ and j.

For example, the set of all multiples of a given integer k, >1
has property Q, but there are more complicated sets with this property.

THEOREM 6. A numerical function F satisfies (14) if, and only
if, there exists a set S with property Q such that F(n) = 0 whenever
neS, and F(n) # 0 whenever ne S.

Proof. Assume F satisfies (14). Then F'(1) = 0. If F is identi-
cally zero the theorem holds with S the empty set. If F is not
identically zero there is a smallest integer k, > 1 with F'(k,) = 0. The
set {k} has property Q. If F(n)=0 for all » >k, we may take
S = {k,}. Otherwise there exists a smallest integer k, >k, with
F(k,)+0. The set {k,, k.} has property Q because (14) implies (k,, k,)>1.
If Fi(n) =0 for all » > k, we may take S = {k, k.,}. If F(n)+# 0 for
some n >k, we let k, be the smallest such #. Then (14) implies
(ki ky) > 1 and (k,, k) > 1 so the set {k, k,, k;} has property Q. Con-
tinuing in this way we obtain a set S = {k, k,, k;, -+ -} (finite or in-
finite) with the properties indicated in the theorem.

To prove the converse, choose any set S with property @, assign
arbitrary nonzero values to the elements of S and let F(rn) = 0 if
n ¢ S. To show that F satisfies (14), choose integers m and % with
(m,n) =1. Both m and % cannot be in S since S has property Q.
Therefore at least one of m or » is not in S so at least one of F'(m)
or F'(n) is zero. This completes the proof of Theorem 6.

Since Theorem 6 characterizes all solution of (14), all solutions of
the more general equation (1) with F'(1) = 0 must be found among
those described in Theorem 6. For those solutions F' of (14) which
also satisfy (1) more can be asserted about the set S on which F' does
not vanish. We shall treat only the case in which f is never zero.
In this case, if we write G(n) = F(n)/f(n), Equation (1) is equivalent to

(15) G(mn)G((m, n)) = G(m)G(n) .

In other words, if f never vanishes the problem reduces to the case
in which f is identically 1. Moreover, G(n) = 0 if, and only if, F'(r) = 0
so the set S on which G does not vanish is the same as that on which
F' does not vanish. For those G satisfying (15) with G(1) = 0 we shall
prove:
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THEOREM 7. Let G be a solution of (15) with G(QA) =0 and let
S = {ky, k,, +++} be a set with property Q such that G(n) = 0 if, and
only if, ne S. Then S contains mn and (m, n) whenever it contains
m and n. Moreover, every element in S is a multiple of k.. If
thie S for some t=1,a=1, then G 1s constant on the subset
{the, the™, thit?, <« -},

Proof. If meS,ne S, then G(m) = 0 and G(n) # 0. Therefore
Equation (15) implies G(mn) = 0 and G((m, n)) = 0, so S contains mn
and (m,n). Let d = (k;, k). Then deS so d =1Fk, since k, is the
smallest member of S. Therefore each k; in S is a multiple of k,, as
asserted.

If thkee S, let S(t) = {tk:, tki*, thi*?, --.}. This is a subset of S.
Taking m = k, and n = tk{*" in Equation (15) we find G(tki**') =
G(tki™™) so G is constant on S(t).
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