ON THE FUNCTIONAL EQUATION
 $$
F(m n) F((m, n))=F(m) F(n) f((m, n))
$$

Tom M. Apostol and Herbert S. Zuckerman

1. Introduction. Let f be a completely multiplicative arithmetical function. That is, f is a complex-valued function defined on the positive integers such that

$$
f(m n)=f(m) f(n)
$$

for all m and n. We allow the possibility that $f(n)=0$ for all n. (If f is not identically zero then we must have $f(1)=1$.) Given such an f we wish to study the problem of characterizing all numerical functions F which satisfy the functional equation

$$
\begin{equation*}
F(m n) F((m, n))=F(m) F(n) f((m, n)) \tag{1}
\end{equation*}
$$

where (m, n) denotes the greatest common divisor of m and n. When $f(n)=n$ for all n, Equation (1) is satisfied by the Euler ϕ function since we have

$$
\phi(m n) \phi((m, n))=\phi(m) \phi(n)(m, n)
$$

More generally, it is known (see [1], [2]) that an infinite class of solutions of (1) is given by the formula

$$
F(n)=\sum_{d \mid n} f(d) \mu\left(\frac{n}{d}\right) g\left(\frac{n}{d}\right)
$$

where μ is the Möbius function and g is any multiplicative function, that is,

$$
g(m n)=g(m) g(n) \quad \text { whenever }(m, n)=1
$$

Some work on a special case of this problem has been done by P. Comment [2]. In the case $f(1)=1$ he has investigated those solutions F of (1) which have $F(1) \neq 0$ and which satisfy an additional condition which he calls "property O ": If there exists a prime p_{0} such that $F\left(p_{0}\right)=0$ then $F\left(p_{0}^{\alpha}\right)=0$ for all $\alpha>1$. Comment's principal theorem states that F is a solution of (1) with property O and with $F(1) \neq 0$ if, and only if, F satisfies the two equations

$$
F(m n) F(1)=F(m) F(n) \quad \text { whenever }(m, n)=1
$$

and

$$
F\left(p^{\alpha}\right)=F(p) f(p)^{\alpha-1} \text { for all primes } p \text { and all } \alpha \geqq 1 .
$$

In this paper we study the problem in its fullest generality. In the case of greatest interest, $F(1) \neq 0$, we obtain a complete classification of all solutions of (1).
2. The solutions of (1) with $f(1)=0$. If the given f has $f(1)=0$ then f is identically zero and Equation (1) reduces to

$$
\begin{equation*}
F(m n) F((m, n))=0 \tag{2}
\end{equation*}
$$

for all m, n. To characterize the solutions of (2) we introduce the following concept.

Definition 1. A (finite or infinite) set $A=\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ of positive integers is said to have property P if no a_{i} is divisible by any a_{j}^{2}.

Two simple examples of sets with property P are the set of primes and the set of products of distinct primes. The solutions of (2) may now be characterized as follows:

Theorem 1. A numerical function F satisfies (2) if, and only $i f$, there exists a set A with property P such that $F(n)=0$ whenever $n \notin A$.

Proof. Let $A=\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$ be a set with property P. Define $F\left(a_{1}\right), F\left(a_{2}\right), F\left(a_{3}\right), \cdots$, in an arbitrary fashion and define $F(n)=0$ if $n \notin A$. We shall prove that F satisfies (2).

Choose two integers m and n and let $d=(m, n)$. If $d \notin A$ then $F(d)=0$ and (2) holds. If $d \in A$ then $m n \notin A$ since $d^{2} \mid m n$. In this case we have $F(m n)=0$ and again (2) holds. Therefore F satisfies (2) in all cases.

To prove the converse, assume F satisfies (2) and let A be the set of integers n such that $F(n) \neq 0$. We shall prove that A has property P. Choose any element b in A. If b were divisible by k^{2} for some k in A, say $b=q k^{2}$, then we could take $m=q k, n=k$ in (2) to obtain

$$
F(b) F(k)=0
$$

which is impossible since both b and k are in A. Therefore A has property P and the proof of Theorem 1 is complete.
3. The solutions of (1) with $f(1)=F(1)=1$. Since we have characterized all solutions of (1) when $f(1)=0$ we assume from now on that $f(1) \neq 0$ which means $f(1)=1$. We divide the discussion in
two parts according as $F(1) \neq 0$ or $F(1)=0$. In the first case we introduce $G(n)=F(n) / F(1)$ and we see that (1) is equivalent to

$$
G(m n) G((m, n))=G(m) G(n) f((m, n))
$$

with $G(1)=1$. This means that the case with $F(1) \neq 0$ reduces to the case $F(1)=1$. In this case we make a preliminary reduction of the problem as follows.

Theorem 2. Assume $f(1)=1$. A numerical function F satisfies (1) with $F(1)=1$ if, and only if, F is multiplicative and satisfies the equation

$$
\begin{equation*}
F\left(p^{a+b}\right) F\left(p^{b}\right)=F\left(p^{a}\right) F\left(p^{b}\right) f\left(p^{b}\right) \tag{3}
\end{equation*}
$$

for all primes p and all integers $a \geqq b \geqq 1$.
Proof. Assume F satisfies (1). Taking coprime m and n in (1) we find $F(m n)=F(m) F(n)$, so F is multiplicative. Taking $m=p^{a}$, $n=p^{b}$ in (1) we obtain (3).

To prove the converse, assume F is a multiplicative function satisfying (3) for primes p and $a \geqq b \geqq 1$. Choose two positive integers m and n. If (m, n) =1, Equation (1) is satisfied because it simply states that F is multiplicative. Therefore, assume $(m, n)=d>1$ and use the prime-power factorizations

$$
m=\prod_{i=1}^{\infty} p_{i}^{a_{i}}, \quad n=\prod_{i=1}^{\infty} p_{i}^{b i}, \quad d=\prod_{i=1}^{\infty} p_{i}^{c_{i}}
$$

where $a_{i} \geqq 0, b_{i} \geqq 0, c_{i}=\min \left(a_{i}, b_{i}\right)$, the products being extended over all primes. Since F is multiplicative we have

$$
\begin{aligned}
F(m n) F(d) & =\prod_{i=1}^{\infty} F\left(p_{i}^{a_{i}+b_{i}}\right) F\left(p_{i}^{c_{i}}\right) \\
& =\prod_{0 \leqq o_{i} \leqq a_{i}} F\left(p_{i}^{a_{i}+b_{i}}\right) F\left(p_{i}^{b_{i}}\right) \prod_{0 \leqq a_{i}<b_{i}} F\left(p_{i}^{a_{i}+b_{i}}\right) F\left(p_{i}^{a_{i}}\right) .
\end{aligned}
$$

The factors corresponding to $b_{i}=0$ or $a_{i}=0$ are

$$
\prod_{0=b_{i} \leqq a_{i}} F\left(p_{i}^{a_{i}}\right) \cdot \prod_{0=a_{i}<b_{i}} F\left(p_{i}^{b_{i}}\right)=\prod_{a_{i} b_{i}=0} F\left(p_{i}^{a_{i}}\right) F\left(p_{i}^{b_{i}}\right) f\left(p_{i}^{c_{i}}\right)
$$

since $F(1)=f(1)=1$. For the remaining factors we apply (3) to each product and we obtain

$$
\begin{aligned}
F(m n) F(d) & =\prod_{0 \leqq b_{i} \leqq a_{i}} F\left(p_{i}^{a_{i}}\right) F\left(p_{i}^{b_{i}}\right) f\left(p_{i}^{b_{i}}\right) \cdot \prod_{0 \leqq a_{i}<b_{i}} F\left(p_{i}^{a_{i}}\right) F\left(p_{i}^{b_{i} i}\right) f\left(p_{i}^{a_{i}}\right) \\
& =\prod_{i=1}^{\infty} F\left(p_{i}^{a_{i}}\right) F\left(p_{i}^{b i}\right) f\left(p_{i}^{c_{i}}\right)=F(m) F(n) f(d) .
\end{aligned}
$$

This completes the proof of Theorem 2.

We turn now to the problem of finding all solutions of (3). If p is a prime for which $f(p)=0$, then for this prime (3) becomes

$$
\begin{equation*}
F\left(p^{a+b}\right) F\left(p^{b}\right)=0 \quad \text { whenever } a \geqq b \geqq 1 \tag{4}
\end{equation*}
$$

For a fixed p the solutions of (4) may be characterized as follows:

Theorem 3. An arithmetical function F satisfies (4) for a given prime p if, and only if, there exists an integer $c \geqq 1$ such that

$$
\begin{equation*}
F\left(p^{i}\right)=0 \quad \text { for }^{1} 1 \leqq i \leqq c-1 \text { and for } i \geqq 2 c \tag{5}
\end{equation*}
$$

Proof. Assume F satisfies (5) for some $c \geqq 1$. Choose two integers a and b with $a \geqq b \geqq 1$. If $b \leqq c-1$ then (5) implies $F\left(p^{b}\right)=0$ so (4) is satisfied. If $b \geqq c$ then $a+b \geqq 2 b \geqq 2 c$ so $F\left(p^{a+b}\right)=0$ and (4) is again satisfied.

To prove the converse, assume F is an arithmetical function satisfying (4) for some prime p. If $F\left(p^{t}\right)=0$ for all integers $t \geqq 1$ then (5) holds with $c=1$. Otherwise, we let c be the smallest $t \geqq 1$ for which $F\left(p^{t}\right) \neq 0$. Then $F\left(p^{i}\right)=0$ for all $i \leqq c-1$. Now take any $i \geqq 2 c$ and write $i=a+c$ where $a \geqq c$. Taking $b=c$ in (4) we find $F\left(p^{i}\right)=0$ for $i \geqq 2 c$. Therefore (5) is satisfied for this choice of c and the proof of Theorem 3 is complete.

We consider next those primes p for which $f(p) \neq 0$. For such p the problem of solving (3) may be reduced as follows:

Theorem 4. Let p be a prime for which $f(p) \neq 0$. An arithmetical function F satisfies (3) if, and only if, there exists an arithmetical function g (which may depend on p) such that

$$
\begin{equation*}
F\left(p^{a}\right)=g(a) f(p)^{a} \quad \text { for all } a \geqq 1, \tag{6}
\end{equation*}
$$

where g satisfies the functional equation

$$
\begin{equation*}
g(a+b) g(b)=g(a) g(b) \text { for all } a \geqq b \geqq 1 \tag{7}
\end{equation*}
$$

Proof. Assume there exists a function g satisfying (7) and let $F\left(p^{a}\right)=g(a) f(p)^{a}$. Then if $a \geqq b \geqq 1$ we have

$$
F\left(p^{a+b}\right) F\left(p^{b}\right)=g(a+b) f(p)^{a+b} g(b) f(p)^{b}
$$

and

$$
F\left(p^{a}\right) F\left(p^{b}\right) f\left(p^{b}\right)=g(a) f(p)^{a} g(b) f(p)^{b} f(p)^{b}
$$

[^0]Using (7) we see that F satisfies (3).
To prove the converse, assume F satisfies (3) and let

$$
g(a)=\frac{F\left(p^{a}\right)}{f(p)^{a}}
$$

for $a \geqq 1$. From (3) we see at once that g satisfies (7), so the proof of Theorem 4 is complete.

Next we determine all the solutions of the functional equation (7).
Theorem 5. Assume g is an arithmetical function satisfying (7). Then there exists an integer $k \geqq 1$, a divisor d of k, and a complex number C such that
(8) $g(n)=0$ for $1 \leqq n \leqq k-1$, and for $n \geqq k, n \not \equiv 0(\bmod d)$,

$$
\begin{equation*}
g(n)=C \quad \text { for } n \geqq k, n \equiv 0(\bmod d) \tag{9}
\end{equation*}
$$

Conversely, choose any integer $k \geqq 1$, any divisor d of k, and any complex number C. For those n satisfying $n \geqq k$ and $n \equiv 0(\bmod d)$ let $g(n)=C$, and let $g(n)=0$ for all other n. Then this g satisfies (7).

Proof. Assume g satisfies (7). If g is identically zero then (8) and (9) hold with any choice of k and d and with $C=0$. If g is not identically zero, let k be the smallest positive integer n for which $g(n) \neq 0$ and let $C=g(k)$. Then $g(n)=0$ for $1 \leqq n \leqq k-1$. If $n \geqq 2 k$ we may write $n=k+r, r \geqq k$, and use (7) with $a=r, b=k$ to obtain the periodicity relation

$$
\begin{equation*}
g(k+r)=g(r) \quad \text { for } r \geqq k \tag{10}
\end{equation*}
$$

In particular, $g(2 k)=g(k)$. Therefore, to completely determine g we need only consider $g(n)$ for n in the interval $k+1 \leqq n \leqq 2 k-1$. If $g(n)=0$ for all n in this interval then $g(n)=0$ for all $n \not \equiv 0(\bmod k)$ and (8) and (9) hold with $d=k, C=g(k)$. Suppose, then, that $g(n) \neq 0$ for some n in the interval $k+1 \leqq n \leqq 2 k-1$ and let $k+d$ be the smallest such n. Then $1 \leqq d \leqq k-1$. We prove next that $d \mid k$, that $g(n)=0$ if $n \not \equiv 0(\bmod d)$, and that $g(n)=C$ if $n \equiv 0(\bmod d)$.

For this purpose we define a new function h by the equation

$$
h(n)=\frac{g(n+k)}{g(k)} \text { for } n \geqq 0
$$

Then the periodicity property (10) implies

$$
\begin{equation*}
\bar{h}(n+k)=h(n) \quad \text { if } n \geqq 0 \tag{11}
\end{equation*}
$$

We also have

$$
\begin{equation*}
h(0)=h(k)=1, h(n)=0 \quad \text { if } 1 \leqq n<d, h(d) \neq 0 \tag{12}
\end{equation*}
$$

Now for $n \geqq 0$ we have

$$
h(n+d)=h(n+d+2 k)=\frac{g(n+d+3 k)}{g(k)} \quad \text { and } \quad h(d)=\frac{g(d+k)}{g(k)},
$$

Since $n+2 k>d+k>1$ we may use (7) with $a=n+2 k, b=d+k$, to obtain

$$
\begin{aligned}
h(n+d) h(d) & =\frac{g(n+d+3 k) g(d+k)}{g(k)^{2}} \\
& =\frac{g(n+2 k) g(d+k)}{g(k)^{2}}=h(n+k) h(d)=h(n) h(d) .
\end{aligned}
$$

Since $h(d) \neq 0$ this implies

$$
\begin{equation*}
h(n+d)=h(n) \quad \text { if } n \geqq 0 . \tag{13}
\end{equation*}
$$

Using (13) along with (12) we find

$$
h(n)=0 \quad \text { if } n \not \equiv 0(\bmod d), h(n)=1 \quad \text { if } n \equiv 0(\bmod d) .
$$

Also, $d \mid k$ since $h(k)=1$. This implies that $g(n)=0$ if $n \not \equiv 0(\bmod d)$, and that $g(n)=g(k)=C$ if $n \equiv 0(\bmod d)$.

Now we prove the converse. Given $k \geqq 1$, a divisor d of k, and a complex number C, define g as indicated in (8) and (9). We must prove that this g satisfies (7). Choose integers a and b with $a \geqq b \geqq 1$. If $a \leqq k-1$ then $b \leqq k-1$ and $g(a)=g(b)=0$ so (7) is satisfied. Suppose, then, that $a \geqq k$. We consider two cases: (i) $a \not \equiv 0(\bmod d)$, and (ii) $a \equiv 0(\bmod d)$.

If $a \not \equiv 0(\bmod d)$ we have $g(\alpha)=0$ and the right member of (7) vanishes. If $a+b \not \equiv 0(\bmod d)$ then $g(a+b)=0$. If $a+b \equiv 0(\bmod d)$ then $b \not \equiv 0(\bmod d)$ and $g(b)=0$. Therefore we always have $g(a+b) g(b)=0$ so the left member of (7) also vanishes. This settles case (i).

In case (ii), $a \equiv 0(\bmod d)$, we again consider the two alternatives $a+b \not \equiv 0(\bmod d), a+b \equiv 0(\bmod d)$. If $a+b \not \equiv 0(\bmod d)$ then $b \not \equiv$ $0(\bmod d)$ and both sides of (7) vanish. If $a+b \equiv 0(\bmod d)$ then $b \equiv 0(\bmod d)$ so $g(a)=g(b)=g(a+b)=C$ and Equation (7) is satisfied. This completes the proof of Theorem 5.

Theorems 2 through 5 give us a complete classification of all solutions of (1) in the case $f(1)=F(1)=1$.
4. The case $f(1)=1, F(1)=0$. In this case any F which satisfies (1) must also satisfy

$$
\begin{equation*}
F(m) F(n)=0 \quad \text { whenever }(m, n)=1 \tag{14}
\end{equation*}
$$

These functions may be characterized by means of sets of integers with the following property.

Definition 2. A (finite or infinite) set $S=\left\{k_{1}, k_{2}, k_{3}, \cdots\right\}$ of positive integers will be said to have property Q if $1<k_{i}<k_{i+1}$ and (k_{i}, k_{j}) >1 for all i and j.

For example, the set of all multiples of a given integer $k_{1}>1$ has property Q, but there are more complicated sets with this property.

Theorem 6. A numerical function F satisfies (14) if, and only if, there exists a set S with property Q such that $F(n)=0$ whenever $n \notin S$, and $F(n) \neq 0$ whenever $n \in S$.

Proof. Assume F satisfies (14). Then $F(1)=0$. If F is identically zero the theorem holds with S the empty set. If F is not identically zero there is a smallest integer $k_{1}>1$ with $F\left(k_{1}\right) \neq 0$. The set $\left\{k_{1}\right\}$ has property Q. If $F(n)=0$ for all $n>k_{1}$ we may take $S=\left\{k_{1}\right\}$. Otherwise there exists a smallest integer $k_{2}>k_{1}$ with $F\left(k_{2}\right) \neq 0$. The set $\left\{k_{1}, k_{2}\right\}$ has property Q because (14) implies $\left(k_{1}, k_{2}\right)>1$. If $F(n)=0$ for all $n>k_{2}$ we may take $S=\left\{k_{1}, k_{2}\right\}$. If $F(n) \neq 0$ for some $n>k_{2}$ we let k_{3} be the smallest such n. Then (14) implies $\left(k_{1}, k_{3}\right)>1$ and $\left(k_{2}, k_{3}\right)>1$ so the set $\left\{k_{1}, k_{2}, k_{3}\right\}$ has property Q. Continuing in this way we obtain a set $S=\left\{k_{1}, k_{2}, k_{3}, \cdots\right\}$ (finite or infinite) with the properties indicated in the theorem.

To prove the converse, choose any set S with property Q, assign arbitrary nonzero values to the elements of S and let $F(n)=0$ if $n \notin S$. To show that F satisfies (14), choose integers m and n with $(m, n)=1$. Both m and n cannot be in S since S has property Q. Therefore at least one of m or n is not in S so at least one of $F(m)$ or $F(n)$ is zero. This completes the proof of Theorem 6.

Since Theorem 6 characterizes all solution of (14), all solutions of the more general equation (1) with $F(1)=0$ must be found among those described in Theorem 6. For those solutions F of (14) which also satisfy (1) more can be asserted about the set S on which F does not vanish. We shall treat only the case in which f is never zero. In this case, if we write $G(n)=F(n) / f(n)$, Equation (1) is equivalent to

$$
\begin{equation*}
G(m n) G((m, n))=G(m) G(n) \tag{15}
\end{equation*}
$$

In other words, if f never vanishes the problem reduces to the case in which f is identically 1 . Moreover, $G(n)=0$ if, and only if, $F(n)=0$ so the set S on which G does not vanish is the same as that on which F does not vanish. For those G satisfying (15) with $G(1)=0$ we shall prove:

Theorem 7. Let G be a solution of (15) with $G(1)=0$ and let $S=\left\{k_{1}, k_{2}, \cdots\right\}$ be a set with property Q such that $G(n) \neq 0$ if, and only if, $n \in S$. Then S contains $m n$ and (m, n) whenever it contains m and n. Moreover, every element in S is a multiple of k_{1}. If $t k_{1}^{a} \in S$ for some $t \geqq 1, a \geqq 1$, then G is constant on the subset $\left\{t k_{1}^{a}, t k_{1}^{a+1}, t k_{1}^{a+2}, \cdots\right\}$.

Proof. If $m \in S, n \in S$, then $G(m) \neq 0$ and $G(n) \neq 0$. Therefore Equation (15) implies $G(m n) \neq 0$ and $G((m, n)) \neq 0$, so S contains $m n$ and (m, n). Let $d=\left(k_{i}, k_{1}\right)$. Then $d \in S$ so $d=k_{1}$ since k_{1} is the smallest member of S. Therefore each k_{i} in S is a multiple of k_{1}, as asserted.

If $t k_{1}^{a} \in S$, let $S(t)=\left\{t k_{1}^{a}, t k_{1}^{a+1}, t k_{1}^{a+2}, \cdots\right\}$. This is a subset of S. Taking $m=k_{1}$ and $n=t k_{1}^{a+r}$ in Equation (15) we find $G\left(t k_{1}^{a+r+1}\right)=$ $G\left(t k_{1}^{a+r}\right)$ so G is constant on $S(t)$.

Bibliography

1. Douglas R. Anderson and T. M. Apostol, The evaluation of Ramanujan's sum and generalizations, Duke Math. J., 20 (1953), 211-216.
2. P. Comment, Sur L'équation fonctionelle $F(n m) F((n, m))=F(n) F(m) f((m, n))$, Bull. Res. Council of Israel, Sect. F7F (1957/58) pp. 14-20.

California Institute of Technology and
University of Washington

[^0]: ${ }^{1}$ If $c=1$ the inequality $1 \leqq i \leqq c-1$ is vacuous; in this case it is understood that (5) is to hold for all $i \geqq 2$.

