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l Introduction* Let/ be a completely multiplicative arithmetical
function. That is, / is a complex-valued function defined on the
positive integers such that

f(mn) = f{m)f{n)

for all m and n. We allow the possibility that f(n) = 0 for all n.
(If / is not identically zero then we must have/(I) = 1.) Given such
an / we wish to study the problem of characterizing all numerical
functions F which satisfy the functional equation

(1) F(mn)F((m, n)) = F(m)F(ri)f((m, n)) ,

where (m, n) denotes the greatest common divisor of m and n. When
f(n) = n for all n, Equation (1) is satisfied by the Euler Φ function
since we have

ψ(mn)Φ((m, n)) — φ(m)Φ{n)(m, n) .

More generally, it is known (see [1], [2]) that an infinite class of
solutions of (1) is given by the formula

where μ is the Mobius function and g is any multiplicative function,
that is,

g(mn) = g(m)g(n) whenever (m, n) = 1 .

Some work on a special case of this problem has been done by P.
Comment [2]. In the case /(I) = 1 he has investigated those solutions
F of (1) which have F(ϊ) Φ 0 and which satisfy an additional condition
which he calls "property 0": If there exists a prime pQ such that
F(p0) = 0 then F(p%) = 0 for all a > 1. Comment's principal theorem
states that F is a solution of (1) with property 0 and with F(l) Φ 0
if, and only if, F satisfies the two equations

F(mn)F{l) — F(m)F(n) whenever (m, n) = 1

and
PROPERTY OF
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F(pa) = F(p)f(p)oί~1 for all primes p and all a ^ 1 .

In this paper we study the problem in its fullest generality. In
the case of greatest interest, F(l) Φ 0, we obtain a complete classifi-
cation of all solutions of (1).

2. The solutions of (1) with/(I) = 0. If the given / has/(I) = 0
then / is identically zero and Equation (1) reduces to

(2) F(mn)F((m9 n)) = 0

for all m, n. To characterize the solutions of (2) we introduce the
following concept.

DEFINITION 1. A (finite or infinite) set A = {alf α2, α3, •} of
positive integers is said to have property P if no a{ is divisible by
any αj .

Two simple examples of sets with property P are the set of primes
and the set of products of distinct primes. The solutions of (2) may
now be characterized as follows:

THEOREM 1. A numerical function F satisfies (2) if, and only
if, there exists a set A with property P such that F(n) = 0 whenever
n<£A.

Proof. Let A = {alf a2, α3, •} be a set with property P. Define
F(a^), F(a2), F(as), , in an arbitrary fashion and define F(n) = 0 if
n$A. We shall prove that F satisfies (2).

Choose two integers m and n and let d = (m, n). If d ί A then
F(d) — 0 and (2) holds. If d e A then mn $ A since d2 \ mn. In this
case we have F(mn) — 0 and again (2) holds. Therefore F satisfies
(2) in all cases.

To prove the converse, assume F satisfies (2) and let A be the
set of integers n such that F(n) Φ 0. We shall prove that A has
property P. Choose any element 6 in A. If 6 were divisible by k2

for some k in A, say b = qk2, then we could take m = qk, n = k in
(2) to obtain

F(h)F(k) - 0

which is impossible since both 6 and k are in A. Therefore A has
property P and the proof of Theorem 1 is complete.

3, The solutions of (1) with /(I) = F(l) = 1. Since we have
characterized all solutions of (1) when /(I) = 0 we assume from now
on that /(I) Φ 0 which means /(I) = 1. We divide the discussion in
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two parts according as ^(1) ̂  0 or F(l) = 0. In the first case we
introduce G(n) = F(n)/F(l) and we see that (1) is equivalent to

G(mn)G((m, n)) = G(m)G(n)f((m, n))

with G(l) = 1. This means that the case with JP(1) Φ 0 reduces to
the case F(l) = 1. In this case we make a preliminary reduction of
the problem as follows.

THEOREM 2. Assume /(I) = 1. A numerical function F satisfies
(1) with F(l) = 1 if, and only if, F is multiplicative and satisfies
the equation

( 3 ) F(pa+b)F(pb) = F(pa)F(pb)f(pb)

for all primes p and all integers a ^ b ̂  1.

Proof. Assume F satisfies (1). Taking coprime m and n in (1)
we find F(mn) = F(m)F{n), so F is multiplicative. Taking m = pa,
n — pb in (1) we obtain (3).

To prove the converse, assume F is a multiplicative function
satisfying (3) for primes p and a ^ b ̂  1. Choose two positive integers
m and n. If (m, n) — 1, Equation (1) is satisfied because it simply
states that F is multiplicative. Therefore, assume (m, n) = d > 1 and
use the prime-power factorizations

m = Π PP , n=f[pb

i*, ί = Πp?
i=l i=l i—\

where a{ ^ 0, b{ ̂  0, c< = min (ai9 6J, the products being extended over
all primes. Since F is multiplicative we have

F(mn)F(d) =

= π F(pa

%

i+hi)F(pVy Π

The factors corresponding to 6̂  = 0 or a{ = 0 are

Π W ) Π F(3>ίO= Π
b

since i^(l) = / ( l ) = 1. For the remaining factors we apply (3) to each
product and we obtain

F(mn)F(d)= Π F{p«i)F{p\i)f{p\i) Π

= Π F(pi*)F(rt)f(pp) = F(m)F(n)f(d) .
i=l

This completes the proof of Theorem 2.
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We turn now to the problem of finding all solutions of (3). If p
is a prime for which f(p) = 0, then for this prime (3) becomes

(4) F(pa+b)F(pb) = 0 whenever a ^ b ̂  1 .

For a fixed p the solutions of (4) may be characterized as follows:

THEOREM 3. An arithmetical function F satisfies (4) for a given
prime p if, and only if, there exists an integer c *> 1 such that

( 5 ) F(pt) = 0 for1 1 ̂  i ^ c - 1 and for i ^ 2c .

Proof. Assume F satisfies (5) for some c ̂  1. Choose two integers
a and b with α ^ & ^ l . If δ ̂  c - 1 then (5) implies F(pb) = 0 so
(4) is satisfied. If b ̂  c then a + b ̂  26 ̂  2c so F(pα+δ) = 0 and (4)
is again satisfied.

To prove the converse, assume F is an arithmetical function
satisfying (4) for some prime p. If F{pt) = 0 for all integers t Ξ> 1
then (5) holds with c = 1. Otherwise, we let c be the smallest t ^ 1
for which .Fφ*) ̂  0. Then F(pι) = 0 for all ΐ ^ c - 1. Now take
any i ^ 2c and write i = a + c where a ^ c. Taking 6 = c in (4) we
find F{pι) — 0 for i ^ 2c. Therefore (5) is satisfied for this choice of
c and the proof of Theorem 3 is complete.

We consider next those primes p for which f(p) Φ 0. For such
p the problem of solving (3) may be reduced as follows:

THEOREM 4. Let p be a prime for which f(p) Φ 0. An arithme-
tical function F satisfies (3) if, and only if, there exists an arithme-
tical function g (which may depend on p) such that

( 6) F(pa) = g(a)f(p)a for all a ^ 1 ,

where g satisfies the functional equation

(7 ) g(a + b)g(b) = g(a)g(b) for all a ^ b ̂  1 .

Proof. Assume there exists a function g satisfying (7) and let
F(pa) = g(a)f(p)a. Then if a ^ b ̂  1 we have

= g(a + b)f(p)*+
b
g(b)f(p)

b

and

F(p")F(p
b
)f(p

b
) = g{a)f(pfg{b)f{p)

b
f{p)

b
 .

1 If c = 1 the inequality l ^ i ^ c — 1 is vacuous; in this case it is understood t h a t

(5) is to hold for all i ^ 2.
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Using (7) we see that F satisfies (3).
To prove the converse, assume F satisfies (3) and let

for a Ξ> 1. From (3) we see at once that g satisfies (7), so the proof
of Theorem 4 is complete.

Next we determine all the solutions of the functional equation (7).

THEOREM 5. Assume g is an arithmetical function satisfying
(7). Then there exists an integer k ^ 1, a divisor d of k, and a
complex number C such that

{8) g(n) = 0 for 1 ^ n ^ k — 1 , and for n 2> k,n φ. 0 (mod d) ,

( 9 ) g(n) = C forn^k,n = 0 (mod d) .

Conversely, choose any integer k ^ 1, any divisor d of k, and any
complex number C. For those n satisfying n^k and n = 0 (mod d)
let g(n) = C, and let g(n) = 0 for all other n. Then this g satisfies (7).

Proof. Assume g satisfies (7). If g is identically zero then (8)
and (9) hold with any choice of k and d and with C = 0. If g is not
identically zero, let k be the smallest positive integer n for which
g(n) Φ 0 and let C = g(k). Then g(n) = 0 for 1 ^ n ^ k - 1. If
n ^ 2k we may write n = k + r,r ^k, and use (7) with a = r, b = fc
to obtain the periodicity relation

(10) f/(& + r) = g(r) for r ^ fc .

In particular, g(2k) = g(k). Therefore, to completely determine g we
need only consider g(n) for n in the interval k + l^n^2k — 1. If
#(w) = 0 for all n in this interval then g(n) = 0 for all n Ξ£ 0 (mod fc)
and (8) and (9) hold with d = k, C = g(k). Suppose, then, that g(n) Φ 0
for some n in the interval k + l^n^2k — 1 and let k + d be the
smallest such n. Then 1 ^ cί ^ A; — 1. We prove next that d | k, that
#(^) = o if n 3= 0 (mod d), and that ^(^) = C if w Ξ 0 (mod d).

For this purpose we define a new function h by the equation

h(n) = g(n + fc) for n ^ 0 .
0(*O

Then the periodicity property (10) implies

(11) h(n + k) = fc(n) if w ^ 0 .

We also have
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(12) ft(0) - h(k) = 1, h(n) = 0 if 1 ^ n < d, h(d) Φ 0 .

Now for n ^ 0 we have

h(n + d) = h(n + d + 2k) = g(n + d + 3fc> and h(d) =
9(k)

Since n + 2k>d + k>lwe may use (7) with a = n + 2k,b = d + k,
to obtain

d)h(d) = g(» + d + Sk)g(d + k)
g{kf

= g(n + 2k)g(d + fc) =

Since Ẑ (cί) ̂  0 this implies

(13) h(n + d) = h(n) if n ^ 0 .

Using (13) along with (12) we find

h(n) = 0 if n Ξ£ 0 (mod d), /^(^) = 1 if n = 0 (mod d) .

Also, d | fc since h(k) = 1. This implies that g(n) = 0 if n ^ 0 (mod d),
and that #(w) = (/(&) = C if n = 0 (mod c£).

Now we prove the converse. Given k ^ 1, a divisor cί of fc, and
a complex number C, define # as indicated in (8) and (9). We must
prove that this g satisfies (7). Choose integers a and b with a i> b ^ 1.
If a^k-1 then 6 ^ jk - 1 and #(α) = g(b) = 0 so (7) is satisfied.
Suppose, then, that a ^ fc. We consider two cases: (i) α ξέ 0 (mod d),
and (ii) a = 0 (mod d).

If α ^ 0 (mod d) we have #(α) = 0 and the right member of (7)
vanishes. If a + b =έ 0 (mod d) then g(a + b) = 0. If α + δ = 0 (mod d)
then & Ξ£ 0 (mod d) and g{b) = 0. Therefore we always have #(α + 6)^(6) = 0
so the left member of (7) also vanishes. This settles case (i).

In case (ii), a = 0 (mod d), we again consider the two alternatives
a + b ξέ 0 (mod d), a + b = 0 (mod d). If α + 6 ΐ 0 (mod d) then 6 =έ
0 (mod d) and both sides of (7) vanish. If a + b = 0 (mod d) then
6 Ξ 0 (mod d) so #(α) = g(b) = g(a + b) = C and Equation (7) is satisfied.
This completes the proof of Theorem 5.

Theorems 2 through 5 give us a complete classification of all solu-
tions of (1) in the case / (I ) = F(l) = 1.

4Φ The case/(I) = 1, F(l) = 0 In this case any F which satisfies
(1) must also satisfy

(14) F(m)F{n) = 0 whenever (m, n) = 1 .
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These functions may be characterized by means of sets of integers
with the following property.

DEFINITION 2. A (finite or infinite) set S = {ku k2, k3, •••} of
positive integers will be said to have property Q if 1 < k{ < kί+1 and
(kif kj) > 1 for all i and j .

For example, the set of all multiples of a given integer kx > 1
has property Q, but there are more complicated sets with this property.

THEOREM 6. A numerical function F satisfies (14) if, and only
if, there exists a set S with property Q such that F(n) = 0 whenever
ng S, and F(n) Φ 0 whenever n e S.

Proof. Assume F satisfies (14). Then F(l) = 0. If F is identi-
cally zero the theorem holds with S the empty set. If F is not
identically zero there is a smallest integer kx > 1 with F(k^) Φ 0. The
set {A J has property Q. If F(n) = 0 for all n > kλ we may take
S = {fci}. Otherwise there exists a smallest integer k2 > kλ with
F(k2) Φ 0. The set {kl9 k2} has property Q because (14) implies (kl9 k2)>l.
If F(n) = 0 for all n > k2 we may take S = {kl9 k2}. If F(n) Φ 0 for
some n > k2 we let k3 be the smallest such n. Then (14) implies
(klf k3) > 1 and (k2, kd) > 1 so the set {kl9 k2, k3} has property Q. Con-
tinuing in this way we obtain a set S = {kl9 k2, ks, •} (finite or in-
finite) with the properties indicated in the theorem.

To prove the converse, choose any set S with property Q, assign
arbitrary nonzero values to the elements of S and let F(n) = 0 if
ng S. To show that F satisfies (14), choose integers m and n with
(m, n) = 1. Both m and n cannot be in S since S has property Q.
Therefore at least one of m or n is not in S so at least one of F(m)
or F(n) is zero. This completes the proof of Theorem 6.

Since Theorem 6 characterizes all solution of (14), all solutions of
the more general equation (1) with F(l) = 0 must be found among
those described in Theorem 6. For those solutions F of (14) which
also satisfy (1) more can be asserted about the set S on which F does
not vanish. We shall treat only the case in which / is never zero.
In this case, if we write G(n) = F(n)/f(n), Equation (1) is equivalent to

(15) G(mn)G((m, n)) = G{m)G{n) .

In other words, if / never vanishes the problem reduces to the case
in which/ is identically 1. Moreover, G(n) — 0 if, and only if, F(n) = 0
so the set S on which G does not vanish is the same as that on which
F does not vanish. For those G satisfying (15) with G(l) = 0 we shall
prove:
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THEOREM 7. Let G be a solution of (15) with G(ί) = 0 and let
S = {klf k2, } be a set with property Q such that G(n) Φ 0 if, and,
only if, n e S. Then S contains mn and (m, n) whenever it contains
m and n. Moreover, every element in S is a multiple of kx. If
tkζ € S for some t ^ l , a ^ l , then G is constant on the subset
{tkϊ,tkΐ+1,tkΐ+2, •••}.

Proof. If meS,neS, then G(m) Φ 0 and G(n) Φ 0. Therefore
Equation (15) implies G(mn) Φ 0 and G((m, n)) Φ 0, so S contains mn
and (m, n). Let d = (fĉ , Λi). Then d e S so d ~kx since fcx is the
smallest member of S. Therefore each k{ in S is a multiple of &!, as
asserted.

If tkΐ G S, let S(t) = {ίfcj, ί/c?+1, £&ί+2, •}. This is a subset of S.
Taking m = kx and w = tkl+r in Equation (15) we find G(tkt+r+1) =
G(tkΐ+r) so G is constant on S(ί).
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