A CHARACTERIZATION OF WEAK* CONVERGENCE

MAURICE SION

1. Introduction. Let X be a locally compact, Hausdorff space
and {¢;;7€ D} be a net of Radon measures on X (in the sense of
Caratheodory). The weak* or vague limit of this net is the Radon
measure ¥ such that

liim gfd;ti = gfdv

for every continuous function f vanishing outside some compact set.
In this paper, we construct in § 3 a Radon measure ¢* from a given
base <2 for the topology of X and liminf; ¢, and then, in §4, we
give necessary and sufficient conditions for ¢* to be the weak* limit
of the p,. In particular, if the latter exists then it is the p* gener-
ated when <# is the family of all open sets.

The measure @* is obtained from another measure @ by a standard
regularizing process. The definition of ¢ easily extends to abstract
spaces but that of @* makes essential use of the topology. Thus, it
is of some importance to know when ¢ = @*, that is, when a measure
constructed through an abstract process from the g, turns out to be,
in the topological situation, the weak* limit of the g,. In Theorem 3.3
we give a condition for @ = @* and in § 5 we give an example to show
that the condition cannot be eliminated.

We refer to standard texts such as Halmos [1], Kelley [2], and
Munroe [3] for the elementary properties and concepts of topology and
measure theory used in this paper.

2. Notation.
2.1  denotes the set of natural numbers.
2.2 0 denotes both the empty set and the smallest number in ®.
2.3 p is a Caratheodory (outer) measure on X if and only if ¢ is a
function on the family of all subsets of X such that #20 =0 and
0= pA< S pB,<  whenever ACUB,CcX.

nEw nEw

2.4 For p a Caratheodory measure on X, A is p-measurable if and
only if A X and for evey TC X

pT=mTNA) + i (T—4).

2.5 For X a topological space, ¢ is a Radon measure on X if and
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only if g is a Caratheodory measure on X such that:
(i) open sets are p-measurable,
(ii) if C is compact then pC < oo,
(iii) if a is open then pa = sup{¢C; C compact, C C a},
(iv) if AcC X then pA = inf {#a; o open, A C aj}.
2.6 For X a topological space, Cy(X) is the family of all real-valued
continuous functions on X vanishing outside some compact set.
2.7 (D, <) is a directed set if and only if D=0, D is partially
ordered by < so that for any 4,5 € D there exists ke D with 7 < k
and 7 < k.
2.8 A net is a function on a directed set.
2.9 A denotes the closure of A.

3. The lim inf measure. Let X be a regular topological space;
“# be a base for the topology of X, closed under finite unions and
intersections; (D, <) be a directed set and, for each 7€ D, p; be a
Radon measure on X.

For each ac &#, let

ga = lim p,a (=sup inf p,a) < o
e e ey

and let @ be the Caratheodory measure on X generated by g and <#
(see method I of Munroe [3]), i.e. for each A C X,

PA = inf{Zga; H countable, Hc «#, Ac U a} .
aoceHd wEH
As we show in §5, @ need not be a Radon measure even when
X is compact and Hausdorff. For this reason, for any A C X let
@*A = inf sup @C.

@ open ¢ compact
ACw CCao

‘We then have the following:

3.1 THEOREM. @ s a Caratheodory measure on X such that:

(i) +f A and B are disjoint, closed, compact sets then (AU B) =
PA + 9B,

(ii) of AcC X then pA = inf {pa; a open, A Ca}.

(ili) if C is compact and for every ae <Z, ga = lim; p.a then

®C = inf {ga; ac Z#, Cca}.
3.2 THEOREM. @* 4s a Radon measure on X such that:

(i) ¢*=o.
(ii) if C is compact then ¢*C = @C.
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3.3 THEOREM. If every open set in X 1s the countable umion
of compacta then @* = @,

Proofs

Proof of 3.1

(i) Let A, B be closed, compact and ANB=0. Since X is
regular and <Z is closed to finite unions, there exist «, B8€ < such
that Aca, BcB and anNB =0. Given ¢ >0, choose v,€ <% for
new so that AUBC U,e.7, and

ggvnésb(AUB)Jre-
Let mm=7v.Naand v =v,NB. Then 7,7/ e¢F, ACUicuVn
Bc U.e.7) and hence
pA + B < %(97; + g7 = %‘,gvn <p(AUB)+c¢.

Since ¢ is arbitrary and @ is a Caratheodory measure we have (AU B) =
PA + ¢B.

(ii) Let Ac X. If A = o then the conclusion is trivial. So,
let pA < o and € > 0. Then there exists a countable H C <& such
that A C Usez@ and

Sga=pA+e

wEH

and therefore

p(Ua) =S pasSge=pA+e.
o€ H o€ H

a€EH

(iii) Suppose for every a € &%, ga = lim,; pt,«. Then for «,, +--, «,
in &Z we have

> 9o, = limi My
k=0 t k=0
i k=0
= g<0ak> .
k=0

Hence for any compact C,

oC =inf{ga;aec Z#,Cca}.

Proof of 3.2
(i) Clearly, for any compact C, »C < o and, for any open «,
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@*a = sup {C; C compact, CCa} < pa .
Thus, for any A C X, using 3.1 (ii) we have

@*A = inf {p*a ; @ open, A C a}
< inf {pa ; @ open, A Ca}
=pA.

(ii) For any compact C and open a>DC, we have ¢oC = ¢*a,
hence #C < 9*C. By (i) then ¢*C = @C.

(iii) To see that @* is a Radon measure, we now only need to
check that open sets are @*-measurable. Let « be open, TC X and
€>0. Let T' be open, TC T’ and o*T’' < @*T + . Note that if
C is compact, B is open and C C B then, by regularity, C <B. Thus,
since T' N « is open, there exists a closed, compact C,C T' N a with
o*(T'Na) < pC, +¢e. Also, since T’ — C, is open, there exists a
closed compact C,c T’ — C, with o*(T' — C)) < #C, + ¢. Then

P(TNa)+ YT — a) = p*(T' Na) + *(T' — C)
= ¢C, + ¢C, + 2¢
=@(C,U C,) + 2¢ (by 3.1(i)
< o*T' + 2¢
= o*T + 3¢.

Proof of 3.3. We need only show that ¢*A = @A for open A.
Given such A4, by assumption, A = U,c.C, Where the C, are compact
and C,cC,,,. Because of regularity, we may assume that the C,
are closed compact. We shall show that A = lim, C,. To this end,
let ¢ > 0 and define &, and C, by recursion as follows: let C' = C,
and, for any ne€w, let a, be open, C, Ce,, oa, < ¢C, + /2" and

’

n
nt1 — Up+1 — U() Q; .
j=

Then the C, are closed compact, mutually disjoint and A CU,co®..
Thus,

PAZ Yo, =3 9C, + ¢
nE€w n€w
. N . N
= lim 3 @C,, + ¢ = 11m<p<uc;)+ ¢
N n=0 N n=0

< limpCy + €.
N

4. Weak™* convergence. Let X be a locally compact, Hausdorff
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space, .7 be the family of Radon measures on X, ¢ be a netin Z.
It is well known that . can be identified with the set of posmve
linear functionals on Cy(X) so that the weak* or vague limit of the
M, is defined by

4.1. DEFINITION. (W*)-lim; ¢t; = v if and only if ve .~ and, for
every fe Cy(X),

lim S fdp, = S fdy .
‘On the other hand, for any base <# for the topology of X, let

4.2. DEFINITION. <Z-Lim; ft; be the measure ¢* defined in §3. If
% is the family of all open sets then we simply write Lim; #; instead
of .27 -Lim; 1.

We then have the following:

4.3. THEOREM. (W™*)-lim;t; exists if and only if there exists a
base & for the topology of X, closed under finite unions and inter-
sections, such that, for every ae <%, lim;p,a < <, in which case,

(W*)-lim f; = £7-Lim ft; = Lim 1, .

The proof of this theorem is given in Lemmas A, B, C, D, E below.
A restricted version of Lemma B was proved by Wulfsohn [4].

LEMMA A. Let ve # and
Z ={a: a is open, @ 1s compact and v (boundary «) = 0} .

Then <7 is a base for the topology of X and is closed under finite
unions and intersections.

Proof. Let A be open and @€ A. Then there exists fe Cy(X)
such that: 0= f(x) =1 for 2e X, fle) =1 and f(x) =0 for x¢A.
Since S fdy < oo, there exists 0 < ¢ < 1 such that v(f{t}) = 0. Let
o« = {x: f(x) >t}. Then « is open, a €« C A and boundary a = f~{t}
so that «e «#. Thus, <Z is a base. It is closed to finite unions
and intersections since boundary (a U ) U boundary (o N 8) C boundary
.« U boundary B for any open «, 8.

LEMMA B. (W*)-lim; ¢ = v if and only if ve # and lim,; pt,a =
va for every open « with & compact and v (boundary «) = 0.

Proof. Let (W*)-lim;t; = v, @ be open, @ compact, ¥ (boundary
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a) = 0. For any compact CCa, let feC(X), 0= f(x) =1 for all
zeX, f(x) =1 for zeC, f(x) =0 for x¢a. Then
V0 = Sfdv: limgfdpi§£n/1,a.

Hence

va < lim pa .
1

Now, since v (boundary «) = 0, given ¢ > 0, let B be open, & C B8 and
VB=va +e=va+e Let feCyx), 0=f(x)=1for zcX, flx)=1
for xea, f(x) =0 for x¢B. Then

Hnyiaglimgfdy,-_—- Sfdugv,@éva—l—s.
Thus,
yva = lim pa .

Conversely, suppose Y€ _# and lim; g, = v for every open a with
& compact and v (boundary «) = 0. Let fe Cy(X), € > 0. Then there
exist ¢, %0 for k=0, --+,n such that ¢, <, & =f(x)=t, for
zeX, v(f{t,}) =0 and

n—1

n—1
k=0 k=0

where
a, ={x: t, < f(@) < Ly}

so that «, is open, @&, is compact and v (boundary a,) = 0. Then
lim; ;o = v, and

S fdy < lim S tupricr, + €
i k=1
< lim | fdps + .

Now, let B, be open, B, be compact, v (boundary B;) =0, @,C S,
and VG, =< va, + ¢/(n|t;41[). Then lim; 1,8, = vB, and

lim Sfd#i =< lim nE_.l b1 liB
% i k=0
n—1
= 3 b VBe
im0

n—1
= Dby, + €
=

égfdv+26.
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LemMA C. If (W*)-lim;p;, =v and
F ={a: a is open, & is compact, v (boundary «) = 0}

then
Y = %'@ #,', .

Proof. Let ga = lim; ;& for any ae <&, @ be the measure gener-
ated by g and <Z (see §3). Then, in view of Lemma B and 3.1 (iii),
for any compact C cC X,

oC =inf{gB;Be < ;Ccp}.

Now, for any open @D C there exists, by Lemma A, Be < with
CcpBca. Therefore, using Lemma B, and the outer regularity of v,
we have

vC = inf {va; & open, C C a}
inf {v8; Be <, Cc B}
=inf{gs; ez, Ccp}
=@C .

l

Hence, for any AcC X,

vA = inf sup vC
@ open (O compact
Ace OcCa

= inf sup @C = <#-Lim y,A.

@ open ( compact 7
Acew Ocw

LEMMA D. Let <# be a base for the topology of X, closed under
finite unions and intersections, such that for any @ € &7, lim,; p,a0 < oo.
Then

-@"Ll_i_n t; = (W*)-lim g, .
Proof. For ae Z, let ga = lim; pr,a = lim; p,c¢, @ be the measure
generated by ¢g and <& and @* = ZF-Lim,y; (see §3). Then, by

Theorem 3.2, o*e _#. Let a be open, & compact, #*(boundary «) = 0.
By 3.2 (ii), we have

P*a = *a = pa
and by 3.1 (iii),
o = inf{g8; Be F, acB}.
Given € >0, let Be &, @B and g8 =p*a +¢c. Then
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impta < lim 8 =gB < p*a +¢.
1 7

‘On the other hand, let C be compact, Cca and o*a < p*C + ¢ =
@C + e. Then there exists v€ <& such that CCvyCa and therefore

C = g7 = lim gy = lim pex .

Thus,

lim 0 < p*ar < lim pex
g0 that lim;p,0 = p*a. By Lemma B then ¢* = (W*)-lim, t..

LEMMA E. Let <& be a base for the topology of X, closed under
Jfinite unions and for every a€ Z, lim;, o0 < . Then

-ﬁ‘l‘_i_n}_#iz L‘L@#i .

Proof. For any open «, let ga = lim; p,t, @, be the measure
-generated by g and <% and @, be the measure generated by g and the
family of all open sets. We have to show that for any compact C,
9,C = 9,C. Now, clearly ¢,C < @,C. Suppose 9,C < o and ¢ > 0.
Let a; be open for © =0, --+,n, Cc Ur,a; and

290, =pC+e.
1=1

For each x € C there exists € <% such that xe B Ca; for some ¢ =
‘0, «++,n. Since C is compact, there is a finite family H < <& which
covers C and is a refinement of {a,, ---, @,}. For each 7, let B; be
the union of all those elements in H which are contained in «;. Then
B;e#, B;ca;, and CcU;=Bi. Thus,

%Cégugﬁ’ié;gaié%ﬂs.

5. Remarks. Let &7, g, @ be as in §3. The following example
-shows that ¢ need not be a Radon measure.
. Let X be the set of all ordinals up to and including the first
uncountable ordinal £2. Then, in the order-topology, X 1is compact
Hausdorff. For each 7 < 2, let p;, be the point mass at 4, that is,
poa=1if tea and pga =0 if 1¢a. Let

Z# ={a; ais open and 2¢ (@ — a)}.

For any a ¢ &7, if 2 ¢ a then « is countable and hence ga = lim; p;,a = 0;
if Qea then go =1. Let A =X — {Q}. Then A is open and, being
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uncountable, for any countable family H < <# which covers A there
exists ae H with ga = 1. Thus, 4 =1. On the other hand, if C
is ecompact C < A then C is countable and hence oC = 0. Thus,

®A # sup {pC; C compact, CC A} .

Note, however, that if, instead of taking .<Z as above, we let <%
be the family of all open sets in X then there exist uncountable, dis-
joint a, Be &# with A=aUpB. Then ga = g8 =0 so that @A = 0.
In this case, @ is the point mass at 2 and @ = @*.

We are unable to determine if this holds true in general for com-
pact or locally compact Hausdorff spaces, i.e. if @ = @* whenever <%
is the family of all open sets in X.
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