
A CHARACTERIZATION OF WEAK* CONVERGENCE
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1. Introduction* Let X be a locally compact, Hausdorff space
and {μi ieD} be a net of Radon measures on X (in the sense of
Caratheodory). The weak* or vague limit of this net is the Radon
measure v such that

Km I fdμ{ = I fdv

for every continuous function / vanishing outside some compact set.
In this paper, we construct in § 3 a Radon measure φ* from a given
base & for the topology of X and lim inf{ μ{ and then, in § 4, we
give necessary and sufficient conditions for <p* to be the weak* limit
of the μ{. In particular, if the latter exists then it is the φ* gener-
ated when & is the family of all open sets.

The measure φ* is obtained from another measure φ by a standard
regularizing process. The definition of φ easily extends to abstract
spaces but that of £>* makes essential use of the topology. Thus, it
is of some importance to know when 9 = 9*, that is, when a measure
constructed through an abstract process from the μt turns out to be,
in the topological situation, the weak* limit of the μim In Theorem 3.3
we give a condition for φ = φ* and in § 5 we give an example to show
that the condition cannot be eliminated.

We refer to standard texts such as Halmos [1], Kelley [2], and
Munroe [3] for the elementary properties and concepts of topology and
measure theory used in this paper.

2. Notation*
2.1 a) denotes the set of natural numbers.
2.2 0 denotes both the empty set and the smallest number in ω.
2.3 μ is a Caratheodory (outer) measure on X if and only if μ is a

function on the family of all subsets of X such that μθ — 0 and

0 S μA ^ Σ μBn ^ °° whenever A c U ^ c I .

2.4 For μ a Caratheodory measure on X, A is ^-measurable if and
only if 4 c l and for evey TaX

μT= μ(TnA) + μ(T - A) .

2.5 For X a topological space, μ is a Radon measure on X if and
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only if μ is a Caratheodory measure on X such that:
( i ) open sets are //-measurable,
(ii) if C is compact then μC < oo,
(iii) if a is open then μa = sup {μC C compact, C c a},
(iv) if A c X then //A = inf {μa α: open, A c #}.

2.6 For X a topological space, C0(X) is the family of all real-valued
continuous functions on X vanishing outside some compact set.

2.7 (D, <) is a directed set if and only if D φ 0, D is partially
ordered by < so that for any i, j eD there exists k e D with i < k
and j < k.

2.8 A net is a function on a directed set.
2.9 A denotes the closure of A.

3. The lim inf measure* Let X be a regular topological space;
& be a base for the topology of X, closed under finite unions and
intersections; (D, <) be a directed set and, for each ieD, μ{ be a
Radon measure on X.

For each α e ^ , let

ga = lim μ^ ( = sup inf μiά) < oo
•Jen jβD ieD

and let φ be the Caratheodory measure on X generated by g and &
(see method I of Munroe [3]), i.e. for each A c X,

ψA = inf { Σ 9<z H countable, He: &,

As we show in § 5, <p need not be a Radon measure even when
X is compact and Hausdorff. For this reason, for any A c X let

φ*A = inf sup
α> open 0 compact

A(za Oczcύ

IVe then have the following:

3.1 THEOREM, φ is a Caratheodory measure on X such that:
( i ) if A and B are disjoint, closed, compact sets then φ(A[}B) =

ψA + φB.
(ii) if AdX then φA = mi{φa\ a open, Ac a}.
(iii) if C is compact and for every ae &', ga = lim^ μfii then

φC = inf {ga; ae^, Ccza}.

3.2 THEOREM, φ* is a Radon measure on X such that:
( i ) φ* ^ φm

(ii) if C is compact then φ*C = φC.



A CHARACTERIZATION OF WEAK* CONVERGENCE 1061

3.3 THEOREM. If every open set in X is the countable union
of compacta then φ* = φ.

Proofs

Proof of 3.1
( i ) Let A, B be closed, compact and A f] B = 0. Since X is

regular and & is closed to finite unions, there exist a, β e & such
that Ada, ΰ c / 3 and α f l £ = 0. Given ε > 0, choose Ύne^ for
neω so that A U Bc LLeω7% and

Let 7; = 7Λ Π a and 7;' = Ίn Π /5. Then 7l, 7" e ^ , A c U^eω7;,
neωTi' and hence

Since ε is arbitrary and φ is a Caratheodory measure we have φ(A UB) =
φA + φB.

(ii) Let A c X . If φA = co then the conclusion is trivial. So,
let φA < co and ε > 0. Then there exists a countable Ha^ such
that A c \Ja,eHa and

Σ g& ̂  ψA. + ε

and therefore

φ( U a) ^ Σ ^ ^ = Σ ga = ψA + ε

(iii) Suppose for every a e &, ga = lim^ ̂ α . Then for α0, , an

in ^ we have

Σ Qock = lim

= g(\Jak).
\k=0 /

Hence for any compact C,

= inf {ga ae ^

Proof 0/3.2
( i ) Clearly, for any compact C, φC < 00 and, for any open a,
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φ*a — sup {φC C compact, Ccza} ^ φa .

Thus, for any i d , using 3.1 (ii) we have

φ*A = inf {φ*a a open, A c α}

^ inf {φa α open, A c α}

(ii) For any compact C and open α ^ C , we have φC ^ φ*af

hence <PC ^ ?>*C. By (i) then <P*C = <?C.

(iii) To see that 9* is a Radon measure, we now only need to
check that open sets are <£>*-measurable. Let a be open, TcX and
ε > 0. Let T" be open, TcT' and <£>*T'<<p*T+ε. Note that if
C is compact, /3 is open and Cc/3 then, by regularity, Cc/3. Thus,
since Tf Γί a is open, there exists a closed, compact CλcT' {\a with
<P*(T" n α) ^ ^CΊ + ε. Also, since T' — d is open, there exists a
closed compact C 2 c f - d with cp*(Γ' - Q g φC2 + ε. Then

α) + φ*(T - α) ^ φ^T7 ' n a) + φ*(T' - Q

^ φ d + φC2 + 2ε

- ^ ( d U d ) + 2ε (by 3.1 (i))

^ ^*T" + 2ε

^ 9* Γ + 3ε .

Proof of 3.3. We need only show that <p*A = φA for open A.
Given such A, by assumption, A = LLeωd* where the Cn are compact
and CΛ c Cw+1. Because of regularity, we may assume that the Cn

are closed compact. We shall show that φA = limπ φCn. To this end,
let ε > 0 and define an and C'r, by recursion as follows: let C = d
and, for any ^ e ω, let an be open, Ci c αn, ^^w ^ 9?C» + ε/2w+1 and

d+i — Cn+1 — U ^i •
3=0

Then the C» are closed compact, mutually disjoint and AcU»e»α»
Thus,

i Σ <P<x» ^ Σ ψC'n + ε

- limΣ^C; + ε = lim?>(Uc;V e
jar w=o iv \w=o /

^ lim 9?C^ + ε .
N

4. Weak* convergence. Let X be a locally compact, Hausdorff
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•space, ^ be the family of Radon measures on X, μ be a net in
It is well known that ^ can be identified with the set of positive
linear functionals on CQ(X) so that the weak* or vague limit of the
μ{ is defined by

4.1. DEFINITION. (W*)-!^ μt = v if and only if y e ^ f and, for
every feC0(X),

lim

On the other hand, for any base έ%? for the topology of X, let

4.2. DEFINITION. ^-Lim^ μi be the measure φ* defined in § 3. If
& is the family of all open sets then we simply write Lim^ μi instead
of .^-Lim^ μim

We then have the following:

4.3. THEOREM. (WΓ*)-lϊm< <̂ exists if and only if there exists a
base & for the topology of X, closed under finite unions and inter-
sections, such that, for every ae£?, lim ί// iα< co, in which case,

(TΓ*)-lim μi = ^-Lim μt = Lim μ{ .
* i i

The proof of this theorem is given in Lemmas A, B, C, D, E below.
A restricted version of Lemma B was proved by Wulfsohn [4].

LEMMA A. Let v e ^£ and

έ%? -=z \a : a is open, a is compact and v (boundary a) = 0} .

Then & is a base for the topology of X and is closed under finite
unions and intersections.

Proof. Let A be open and aeA. Then there exists / e C0(X)
such that: 0 ^f(x) ^ 1 for xeX, f(μ) = 1 and f(x) - 0 for x$ A.

Since [fdv < oo, there exists 0 < t < 1 such that vί/"1!*}) = ° L e t

α = {ίc: f(x) > ί}. Then a is open, αeα c i and boundary a = /^{ί}
so that α e ^ . Thus, ^ is a base. It is closed to finite unions
and intersections since boundary (a U β) U boundary (α: n /3) c boundary
•a: U boundary /3 for any open a, β.

LEMMA B. (TΓ*)-limi^ί = v if and only if ι> e^t and l i m ^ α =
va for every open a with a compact and v (boundary a) — 0.

Proof. Let (W*y\im^i = v, a be open, a compact, v (boundary
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a) = 0. For any compact Cca, let feC0(X), 0 ^f(x) ^ 1 for all
xeX, f(x) = 1 for x e C, f(x) = 0 for x$a. Then

vC ^ I fdv = lim I /cZμ; g Km /^α .

Hence

va ^ lim /ί/* .

Now, since y (boundary a) = 0, given ε > 0, let /S be open, aczβ and
y/3 ^ va + ε = vα: + ε. Let / e Co(^), 0 S f(x) ^ 1 for x e X, f(x) = 1
for a? e a, f(x) = 0 for a? ί /8. Then

Πm^α g lim l / ώ ^ = \fdv ^ p/3 ^ va + ε .

Thus,

va = lim ^ α .
i

Conversely, suppose v e ^ and lim^ μ^ = vα for every open α: with
a compact and v (boundary a) = 0. Let fe C0(X), ε > 0. Then there
exist tk Φ 0 for & = 0, , n such that tk < tk+1, t0 ^ f(x) ^ ίw for
x e l , K/-%}) = 0 and

w—i r w—l

where

α* = {a?: t* < f(x) < tk+1}

so that ak is open, αA is compact and v (boundary ak) = 0. Then
= i;αΛ and

S Λ - 1

fdv ^ lim Σ **AWfc + ε

^ Km Xfdμi + ε .

Now, let ft be open, βk be compact, v (boundary βk) = 0, α λ c βk

and υ/3j. ̂  yα4 + ε/(n \ tk+11). Then linii μβh = vβk and

ϊim (fdμt ^ lim Σ **

= Σ ^+1^/5*

n-1
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LEMMA C. / / (Wr*)-limiμ< = v and

& = {a: a is open, a is compact, v (boundary a) — 0}

then

v =

Proof. Let ga = lim* μ/κ for any ae &, φbe the measure gener-
ated by sr and & (see §3). Then, in view of Lemma B and 3.1 (iii),.
for any compact C c l ,

Now, for any open CCDC there exists, by Lemma A, β e & with
C cβca. Therefore, using Lemma B, and the outer regularity of vy

we have

vC = inf {va a open, Cca)

= inf {v/3; βe^, Cczβ}

= inΐ{gβ; βe<^, Cczβ}

Hence, for any A c l ,

z A = inf sup vC
cύ open (7 compact
Acoύ Odd

= inf sup <pC =
<» open C compact ^
Acoi Oczoύ

LEMMA D. Let & be a base for the topology of X, closed under
finite unions and intersections, such that for any a e &, lim^ μ{a < 00.
Then

, = (W*)-\im μ, .

Proof. For <xe &, let ga = limi^α = lim^ia:, 99 be the measure-
generated by g and ^ and φ* = ^ - L i m ^ i (see §3). Then, by
Theorem 3.2, <ρ* e ̂ . Let α be open, a compact, φ*(boundary a) = 0.
By 3.2 (ii), we have

φ*a =

and by 3.1 (iii),

φa = inf {̂ /3 /3 e ̂ , α c β) .

Given ε > 0, let β e &, aaβ and gβ g φ*a + ε. Then
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lim μ{a ^ Km μβ = gβ g <£>*<* + ε .
i i

On the other hand, let C be compact, C(za and <p*α < <ρ*C"+ ε =
φC + ε. Then there exists 7 G ^ such that C C T C α and therefore

φC ^ gy = lim μ/r ̂  lim μpί .

* *

Thus,

lim /^α ^ <£>*α: ̂  lim μ{a
i i

so that l i m ^ a = φ*a. By Lemma B then φ* = (TF*)-limiμi.

LEMMA E. Lei & be a base for the topology of X, closed under
.finite unions and for every az^?, l im ί ^ ΐ α< oo. Then

,^-Lim μt = Lim μt .
i i

Proof. For any open a, let ga = jim^ ^ α , ^ be the measure
generated by g and ̂  and ̂ 2 be the measure generated by g and the
family of all open sets. We have to show that for any compact C,
ΨiC = φ2C Now, clearly φ2C ̂  ^ C . Suppose φ2C < &> and ε > 0.
Let at be open for i = 0, , w, C c U?=o *̂ and

Σ ^^ί ̂ ^ C + 6.

For each xeC there exists βe & such that xeβacίi for some i =
0, *',n. Since C is compact, there is a finite family Hcz& which
covers C and is a refinement of {aQ, , α:J. For each i, let ft be
the union of all those elements in H which are contained in aim Then
A e ^ , βiCLcti and CcU=oft . Thus,

^iC ^ Σ Qβi ^ Σ flrα* ̂  ^2C + ε .
ΐ=0 • i=0

5 Remarks* Let ^ , ^, ^ be as in § 3, The following example
-shows that φ need not be a Radon measure.

Let X be the set of all ordinals up to and including the first
uncountable ordinal Ω. Then, in the order-topology, X is compact
Hausdorίf. For each i < Ω, let μ{ be the point mass at ΐ, that is,
μfiί = 1 if i e a and μfii = .0 if i$a. Let

^ — {a α is open and Ωg(a — a)}.

For any α: e ̂ , if β ί α then α is countable and hence #α: = linii^a: = 0;
if Ωea then ga = 1. Let A-= JSΓ— {β}. Then A is open and, being
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uncountable, for any countable family J ϊ c ^ which covers A there
exists aeH with ga = 1. Thus, φA = 1. On the other hand, if C
is compact C c A then C is countable and hence φC = 0. Thus,

φA ^ sup {φC C compact, C c A} .

Note, however, that if, instead of taking & as above, we let &
be the family of all open sets in X then there exist uncountable, dis-
joint a, β e & with A = a U β. Then ga = gβ = 0 so that φA = 0.
In this case, φ is the point mass at Ω and φ = φ*.

We are unable to determine if this holds true in general for com-
pact or locally compact Hausdorff spaces, i.e. if φ = φ* whenever &
is the family of all open sets in X.
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