INVERSION AND REPRESENTATION THEOREMS FOR
A GENERALIZED LAPLACE TRANSFORM

J. M. C. JosHI

1. Introduction. In a series of recent papers I have discussed
‘various properties and inversion theorems etc. for the transform

_ I'B+n+1 (= .
F o A, 1;
(1.1) ® I'a+B8+1n+1 SO (eyy F(B + 7 +

a+B+n+1; —xy)fy)dy .
‘where f(y) e L0, ), 3= 0,7 > 0.

_ Agjmyw(x, ) f W)y

‘where for convenience we denote I'(8+ %+ 1)/ [+ B+ 7+ 1) by
A and ,Fi(a; b; —xy) by +¥(xy); ¢ and b standing respectively for 8 +
74+ 1 and a +a. For a =B =0 (1.1) reduces to the wellknown
Laplace transform

2 F@) = | ey .

'The transform (1.1), which may be called a generalization of the
Laplace transform, arises if we apply Kober’s operators of fractional
integration [2] to the function xfe—"[1].

The object of the present paper is to obtain an inversion and a
representation theorem for the transform (1.1) by using properties of
Kober’s operators defined below.

2. Definition of operations. The operators given by Kober are
defined as follows.

L[ f(x)] = 7%&5 a S:(m —u)* 7 f (wydu

K@) = 5ot | (u = o oussoes

where f(x)e L,(0, ), 1/p+1/g=1,if 1<p <o and 1/p or 1/g O
if por q=1,a>0,8> —(1/p), 7> —(1/9).

The Mellin transform Mf(x) of a function f(x) € L,(0, «) is defined
as
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Hf@) = | f@wtdu (»=1)
and
=1§;§V S/ S ()*=tedn »>1).

The inverse Mellin transform M ~*¢(t) of a function ¢(t) € L,(— o, )
is defined by

1 (= ;

'1 M—l t) = — t —it t = 1
(2.) 60 = | styaa @=1
and

_ 1 inglexp T —it—ifp
= — lim B(t)x dt @>1).
2T Tow J-r

If Mellin transform is applied to Kober’s operators and the orders
of integrations are interchanged we obtain, under certain conditions

_ foton)
MAL o f (x)} = F<a+ {77+—(11-—it}] Mf(x)

and

. F(? + % + it) )
M{K:.f(x)} = F[a . <§ A %_{_ it)] Mf () .

But

(o) = [Teareiomdo = 1 (g + it + L), it Re(g+1)>0.
0 P p
Therefore

(s

it) |r(s + % + it

P L
— + — — q
M{L o(aPe™")} = r[a 4 {,7 +% —it}]

and
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(s + it + %)P<§+ it +%)

F[a + {§ + %—l- it}]

M{K; (xPe")} =

By (2.1) we then have

F(v + 1 z't)F(B 1y i,;)
e+ (n+ =it
q
and
R, 1.y
e .2%;8“’ r(s+ — it) (8 + -t it) e

. 1.
F[a +(¢+ o+ zt)]
provided that 1/p > 0,7 + 1/¢ > 0 and ¢ + 1/p > 0.

3. Inversion theorem. We now define an inversion operator which
will serve to invert (1.1).
An operator is defined for integral values of n by the relations

WlG(@)] = G(x) ,
WIG@)] = (—rw (LY e 6@), (0= 1,2, -)

1
I'm+1+8—a

Qn,t[G(x)] = [Wn[G(w)]]n=nlt(n =12, .. ') .

THEOREM 3.1. If f(t) is bounded in (0 <t < o) then, provided
that the integral (1.1) converges, 7 >0, 8= 0

£ = lim Q, [F(®)]
for almost all positive t.

Proof. Let x be any number greater than zero. Then, since the
integral (1.1) converges, we can differentiate under the integral sign.
Also (2.2) gives

d

%)[x‘ﬁIn,w(xﬂe‘“)] =—0FL,..[xfe "] .

3.1) (

Using this relation we get



980 J. M. C. JOSHI
WAFm) = (=)ynt | ooy L, of@ype=)f )y
_ _I'B+n+n+1) S
Ia+B8+7+mn+1)
a+B+n+n+1—ay)flydy .

“yF(B 4+ m 1

0

Therefore
Qn, {F'(2)}
__I'+7+1) (_n_>s+n+1 1
IN'a+B+n+1)\t I'm+B+1—a)

X S:y””"lﬂ(n +B84+n+La+B+0+14+n —xy)f(y)dy

_ 1 <l"_)ﬂ+n+1 I'(a)
I'm+B8+1—a)\t I'(b)

X E:y’“’aFl(a + n; b + n; —2xy) f(y)dy

in the notation of §1.

_ I'(a + n) <£>n+ﬂ+1
Iré6+nlmn+pB+1—a) \t

% r(tv)"“ﬁlFl(a + m3 b+ m; —nw)f(to)dt
0

_ [v(a + n) (ﬁ>n+ﬁ+1
TG+ nIm+B+1—a) \t

X g:v”J’BlFI(B +n4+n+La+B+n+n+1; —nv)f(tv)dt

by a simple change of variable. Now by using a result of Slater [4]
we have

I'a + n) F

N PR ~ a—b ,—nv —_—
T4 £ ) @+ n; b + n; —v) ~ (nv)* e (n — o).

Therefore

B+n+l—a o
lim @, {F(n)} = li n [ orersempitoran .
lim Q AF (n)} nl.ﬁr(n+3+1—a) , VT (tv)dw

But [3] we have for almost all positive ¢

,n3+n+1—-w Seo

};l—.m.e I'n+B8+1—a) ey = f Oy =0

0

and so we have our theorem.
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5. Representation theorem. In this section we propose to give
a set of necessary and sufficient conditions for the representation of a

function as an integral of the form (1.1). We shall need a lemma
which we now prove.

LEMMA 4.1. If n is a positive integer and x and t are positive
variables then

0 nﬁn— wsmwl}_ n" (X}B_z/}
() [ te{(3) e} = i Luune{ (%) o} -

Proof. It is plain that

Gy (g e}

is a homogeneous function of zero order. Therefore applying Euler’s
theorem we get

(a2 nd(F) e ]+ (G (G na(3) o] =0
or
O e R R L=t ()
or
A IR O
~ (2 2L n () e ]
=l
Proceeding in the same manner we have
g L (F) e = bl {(3) ]

using (3.1).

THEOREM 4.1. The mecessary and sufficient conditions that a
given fumction F(x) may have the representation (1.1) with f(y)
bounded and Ren > 0 Ref = 0 are that
(i) F(x) has derivatives of all orders in 0 < & < oo,
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(ii) F(x) tends to zero as x tends to infinity and
(i) | Q. AdF (@)} | < M for all integral n (0 <t < co).

Proof. First let us suppose that F'(x) has the representation (1.1).
Under the conditions of the theorem it is obvious that all the derivatives
of F(x) exist. Also

, T+ 7+ 1)
<M
o) = W T h v+ 1D

X S:(wy)’ﬁfﬂ(,@ +7+La+B+79+1; —xy)dy

_ MIrompre +1)
(@ + 1)

since f(y) is bounded. So F'(x) tends to zero as & tends to infinity.
To prove the necessity of (iii) we see, as in Theorem 3.1, that

|QudF@} = { o f”BH . [ oomsereav }{ ub | peeo) 1} = a1

To prove the sufficiency let us suppose that the conditions are satisfied..
If we now set

I, = | Ldeure @, P @)dy

we have

T e L

= (= |Tngrog (B2 ) oo (LY o aar

It will be seen in the course of the arguement that this integral exists..
Integrating by parts we have

T.=Fazrrr—alt AR G e ]

I(n T E ) |, (@) e F o) (5 Jer - Lasiar

where
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Now
Ly =0@"")  (t—0)
=01) B=0@— )
=01) B> 0 — )
for [1]

_ _I'B+n+1) (nz\° ) . nw
I,.(9) = Y F(B+p+La+B+n+1;—22).
(%) F(a—l—,8+77+1).(t>1 (B 7 a+ B ¢

Also the hypotheses of the theorem by implications mean that
F(x) = 0(z™)
and in general
F™(x) = 0™
and

(L) wrro

={(=)7BB +1) - (B+n— 2t F " F@) + - tFPEV(Q)}
‘Therefore the integrated part
=0t {AF@) + - t" ' F"I2@t)}]—0 as t—0.
Also it is
= 0[A,F () + «+- tF" )] —0 as t— oo,

Therefore the integrated part is zero and integrating by parts again

Jo = I'(n Ji_ﬁ?):lq; — a) [5@5 () (%)”‘2{,3-317(,5)}]:

(—)”_2’}’& i _d— = _?—3— o
r(’ﬂ/ + 18 -+ 1 - a) SO (dt) {t BF(t)} atz (t p Iﬂ,w¢)dt .

Now
<_66_t_>{t3+”_1-[mw¢} = [(n — DtF"L 0p + o oo 4 mntP L 0]
and

d n—2 _
(&) tere)
={(=)B8(B + 1) +++ (B + n — EPHE(E) + -+ tPFF ()} .
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Therefore as before the integrated part again approaches zero when ¢
tends to zero and ¢ tends to infinity. Proceeding in the same manner
we obtain

Jo = n ”t"ﬁ _a_n_ pn-i]
I'n+B8+1—aw So F(t)atn {t L,,.$}dt
= " ° -8 (nx)n 5
F(n + B + 1 - a) SO t F(t) tn+1 t Iﬂ+n,w(¢)dt

by the Lemma 4.1. Hence

SEOAL) (7 na
J, = mn Stﬂ Fia; b ~TE\Fydt .
T+ B8 +1—al®) b (“ t> ®)

It is clear that this integral exists under the hypotheses of the theorem
and therefore all the previous integrals exist. By a simple substitution
this gives on using the asymptotic expansion of Fi(a; b; x) [4]

Jn 5 pBtatiyntp Swuﬁ+n_1e—nzuF<l>du .
I(n+B+1—a)l “

Let

(1/u)F<-}b-> = $(u) .

Now

(/w)F(1/u) = 0(1) (u— ) and F(%) —0(1) (w—0).

Hence it is easily seen
(i) (uw)eL (1/R=t < R) for every R > 1.

(ii) Smn,lr(u)e“”“du converges for any fixed ¢ > 0, and
1

(iii) Sluqlr(u)du also converges. Therefore [3]
0

lim J, = lw}r(—};) — F(u).

n-roo u

Now if

1@, y) = 11:‘(‘;; (wy).Fi(a; b; — xy) .

Then X(xy)eL in 0 <y < = under the conditions assumed for the
convergence of (1.1). Therefore by a theorem on weak compactness
of a set of functions [5] the inequalities in the hypothesis (iii) of the
theorem imply the existence of a subset {n;} of the positive integers
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and a bounded function f(y) such that

lim |"1Qu F @M@, 9) = | 2@ 7@y -

Hence

F@) = | 1@ wrwiy

and the theorem is established.
I am indebted to Dr. K. M. Saksena for guidance and help in the
preparation of the paper.
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