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The lattice ordered rings known as /-rings, introduced by Birkhoff
and Pierce in [1], have been studied very intensively in the last few
years. In particular Pierce has shown in [4] that the /-rings without
nonzero nilpotents are precisely the (isomorphic images of) lattice
ordered subdirect unions of totally ordered rings with integrity, and
Johnson in [2] has gone on to prove that any Archimedean /-ring with
no nonzero nilpotents can be represented as a lattice ordered ring of
continuous extended realvalued functions on a locally compact Hausdorff
space.

Since many commonly occurring examples of partially ordered rings
are not lattice ordered it is natural to ask whether these two results
can be generalised so as to be independent of the lattice structure.
Such a generalisation is given here when multiplication is assumed
commutative.

Theorem 1 characterises the subdirect unions of totally ordered
commutative rings with integrity; Theorem 2 sharpens this result and
Theorem 8 completes the programme by extending Johnson's represen-
tation,,

The plan of the paper is as follows:
Section 1 is an introduction to the subject matter and methods of

the paper; the succeeding three sections contain proofs of Theorems
1, 2 and 3 respectively and § 5 shows that for /-rings the represen-
tations given preserve the lattice structure.

1* Introduction* Throughout this paper "ring" will be an abbrevi-
ation for "commutative associative rirίg".

A partially ordered (or po-) ring is a ring whose elements are
partially ordered in such a way that if a Ξ> b then a + c ^ b + c for
all c and ac ^ be for all c Ξ> 0. Among the po-rings those with in-
tegrity (i.e. without divisors of zero) and a total ordering (the toi-rings)
are particularly simple and it is our first aim to find out when a po-
ring can suitably be built up from toi-rings. To make this more precise:

If {Riliei is a nonempty family of toi-rings their direct union,
Y,Ri9 is formed by taking the class of all functions a: I—>\J R{ with
a(ί) e Ri for all i, and defining addition by (a + b){i) = a(i) + b(i) for
all i; multiplication by (ab)(i) — a{i)b(i) for all i, and order by a ^ b
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when a{i) ^ b(i) for all i. Σ Ri ί s then a po-ring (in fact it is an
/-ring). A subdirect union of the family {Ri}iei is a subring, R, of
Σ -R< satisfying i2(i) = JB< for all i, together with the partial ordering
induced on it by the partial ordering of Σ R% If i n addition, whenever
R contains a it contains α+, defined by a+(i) = a(ί) V 0 for all i, it
is called a lattice ordered subdirect union of {Ri}ίei (and is an /-ring).

A mapping, fc, from one po-ring to another is called a homo-
morphism if it is a ring homomorphism such that h(a) Ξ> /*,(6) when
a ^ b: it is called an isomorphism if it is a ring isomorphism with
h{a) ^ &(&) if and only if a ^ 6.

Suppose i? is a po-ring and ξ> is a nonempty class of homomorphisms,
h, of R onto ίoi-rings i?Λ respectively. Suppose further that if a e R
and α ^ 0 then there is an hefQ with h(a) < 0. For any a e R let α
be the function on ξ> defined by a(h) = /&(α) for all hefe. Then 5 =
{α: α G 2?}, with the natural induced structure, is a subdirect union of
Σ Rh> and the map a—+a is an isomorphism of R onto R.

To generate the homomorphisms needed we look at the semirings
in R (i.e. the nonempty subsets, S, of J? with SS U (S + S) c S).
Under conditions stated in the next section, if a0 ^t 0 then maximal-
isation by Zorn's Lemma yields a semiring P, with α o ί P and
P'Pr a — P',1 which contains all a ^ 0 and all squares in R. From
this a homomorphism onto a ίoΐ-ring arises as follows:

I = Ppi — P is a prime ring ideal in i2. For,
( i ) if α, 6 e Z then clearly a — be I;
(ii) if α e / and ceR then C G P O Γ C G - P (otherwise — (( — c)c) =

c2 G P') and in either case ac e I;
(iii) if a e Γ and 6 e Γ then α e F o r - α e P' and b e F o r -6 e P';

whence α6 G P' or —abe P' and certainly abe Γ. Let /?- be the canonical
homomorphism of R onto 12/7, which is a ring with integrity. A simple
calculation shows that h(P) is a semiring, h~\h{P)) = P, /&(P) U —h(P) =
h(R) and ft(P) Π - M P) = {0}. So if we define h(a) ̂  A(δ) to mean
h(a) — fc(6) G fc(P), (i.e. α — b G P) then this is a total ordering making
R/I into a ίoi-ring which is called the quotient ring of R by P and
is denoted by iϋ/P. Since P contains all α 2> 0, α0 G P' and h~\hP) —
P, /& is a homomorphism of JB onto i?/P and h(a0) < 0.

It is convenient to write a(P) for h(a) and to use abbreviations
similar to writing a^b, (P) for a(P) Ξ> δ(P).

The representation of a po-ring as a ring of real valued functions
on some set would be very useful. Unfortunately it seems difficult
to find a simple general condition permitting this, which does not
make all the functions used bounded. Nevertheless, a po-ring of the
type here considered which is also Archimedean (that is na ^ b, n —

1 Pr = R\P.
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1, 2, implies a ̂  0) can be represented using functions with values
in the extended real numbers. The possibility of this is suggested by
the observation that in a toi-ring R if ab ^ 0 and a > 0 then cb ^ 0
for all c ̂  0 so that if

a = inf {m/n: m and n are integers, n > 0, and

mb ^ wα& for all b > 0}

( — suρ{m/w: m and w are integers, n > 0, and
raδ ^ wα& for all b > 0})

it follows by routine calculations that ά I> 0 when α ̂  0, ah = ab
unless α = 0 and b — ± oo or vice versa, and α + b = ά + 6 unless α
and 6 are infinite and of opposite sign. Here the infimum is taken in
the extended reals and the infimum of the empty set is +°o. The
main problem is to guarantee that the substitution of a for a, which
is usually far from being (1 — 1), still leaves enough information for
reconstruction of the original po-ring; it is here that the assumption
that the ring is Archimedean is required.

The following notation will be standard for the rest of the paper:
If R is a po-ring then R+ — {x: x ^ 0} is the class of quasi positive

elements of R and R++ = {x: x > 0} is the class of positive elements
of R.

Z is the po-ring of integers.
R is the 39o-ring of real numbers and R the "quasi po-ring" of

the extended real numbers with the usual topology of the two point
compactification.

If a set X is fixed in some context and YaX then Y' will denote
X\Y. The empty set is denoted by Φ. The set with x as its only
element will sometimes be denoted simply by x.

If A and B are subsets of a partially ordered set then A ^ B
means that every element of A is less than or equal to every element
in B.

2. /*-rings* Lemma 1 below, on the semirings in a ring, is the
key to the rest of the paper. It is used in this section to produce a
characterisation of the isomorphic images of subdirect sums of toi-rings
(Theorem 1).

A semiring S in a ring R is said to be normal with respect to a
nonempty subset H of R if no expression of the form

( 1 ) >_j \ — X.) %^ SiCLi i&i,2 * &ί n — ^1^2
ΐ=l l
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is zero, where each a is in H, each s is in S, each n is in Z++, q is
in Z++ and N is in Z+.

If S contains all squares in R and H = {α} then £ is normal with
respect to H if and only if sa - a2n e S' for all seS and all neZ++.

Normality of S with respect to Himplies HczS'. For if aeHΠ S
then (-l)1+1aa + (-l)1+1aa - aa - aa = 0.

A semiring P in a ring i? is called prime if P'P' a — P\
The usefulness of normality is due to the following result:

LEMMA. If S is a semiring containing all squares in a ring
R, and H is a nonempty subset of R then there is a prime semiring
P in R with P z> S and P'ZD H if and only if S is normal with
respect to H.

Proof. ( i ) If such a P exists then for any al9 α2, , ane Pf

and any seS, ( —l)w+1sα1α2 an g 0, (P) (see § 1 for this notation);
and if n is even —aλa2 an < 0, (P). So any expression of the form
(1) is <0, (P) and cannot be equal to zero.

(ii) Conversely, if S is normal with respect to H then Zorn's
lemma shows that there is a maximal semiring, P, among the semi-
rings containing S which are normal with respect to H. It will be
proved that P is as required.

Since P contains all squares in R, if x e R then the semiring, Px,
generated by P U {x} is Z+x + xP + P. So if x e P' and y e P', since
neither Px nor Py is normal with respect to H, there are identities of
the form

l)^+1(sj + β < K i * »<•«, ~ OA . α* - (β' + 8) = 0

and

Σ (-l)Wί+1(*5 + *y)6y.i δy , ~ 6A ft*. - (f + t) = 0 ,

where every α and 6 is in H, every ^ and m is in Z + + , q and r are
in Z++, M and JV are in Z+, every s and t is in P, every s' is in
J?-^ + xP and every ί' is in Z+y + τ/P.

Collection of the terms involving xf y respectively to one side of
the equations (taking the rest to the other side) followed by multipli-
•cation of the new equalities yields, after rearrangement, the following,
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NM

Σ ( - l ) " 4 ^ ' * ^ . ! ai>%ιbiΛ • - - bjιmj + s't'
i = lj = l l J

+ Σ (-l) <+ί*ίt'α*,i aitni + Σ {-IT^Xs'b^ - bj

NM

+ Σ (-iYi+m^18it/ι{Λ α i ( f l |δΛ l - bJιm
i=lj=l

+ Σ (-l) i+%taiΛaiΛ - • a{
i=l

l r ^ Λ , . tti.A b2r

+ Σ (- i )^ +>ϊ+1ίΛ.i H~PΊ ^ + (-1Γ+ 1A b2r

+ ( — l ) 2 q + 1 t a 1 --- a2q — st — a x a 2 a2qbxb2 b2r = 0 .

If xye —P this would contradict the hypothesis that P is normal
with respect to iί.

It is clear that PZDS and P'z>Hf so the proof is complete.

COROLLARY. If Ή has only one element, a, then there is a P as
required if and only if sa — a2n e S' for all se S and all ne Z++.

The full force of Lemma 1 is not required until §4; up to that
point the corollary will be sufficient.

From now on A will always denote a po-ving, S^ the class of all
semirings in A which contain A+ and & the class of prime semirings
in A which contain A+. If ^ is a subset of & such that for any
a£ A+ there i s a ΰ e ^ with a(D) < 0 then 3f will be said to be
distinguishing.

A is called an f*-ring if A+ contains all squares in A and is
normal with respect to every single point set {a} with a$A+.

We have:

THEOREM 1. A is isomorphic to a subdirect union of toi-rings
if and only if it is an f*-ring.

Proof. ( i ) If .A is an /*-ring then the Corollary to Lemma 1
shows that & is distinguishing, so that from the discussion in the
previous section, A is isomorphic to a subdirect union of toi-ήngs {A/P}P€^.

(ii) If A can be identified with a subdirect union R of toi-r'mgs
{Riϊiβi then a e A\A+ implies a(i) < 0 for some iel, say a(iQ) < 0.
Consequently, if s e A+ and n e Z + + , (sa — a2n)(%) < 0 and sa — a2n 0 A+.
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Thus A is normal with respect to {a}. Also, for any ae A, (a2)(i) =
a(ίf ^ 0 for all i e I, so α2 e A+. Thus A is an /"-ring.

3* Ring Archimedean /*-rings* In this section a class of /*-
rings is introduced which includes the Archimedean /*-rings and for
which a considerable sharpening of Theorem 1 is possible (see Theorem
2 below).

A po-ring R is called ring (or r-) Archimedean if Z*a + R+a ^b
implies a ^ 0. An Archimedean po-ring is necessarily r-Archimedean,
but the converse is not true, since every totally ordered field is r-
Archimedean.

The following two measures of size will be used.
In any toi-rmg R an element, a, is called a ring (r—) order unit

if Z+a + R+a — R+ = R, and is called ring (r-) infinitesimal if
Z+α2 + # + α 2 ^ I a \. Notice that if for some ? > 0, (Z+ \ a \ + R+ \ a \)q ^ q
then a is r-infinitesimal and (Z+ \a\ + R+\a\)p ^ p for all p ^ 0. A
ίoi-ring is r-Archimedean if and only if every positive element is an
r-order unit.

The main result to be proved is:

THEOREM 2. A necessary and sufficient condition that A be an
r-Archimedean f*-ring is that it be isomorphic to a subdirect union
of r-Archimedean toi-rings with no nonzero r-infinitesimal elements.

It will be convenient to divide up the proof into a number of
lemmas.

LEMMA 2. Let A be an r-Archimedean f*-ring and 3f a dis-
tinguishing subclass of &. If a (D) is r-infinitesimal in AID for
all De & such that a$D then a ^ 0.

Proof. For each De 2ϊ either (i) a ^ 0 or (ii) a < 0, (D) and
[Z+(-a) + A+(-a)](-a) ^ (-α), (D). In either case [Z+(-a) +
A+(—a)]a2 ^ a\D). Therefore, since 3f is distinguishing, [Z+(—a) +
A+(—a)]a2 ^ α2; whence, A being r-Archimedean, (—α)3 ̂  0, and in an
/*-ring this implies — a ^ 0, i.e. a ^ 0.

LEMMA 3. In any toi-ring R if a is not r-infinitesimal then

\a\ is an r-order unit.

Proof. If Z+\a\ + R+\a\ ^ b while (nQ\a\ + po\a\)\a\ > \a\

with nQeZ+ and p 0 e R + , then δ > 0 and (no\a\ + pQ\a\)b > b ^

(nob + po6) I a \ = (n01 a \ + p0 \ a \)b, which is impossible.



A REPRESENTATION THEORY FOR A CLASS 963

Let ^/ί be the class of maximal elements in & (under set
inclusion).

LEMMA 4. If Peg?, aePf and \a(P)\ is an r-order unit in
A/P then no Q e &> can contain P U {a}, therefore there is an Me ^^
with a$ Mz) P.

Proof. Suppose such a Q does exist and take qeQ. Since — a(P)
is an r-order unit in A/P there are ne Z+ and pe P such that
n[(-a) + p{-a)] ^ q(P). So n(-a) + p(-a) - q e P and q e P + na +
pa c Q, contrary to the hypothesis that qeQ'.

The three previous lemmas show that ^ is distinguishing for
r-Archimedean /*-rings. However, a stronger result is needed to prove
the Theorem.

LEMMA 5. In any toi-ring R the class, I, of r-infinitesimal
elements is a prime ring ideal such that if \ c | ^ | a | and a e I then
eel.

Proof. If a e I and | c | < | a |, then for any ne Z+ and p, q e R+,
(n I c I + p I c \)q ̂  (n | a | + p \ a \)q g g, so c e I.

If a,bel, neZ+ and p,qeR+, (2n\a - b\ + 2p\a - b\)q ^
(2n\a\ + 2p\a\)q + (2n\b\ + 2p\b\)q^2q, whence (n\a-b\ + p\a-b\)q^q
and a — be I.

lί ae I and eei? then aee I, for if not then, by Lemma 3, there
are n e Z+ and p e R+ such that n \ ae \ + p \ ae | > 2 | e |. But, since
α G I, \e\ ̂  n\ae\ + p \ ae |, and these two inequalities together yield
the contradiction, 0 > \e\.

I has now been proved to be an ideal: it remains to prove that it
is prime.

If a,beΓ there are m,neZ+ and p,qeR+ such that for any
s > 0, (m I a I + p | α |)β > s and (w | 6 | + q \ b \)s > s, whence, by multi-
plication (mn I α6 I + (mp + nq + pg) | ab \)s2 > s2 > 0, and so αδ e I'.

Let ^ C * — {M e ̂ //\ A/M contains no nonzero r-infinitesimal
elements}.

Then we have:

LEMMA 6. If Me ̂ t\<^£* then every element of A/M is r-infinite-
simal.

Proof. Let IM = {x e A: x(M) is r-infinitesimal} and let P =
Lemma 5 shows immediately that P is a semiring containing A.
Furthermore if a,bePf then — a(M) and —b(M) are positive and non-
r-infinitesimal in A/M. So a(M)b(M) is positive and non-r-infinitesimal
in A/M, and -abePr.
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The maximality of M and the supposition that i k f ί ^ ' * imply
therefore that P = A. So if ae A there is a be IM with | b(M) \ ^
Jα(Λf)|, whence a(M) is r-infinitesimal.

The following simple result proves to be important.

LEMMA 7. If a is a non-r-infinitesimal positive element of a
toi-ring R then there is a beR+ such that b2 > a

Proof. If a2 Ξ> a there is nothing to prove. If a2 < a then, since
a is not r-infinitesimal, there are n e Z+ and p e R+ with (na + pa)a>a;
whence (na + pa)2a2 > a2 > α3, (na + pafa2 > α3 and (wα + pa)2 > α.
So wα + pa may be taken for 6.

Proof of Theorem 2.
( i ) Necessity. ^£* is a distinguishing subset of ^ 5 ; for if

a ^ 0 Lemma 2 shows that there is a Pe ^ with α e P ' and a(P)
not r-infinitesimal and by Lemma 4 there is an Me^t containing A+

with a$M, so ^£ is distinguishing. Lemma 6 and a second application
Of Lemma 4 show that ^ # * is distinguishing.

Reference to the introduction completes the proof.

(ii) Sufficiency. Suppose A is identified with a subdirect union
of a family {ϋ?Jί€I of toi-ήngs without nonzero r-infinitesimal elements.
If a G A satisfies Z+a + aA+ ^ b and a(i) > 0 for some i e I then
Z+α(ί) + P%i)Φ) ^ &(ΐ) for all peA+; and by Lemma 7, Z+a(i) +
Rta{ϊ) ^ 6(i). So, since 12̂  is r-Archimedean, a(i) ^ 0, contrary to
hypothesis. Thus a ^ 0 and -A is r-Archimedean.

4* Archimedean /*-rings* A ring of 5-valued functions on a
nonempty set X is a nonempty class, R, of Λ-valued functions on X
such that

( i ) If {fi}iei is any finite subclass of R there is at least one
point x in X where every /<(#) is finite.

(ii) If /, g and ft are in R and /(a?) ^ #(#) for all x where ft(#)
is finite then f(x) Ξ> #(#) for all α? in X.

(iii) If / and g are in i? then there are functions s, p and n in
iϋ such that s(x) = /(x) + #(#) whenever /(a?) and fif(α ) are not infinite
and of opposite sign, p(x) = /(ίc)̂ (cc) unless /(&) = 0 and g(x) = ± oo
or vice versa, and w(#) = —f(%) for all α? in X.

Condition (ii) shows that such s, p and w are unique, so they may
be denoted by / + g, fg and —/ respectively.

Subsets of X of the form {x:f(x) = ±00} are called nul-sets (a
name suggested by integration theory and Condition (ii)).

It is easily seen that any ring of JB-valued functions on a set X
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is an Archimedean /*-ring. Conversely, if A is an Archimedean /*-ring,
and for each aeAa denotes the function P—>α(P) defined on
was defined in the Introduction), then Lemma 8 below and the remarks
in the Introduction show that for any distinguishing subset 3ί of
3P A I £& = {a I &\ ae A} is a ring of .R-valued functions on &, and
the map a —* a \ £& is an isomorphism of A onto A\Sf.

If £& is any subset of ^ , a, b e A and Xe R it is convenient to
adopt conventions similar to £${a *> λ) for {De ̂ :a(D) ^X} and

(a ̂  b) for { ΰ e ^ : a(D) ^

LEMMA 8. If A is an Archimedean f*-ring and & is a dis-
tinguishing subset of £P and if S^(μ < b) is a nul-set then a ^ b.

def
Proof. There is a ceA+ with £&(c = oo) Z) ̂ ( α < 6); so 6 =

c + α2 + 62 satisfies ^ ( α ̂  0) U ̂ ( 6 Φ 0) c ^ ( e ̂  0) and ^ ( α < 6) U
± oo) U ̂ ( 6 = ± oo) c ^ ( β = oo).

Consider the following three situations which may occur for a

( i ) b> a,{D) and e(D) = oo; whence Z+(b - a) ̂  e(b - α), (D)
and so Z+(b - α)2e ^ e4 + (b - a)\ (D).

(ii) b > α, (D), and e(D) < oo; whence a(D) and 6(i?) are finite,
(b~^a)(D) = 0, and so Z+(b - a)2e g 2e, (D).

(iii) B α , ( ΰ ) .
In all cases Z+(b - a) ̂  e" + (6 - α)2 + 2e, (D). So Z+(δ - a)e ^

β4 + (b — af + 2e and, A being Archimedean, (δ — a)e ̂  0. This, in
an /*-ring with e as here defined, implies b — a S 0, that is a ^ b.

COROLLARY. JVO nul-set can contain a nonempty set of the form
μ > 0).

Let ^ * * = {Me^f*: 3a e A with a(M) nonzero}.
Lemma 8 shows that ^/ί** is distinguishing and so the mapping
α|.^lΓ** is an isomorphism of A onto A|c^^**.
Two natural topologies for ^^**, ^ 7 with the sets of the form
*(α > 0) as a subbase, and ^\ with the sets of the form
*(α > 0) as a subbase, turn out to be the same.

LEMMA 9. ^T = ̂ ( = ^ " say). ^Γ is Hausdorff and is the
weak topology induced on ^yfί** by A.

Proof. ^ 3 ^ 7 , for if Me^e**(a > 0) there is a ftei with
b(M) > 0, and since a{M) is an r-order unit, there are, using Lemma
7, n e Z+ and eeA+ such that na + e2a > b, (M). So
Me ^f**(na + e2a > 0) c ^**(na + e2a > 0) c ^^**(α > 0). Con-
versely, y ί D ^ , for if Me^f**(a> 0) then for some weZ + + ,
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Me ^ f **(α > 1/n); so na3 > a\ (M) and Me ^f**(na* - α2 > 0) cz
^t**(S ^ 1/n) c ^ * * ( α > 0). J^~ is Hausdorίf. If M19 M2 e ̂ T * *
and Λfx =£ M2 there are ax e M\M2 and α2 e M2\MX. Whence a — aλ —
a2 e (-Ml) Π Mi, that is M2 e ^T**(α < 0) and Λζ e^**(a > 0).

Finally, ^ ~ is the weak topology induced by A on ̂ C * * . For,
by definition, J7~ is coarser than this weak topology. Conversely, if
λ > - oo^**(α ^ λ) = n {^T**(sάβ2 ^ re2): r/s < λ, s > 0 and e e A},
and so is closed with respect to ^~.

Next it is shown that .^C**(α ^ ε) is compact for all ε > 0 and
all aeA.

It is sufficient to prove the following result.

LEMMA 10. If aeA then ^€"**(α ^ —1) is compact.

Proof. Alexander's Theorem ([3] p. 139) shows that it is sufficient
to prove that any cover of ^^***(α ^ —1) by sets of the form
^£**{c < 0), ce A, has a finite subcover.

Accordingly, suppose C is a subset of A such that {^#**(c < 0):
ceC} covers t^#/**(α ^ — 1) and contains no finite subcover. A contra-
diction will be derived from this.

Consider any J l ί e ^ f * * ( α ^ -1) and any rational number m/n
with n>0, ra>2 and 2/8<m/n<l. Since a(M)^ - 1 , naa*< ~ma\ (M)
so wαα4 + (m - 2)α4 < -2a4 < -α 2 , (M), that is [na α2 + (m - 2)α2]α2 +
α2 < 0, (M). Thus [na α2 + (m - 2)α2]α2 + α2 e N = Γι {MΊ α(ikί) ̂  -1}.

Let if = {na α2 + (m - 2)α2: m ̂  2, n > 0 and 2/3 < m/w < 1}.
If {Ci}I=1cC there is an ΛίG^^**(α^ -1) with {cJUcΛf. So

the semiring, S, generated by A + UC is normal with respect to iSΓ
and there is a P e ^ with Pz)S and PnN^φ. For any &eiξ
fcα2 + α2 < 0, (P), so k(P) is not r-infinitesimal in A/P. There is there-
fore an Mo e ̂ /ί with Mof] K = φ. Now for any element na a2 +
(m - 2)α2 oί Kna-a2 + (m- 2)a2 < 0, (ikf0); whence α(Mo) ̂  -(m-2)/n.
Consequently a(M0) ̂  — 1, so ikfoe^f**, while Λf0ZDC, which is
contrary to the hypothesis on C.

^y£** may include semirings M such that A(M) c {0, ± oo}. Lemma
8 shows that these are not algebraically significant (i.e. ^C*** =
{Me ^£**\ 3a e A with a(M) ί {0, ± oo}} is distinguishing). Considered
as a subspace of the topological space {̂ *̂*, ̂ "}, ^^*** is a Hausdorff
space. Further, since for all α e A and all λ, ε e R+, ^€**(X ^ a ̂  ε)
is a closed, and therefore compact, subset of {̂ *̂*, ̂ "} which is-
contained in ̂ * * * . So ^^*** is a locally compact Hausdorff space;
for if ΰ e ^ * * * andJ9G^^**(α>0)_thereis_aδGAwith oo>6(JD)>o,
so ^T**(α ^ 1/2 α(D) Λ 1) Π ̂ t**(2b(D) ^ 6 ^ 1 / 2 δ φ ) ) is a compact
neighbourhood of J5 in ̂
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The following analogue of [2] Theorem 4.1 has now been proved.

THEOREM 3. If A is an Archimedean f*-ring the mapping α —>
ΰ\^y/ί*** is an isomorphism of A onto a ring A\^ίί*** of extended
real valued functions on ^/S***. The weak topology induced on ̂ f***
by A\^€*** is Hausdorff and locally compact and relative to it each
set ^ί***(X :Ξ> a ^ ε) with aeA and λ, ε e R++ is compact. No function
is infinite at every point of a nonempty set of the form ^£***{a > 0).

The rest of Johnson's theorem seems to require that A be an
/-ring.

5* /-rings* A commutative /-ring is a po-ring A which is lattice
ordered in such a way that if a A b = 0 then ac A b = 0 f or all ceA+.

An /-ring without nonzero nilpotents is an /*-ring. For if 6, c e A
and b A c = 0 then be A be = 0, that is be = 0. So for any a ί A+,
s e A+ and n e Z++, sa - a2n = sa+ - ear - (a+)2n - (α~)2% ^ sa+ - (α~) 2 \

And the latter expression is not in A+ since a+ A a~ = 0 yields
^α+ Λ (α~)2w = 0; whence (sα+ - {a-)2n)~ = (α~)2w ^ 0. Furthermore if
A is an /*-ring which is lattice ordered and such that a Λ b = 0
implies αί> = 0 then for any Pe^,{a A b)(P) = α(P) Λ 6(P) For if
,α Λ b = c then (a — c) Λ (δ — c) = 0, so (a — c)(b — c) = 0; whence
(α - c)(P)(6 - c)(P) - 0. But A/P is a ring with integrity, so (a - c)(P) = 0
•or (& - c)(P) = 0. Therefore, since (a - c) ^ 0 and (6 - c) ^ 0,
(α - c){P) A(b- c){P) = 0 and α(P) Λ δ(P) - c(P) - (α Λ δ)(P). Conse-
quently the isomorphisms set up in Theorems 1 and 2 are isomorphisms
onto a lattice ordered subdirect union of toi-vings which preserve
lattice relations.

As for Theorem 3, it follows that for any α, b e A and any
Me ^T***, a(M)Ab(M) = aAb(M). Whence the sets {^***(α>0)}αe,ι
form a basis for J7~ and so does the class of sets {^#***(α > 0)}aeA.
So each function a is finite on a dense subset of ^ # * * * (i.e. it is an
extended function in the sense of [2]). Finally, Lemma 2.6 (ii) of [2]
may be used to prove that the topology of ^Γ*** is precisely the
weak topology induced by the bounded functions in A\^/έ***\

Note added in proof. Lemma 3, together with the remark at
the end of the fourth paragraph of § 3, shows that for any toi ring,
Mf the following three properties are equivalent:

( i ) R is r-Archimedean,
(ii) R has no nonzero r-infinitesimal elements,
(iii) Every element of R++ is an r-order unit.
So Theorem 2 can be sharpened. For example, we may omit

""with no nonzero r-infinitesimal elements''.
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