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!• Introduction* In a recent paper [7], Payne and Weinberger
gave pointwise bounds for solutions of second order uniformly elliptic
partial differential equations. The bounds for the function and its
gradiant involved derivatives of the boundary data. Later [2] the
present authors gave a method for obtaining bounds in which no de-
rivatives of the boundary data appeared. Pointwise bounds for de-
rivatives were not dealt with. In [4] the authors gave a method for
bounding derivatives for Poisson's equation. The method was, however,
restricted to the Laplace operator (or the constant coefficient case) and
was not generally applicable.

In this paper we consider the operator

(1.1) Lu = (aίjufί)j

where u is a sufficiently smooth function defined in some region R (with
boundary C) of Euclidean N dimensional space. Here the notation uΛ

denotes the partial derivative of u with respect to the cartesian coordi-
nate x\ In (1.1) the summation convention is used, i.e. (aiju}i)}j =
Σ f j=i (aίju>i),j* The coefficient matrix aίj may be a function of position
and is assumed to be uniformly positive definite and bounded above»
That is there exist positive constant α0 and aλ such that

(1.2) αoΣfî c^ ^ Σ S
ί=l ί = l

for any real vector ξ = (ξl9 •••,!>). We shall give a method involving
the use of a parametrix, for obtaining bounds on any derivative of a
function u at an arbitrary interior point P of R. These bounds are
in terms of Lu and maxδ ( P ) | u | , where S(P) is a sphere containing P.
Estimates of this type for very general elliptic operators are described
by John [6], His method does not involve the parametrix and hence
the expressions which could be derived would turn out to be quite
different. Thus the problem is reduced to that of bounding max#(P) | u
in terms of quantities which are data of some boundary value problem.
We assume throughout that Lu and the coefficients aij are sufficiently
smooth so that all subsequent indicated operations are valid.

In this paper we concern ourselves only with the derivation of
appropriate a priori inequalities. The manner of applying such ine-
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qualitites to obtain bounds has been thoroughly discussed in previous
papers (see e.g. [2, 4, 7]).

II* Mean value expressions* To obtain the desired bounds we
shall first need a certain expression which is in a sense analogous to
the solid mean value theorem for harmonic function. One such ex-
pression was given in [2]; however, it is quite complicated. We derive
now a simpler expression.

Since a fundamental solution corresponding to the operator L is
not in general known we make use of a Levi function (or parametrix)
(c.f. Miranda [6]).

Let P and Q be two points in R. One possible definition of a
parametrix is

Γ(P, Q) = -(2π)->[a(Q)a(P)Γlogp , N=2
{ ' } Γ(P, Q) = 2WN-2)[(N - 2)ωIr]-1[a(Q)a(Pψ*p-{N~2) , N ̂  3

where ωN denotes the surface of the unit sphere in N dimensions,

P2 = CMQ) + aiό{P)]{xP - a$)(a£ - x*Q) ,

and a(Q) denotes the determinant of the matrix aiά(Q), the inverse of
aij(Q). If the aij are twice continuously differentiable in the neighbor-
hood of P, this function Γ has the property that

(2.2) LQΓ = O(r^^)frPQ^0

where rPQ is the distance from P to Q. An alternate form for a
parametrix is

Γ(P, Q) = (2π)-i[a(P)Γ log p

' Γ(P, Q) - [(N -

Here p2 = α<y(P)(α£ - xβixp - x3

Q). The function Γ(P, Q) is such that
if the aij are continuously differentiable in the neighborhood of P, then

(2.4) LQΓ =

Comparing (2.2) and (2.4) we see that Γ is a better approximation
to the fundamental solution than is Γ near Q = P.

Now let Sa(P) be the interior of a sphere of radius a with center
at P, and such that Sa(P) c R. We define the function fn(P, Q) as
follows (for P fixed)

ίl O = P
(a) MP.Q) = L ^

(0, rPQ ^ a

(2.5) (b) /«J(P, P) = 0, * = 1, 2, , N - 1
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(continuous derivatives up to and including those of order n — 1 at
each point of Euclidean JV-space.) One such function, for example, is
the polynomial with values

IT ρn-\a2 - pγ^d

Another possible choice is the function

} , rPQ ̂  a

which satisfies (2.5) for all n. Clearly

(2.6) Γn{P,Q)^fn{P,Q)Γ(P,Q)

also satisfies (2.2). But Γn(P, Q) has all derivatives up to and including
those of order n — 1 vanishing on rPQ — a. Using (2.1) and (2.2) we
find from Green's identity that

(2.7) u(P) = \ u(Q)LQΓn(P, Q)d VQ - \ Γn{P, Q)Lu(Q)d VQ ,

provided n Ξ> 2. This expression is analogous to (5.8) of [2]. In addition
to being simpler it possesses the advantage that the integration is taken
over spheres, rather than ellipsoids which vary from point to point.
We could as well have defined

(2.8) Γn{P,Q)=UP,Q)Γ{P,Q)

and obtained

(2.9) u(P) = \ u(Q)LQΓn(P, Q)dVQ - ( Γn(P, Q)Lu(Q)dVQ,
JSa(P) JSa(P)

with n ^ 2.

Ill* Pointwise bounds* Either (2.7) or (2.9) can be used to obtain
bounds in the Dirichlet problem. Using the Schwarz inequality we
have

(3.1) Γ f u(Q)LQΓn(P, Q)d VQ1 £ Γ ( v?r-p\d vlϊ \ rPQ(LΓnyd VQ1 .

Equation (2.9) together with (3.1) and the bounds given by Theorem
I and II of [2], yield pointwise bounds for n in terms of Lu in R and
the values of u on C.

In order to bound the first derivatives of u we can use (2.7), with
n ^ 3, to obtain
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du(P)

(3.2) dχip

n{P,Q)Lu{Q)dvΛ.
J

Hence we have

(3.3)

θu(P)
θxp

£ max \u(Q)\\
dXP

Γn(P, Q)Lu(Q)dVQ~]\

Now if a is so chosen that we can obtain a bound for maxρ6^α(P) | u(Q) \
then (3.3) provides a bound for \du(P)/dxP\. If, for example, the least
distance from P to the boundary C is r0, then we could choose a —
(l/2)r0. Thus the closure Sa(P) of Sa(P) is a compact subset of R
and hence only interior bounds for u are required. Note that we could
not replace (3.2) by a similar expression involving Γn since the integrals
on the right would not exist.

We note from (3.2) that

(3.4)
JSalP)

Thus if n ^ 4 we have the representation

(3.5)
m- = \ MQ)

dXPdx'P

- ζ — Γί Γn{P,Q)Lu{Q)dvΛ
VpdXp LjSa(P) J

since

(3.6) - u(py\LQ.

for VpQ-^0. From (3.5) we see that

d'u(P)
S max

u(Q) - u(P)
r PQ

(3.7)

Now

(3.8) max

dxldxi

u(Q) - u(P)

I,
(P,

TpQ
ι(PΊ

L ^2

Q

Q)Lu(Q)dV^

dx

Ί
(P,
Pdx

•

Q) dV0

r PQ

^ max I grad u(Q) \ .
Qesa(P)
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Clearly we can use (3.3) with a smaller value of a to bound the right
hand side of (3.8). Thus we can bound an arbitrary second derivative
of u in terms of Lu in R and the maximum of \u\ over a compact
subset of R. In order to treat an arbitrary third derivative we note
from (3.5) that

(3.9) ( (a* - x%)LQ

d2ΓjP>Q)d VQ = f \\ Γn{P, Q)Lx%d v
Jsα(P) dxPdXP dXPdxP LJsa(p)

for a, i, j = 1, , N. Combining (3.9) and (3.5) we have

MQ) _ U{P) _ {x% _ Xp)uη^9i

(8 10) - ^ ς

dXpdx'p Usa(P)

where we have summed over a from 1 to N. It follows from (8.10)
that if n ^ 5

( [u(Q) - u(P) - {x% - x%)u,x(P)]LQ

 d"r^P' Q) d F e

(P)1 κ*" Q p> ""y n Q dxdxdx Q

(3.11) - y

 t Γ( ΓTC(P

- u>«(pK <Γia , \\
θxPdxPdxP LJs«,(

The first integral on the right may be bounded as

(3.12)
I \ [u(Q) - u(P) - (x% - xP)u,a{P)]LQ

 d ^ P ' Q )

k d V,
I J«α(P) ΘXpdxlθXp

< max I u, dVn.

Now (3.11) and (3.12) can be used to reduce the problem of bounding
third derivatives to that of bounding second derivatives. It is clear
how to proceed to higher derivatives. In each of the preceding bounds
certain differentiability assumptions must be made. These conditions
become more and more stringent the more derivatives of u that we
wish to bound. Some conditions of this nature are of course required
since in general u cannot be expected to be smooth.

Thus for an arbitrary derivative at P the method described above
yields a bound in terms of Lu in R and the maximum of | u \ on a
compact subset (for example Sa(P) for some a) of R. These bounds,
together with bounds for | u \ in Sa(P) in terms of data in various



782 J. H. BRAMBLE AND L. E. PAYNE

boundary value problems, yield pointwise bounds for derivatives at
interior points in terms of the respective data. For such bounds see
[1, 2, 3, 4, 5, 7, 8].

The techniques which we have used here to bound derivatives of
solutions to boundary value problems at interior points in terms of
the operator and bounds for the solution itself, will carry over quite
naturally to higher order equations and to equations of other than
elliptic type.
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