A NOTE ON ORTHOGONAL LATIN SQUARES

Kenneth Rogers

1. Introduction. The purpose of this note is to give an improved estimate for $N(n)$, the maximal number of pairwise orthogonal Latin squares, by following the method of Chowla, Erdös and Straus [2]. The difference is that we use a result of Buchstab [1] rather than that of Rademacher in the sieve argument. Our result is that if c is any number less than $1 / 42$, then for all large n we have $N(n)>n^{c}$.

In the notation of Buchstab, write $P_{\omega}\left(x ; x^{1 / a}\right)$ for the number of positive integers not exceeding x which do not lie in any of the progressions $a_{0} \bmod p_{0}, a_{i} \bmod p_{i}$, or $b_{i} \bmod p_{i}$, where $p_{0}=2$, and p_{i} runs over the primes from 3 to $x^{1 / a}$. The subscript ω refers to the fact that P depends on the a_{i}, b_{i}. Buchstab proves that

$$
\begin{equation*}
P_{\omega}\left(x ; x^{1 / a}\right)>\lambda(\alpha) \frac{c^{\prime} x}{(\log x)^{2}}+0\left(\frac{x}{(\log x)^{3}}\right) \tag{1}
\end{equation*}
$$

where c^{\prime} is a constant 0.4161 and $\lambda(5) \geqq 0.96$.
The properties of $N(n)$ used for the proof are those of [2]:
A. $\quad N(a b) \geqq \operatorname{Min}\{N(a), N(b)\}$.
B. $N(n) \leqq n-1$, with equality when n is a prime-power.
C. If $k \leqq 1+N(m)$ and $1<u<m$, then

$$
N(u+k m) \geqq \operatorname{Min}\{N(k), N(k+1), 1+N(m), 1+N(u)\}-1
$$

We note that A and B are due to H.F. MacNeish, while C was found by Bose and Shrikhande.
2. Lower estimation of $N(n)$. We must deal separately with odd n and even n, and we use a fact proven in [1], called there "Lemma D ":
D. The number of integers no greater than x, which have a prime factor in common with n and greater than n^{g}, is no greater than $x / g n^{g}$.

Estimate for even n. We pick k so that

$$
\left\{\begin{array}{l}
k \equiv-1 \quad\left(\bmod 2^{\left[\log _{2} n / \alpha\right]}\right) \tag{2}\\
k \neq 0 \text { or }-1(\bmod p) \text { for } 3 \leqq p \leqq n^{1 / \beta} \\
k \leqq n^{1 / \gamma}
\end{array}\right.
$$

[^0]Since $k=-1+h 2^{\left[\log _{2} n / \alpha\right]}$, say, we know the number of such k is $P_{\omega}\left(\left(1+n^{1 / \gamma}\right) / 2^{\left[\log _{2} n / \alpha\right]} ; n^{1 / \beta}\right)$. In view of Buchstab's theorem, we take $1 / \gamma-1 / \alpha=5 / \beta$ and then have, for some positive constant c and all large n,

$$
P_{\omega}>c \cdot \frac{n^{5 / \beta}}{\log ^{2} n}
$$

Our k have no prime factor below $n^{1 / \beta}$, so to choose k also prime to n we must deal with the primes in n which are greater than $n^{1 / \beta}$. By D, the number of integers below $n^{1 / \gamma}$, which have a prime factor which exceeds $n^{1 / \beta}$ and divides n, is at most $n^{1 / \gamma} /(1 / \beta) n^{1 / \beta}$. Since we want this to be less than the number of k, we take $1 / \gamma=(6-\varepsilon) / \beta$, where $0<\varepsilon<1$. Then, for all large n we can choose k as above so as to be prime to n. Note that we now have $1 / \alpha=(1-\varepsilon) / \beta$. Since all prime factors of k exceed $n^{1 / \beta}$, and due to the restrictions on $k+1$, we deduce from A and B that:

$$
\begin{aligned}
& N(k)>n^{1 / \beta}-1 \\
& N(k+1)>\operatorname{Min}\left(\frac{1}{2} n^{1 / \alpha}, n^{1 / \beta}\right)-1
\end{aligned}
$$

and we note that for all large n both these estimates exceed $n^{1 / \infty} / 3$. Now, since we want to have $n=u+m k$, write

$$
n=n_{1}+n_{2} k, \quad 0<n_{1}<k, \quad\left(n_{1}, k\right)=1
$$

and

$$
u=n_{1}+u_{1} k
$$

Now choose u_{1} so that:

$$
\left\{\begin{array}{l}
u_{1} \not \equiv n_{1} \quad(\bmod 2), \tag{3}\\
u_{1} \not \equiv-n_{1} / k \quad(\bmod p), p \nmid k \\
u_{1} \not \equiv n_{2}(\bmod p) \\
u_{1}<n^{1 / 8}
\end{array}\right\} 3 \leqq p \leqq k,
$$

By Buchstab, this is all right as long as $k \leqq n^{1 / 58}$, so we choose $1 / \delta=5 / \gamma=5(6-\varepsilon) / \beta$. No prime less than or equal to k can divide u : for u is prime to k, and those primes below k which don't divide k do not divide u, by (3). Hence

$$
\begin{equation*}
N(u) \geqq k>N(k)>\frac{1}{3} n^{1 / \alpha} \tag{4}
\end{equation*}
$$

Finally, $m=(n-u) / k$, of course ; so $m-u=\{n-(1+k) u\} / k$, which
we want to make positive. Since $(1+k) u \ll n^{2 / \gamma+1 / \delta}$, choose β so that $7 \cdot(6-\varepsilon) / \beta<1$, or equivalently $1 / \alpha<(1-\varepsilon) / 7(6-\varepsilon)$. Thus we can achieve the conditions so far expressed for all large n, as long as α is any chosen number exceeding 42. As to $N(m)$, note that $m=n_{2}-u_{1} \not \equiv 0(\bmod p)$ for $3 \leqq p \leqq k$. Also u is odd, by (3), and n is even; hence m is odd. Thus

$$
\begin{equation*}
N(m) \geqq k>N(k)>\frac{1}{3} n^{1 / \alpha} \tag{5}
\end{equation*}
$$

The conditions of C apply now, and the above estimates and C imply that for any constant c less than $1 / 42$ we have:

$$
N(n)>n^{c}, \text { for all large even } n .
$$

Estimate for odd n. This time k is chosen even, the conditions being :

$$
\begin{aligned}
& k+1 \equiv 1\left(\bmod 2^{\left[1 \log _{2} n / \alpha\right]}\right) \\
& k+1 \not \equiv 0 \text { or } 1(\bmod p) \text { for } 3 \leqq p \leqq n^{1 / \beta} \\
& k+1 \leqq n^{1 / \gamma}
\end{aligned}
$$

With obvious changes in detail from the previous case, we still get $\operatorname{Min}\{N(k), N(k+1)\}>1 / 3(n)^{1 / \alpha}$, and $(n, k)=1$. This time, the relation $n-u=\left(n_{2}-u_{1}\right) k$ ensures that u is odd, but we must adjust the parity condition on u_{1} to ensure that m is odd:

$$
\left.\begin{array}{l}
u_{1} \not \equiv n_{2}(\bmod 2) \\
u_{1} \not \equiv-n_{1} / k(\bmod p), \text { for } p \nmid k, \\
u_{1} \not \equiv n_{2}(\bmod p) \\
u_{1}<n^{1 / \delta}
\end{array}\right\} 3 \leqq p \leqq k,
$$

Thus $m=n_{2}-u_{1}$ is odd, and now the details are as before, giving finally the following result.

Theorem. To each number c which is less than $1 / 42$, there corresponds an integer $n_{0}=n_{0}(c)$, such that for all $n>n_{0}$ we have

$$
N(n)>n^{c}
$$

References

1. A. A. Buchstab, Sur la decomposition des nombres paires. . . . , Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS 1940. Volume XXIX, No. 8-9, pp. 544548.
2. S. Chowla, P. Erdös, and E. G. Straus, On the maximal number of pairwise orthogonal latin squares of a given order, Can. J. Math., 12, pp. 204-208.

[^0]: Received December 11, 1963. Partially supported by NSF contract GP 1925.

