ON THE DEFINING RELATIONS OF A FREE PRODUCT

Elvira Strasser Rapaport

If $F_{n}=F\left(x_{1}, \cdots, x_{n}\right)$ is the free group generated by the symbols x_{1}, \cdots, x_{n}, and $R_{i}=R_{i}\left(x_{1}, \cdots, x_{n}\right), i: 1, \cdots, k$ are element in it, let

$$
R=\left\{R_{1}, \cdots, R_{k}\right\}
$$

be their normal closure in F_{n}, and let

$$
F / R=\left(x_{1}, \cdots, x_{n} ; R_{1}, \cdots, R_{k}\right)
$$

be the factor group of F_{n} by R, with n and k assumed finite.
My object is to prove the following theorem and corollaries.
Theorem. If

$$
F / R=\left(x_{1}, \cdots, x_{n} ; R_{1}, \cdots, R_{k}\right)
$$

and

$$
F^{*} / R^{*}=\left(x_{1}^{*}, \cdots, x_{n^{*}}^{*} ; R_{1}^{*}, \cdots, R_{k^{*}}^{*}\right)
$$

are isomorphic groups and $n^{*}+k<n+k^{*}$, then in the free group $F_{n+n^{*}}$ generated by $x_{1}^{*}, \cdots, x_{n}^{*}, z_{1}, \cdots, z_{n}$ the normal subgroup $\left\{R_{1}^{*}\left(x_{1}^{*}, \cdots, x_{n^{*}}^{*}\right), \cdots, R_{k^{*}+}^{*}\left(x_{1}^{*}, \cdots, x_{n^{*}}^{*}\right), z_{1}, \cdots, z_{n}\right\}$ is normal closure of $n^{*}+k<n+k^{*}$ elements.

The two corollaries concern the cases $k \leqq 1$ and $k^{*} \leqq 1$ - that is, free groups and groups possessing presentations on a single defining relation. (Deficiency is defined in Remark 1. below.)

Corollary 1. If a group possesses the two presentations of the theorem, then the one with the lesser deficiency has at least two defining relations $\left(k^{*}>1\right)$.

Corollary 2. If $G=F / R$ and $k \leqq 1$, then $n-k=d$ is maximal for all presentations of G.

The theorem is trivial if for example certain of the k^{*} defining relations are redundant. It becomes interesting when the number k^{*} is least possible for the subgroup R^{*}. For suppose that k^{*} is minimal for R^{*} :

$$
R^{*}=\left\{R_{1}^{*}, \cdots, R_{k^{*}}^{*}\right\} \neq\left\{S_{1}, \cdots, S_{k^{*}-1}\right\}
$$

Received November 1, 1963.
for any elements $S_{1}, \cdots, S_{k^{*}-1}$ of $F_{n^{*}}$. Then if z_{1}, \cdots, z_{n} are new symbols and $F_{n+n^{*}}$ the free group on the symbols $x_{1}^{*}, \cdots, x_{n^{*}}^{*}, z_{1}, \cdots, z_{n}$, the normal closure of $R_{1}^{*}, \cdots, R_{k^{*}}^{*}$ in $F_{n+n^{*}}$ still requires k^{*} elements to generate it. Consider however the normal subgroup

$$
T=\left\{R_{1}^{*}, \cdots, R_{k^{*}}^{*}, z_{1}, \cdots, z_{n}\right\}
$$

of $F_{n+n^{*}}$. The R_{j}^{*} do not involve the symbols $z_{i} ; k^{*}$ is least possible for R^{*}, and, of course, n is least possible for the group

$$
\left(z_{1}, \cdots, z_{n} ; z_{1}, \cdots, z_{n}\right)=1
$$

Now the group

$$
\left(x_{1}^{*}, \cdots, x_{n^{*}}^{*}, z_{1}, \cdots, z_{n} ; R_{1}^{*}, \cdots, R_{k^{*}}^{*}, z_{1}, \cdots, z_{n}\right)
$$

is the free product $G_{1}{ }^{*} G_{2}$ of $G_{1}=F^{*} / R^{*}$ and G_{2} the trivial group $\left(z_{1}, \cdots, z_{n} ; z_{1}, \cdots, z_{n}\right)$. The theorem claims that the sum of the (minimal) numbers of defining relations for the G_{i} is not always minimal for $G_{1}{ }^{*} G_{2}$.

Compare this with Grushko's theorem, which implies that the number of generators of a free product is the sum of those for the factors.

Remark 1. If one takes the number k in the presentation F / R (of any group) to be least possible for R in F, then this presentation is said to have the deficiency

$$
d=n-k
$$

Thus, setting $d^{*}=n^{*}-k^{*}$, the inequality $n^{*}+k<n+k^{*}$ is the same as

$$
d^{*}<d
$$

provided that k is minimal for R and k^{*} is minimal for R^{*} in their respective free groups. The deficiency of a presentation is not a group invariant [1].

Remark 2. The group with noninvariant deficiency given in [1] happens to be non-Hopfian (it is isomorphic to a proper factorgroup of itself : $G \simeq G / N, N \neq 1$). It is not known whether such groups must be non-Hopfian; however, two presentations, G and G / N of a nonHopfian group may have identical deficiencies even if N is not trivial. That is, if a group is given by the presentation

$$
G_{1}=F / R=\left(x_{1}, \cdots, x_{n} ; R_{1}, \cdots, R_{k}\right)
$$

and is isomorphic to its own proper factorgroup given by

$$
G_{2}=F / R^{*}=\left(G_{1} ; R_{k+1}\right)
$$

it need not follow that $k+1$ is minimal for R^{*} whenever k is minimal for R. For example, the first known pair of presentations of a nonHopfian group, due to Higman and quoted in [2], is

$$
\begin{aligned}
& G_{1}=\left(a, b, c ; a^{-1} b a b^{-2}, b c b^{-1} c^{-1}\right) \\
& G_{2}=\left(G_{1} ; a b^{-1} a^{-1} c^{-1} a b a^{-1} c\right),
\end{aligned}
$$

but $R^{*}=\left\{R_{1}, R_{2}, R_{3}\right\}=\left\{R_{1}, R_{3}\right\}$ (the R_{i} being the three defining words above in the order given).

Proof of the theorem. Set

$$
x=\left(x_{1}, \cdots, x_{n}\right), x^{*}=\left(x_{1}^{*}, \cdots, x_{n^{*}}^{*}\right), f\left(x^{*}\right)=\left(f_{1}\left(x^{*}\right), \cdots, f_{n}\left(x^{*}\right)\right),
$$

etc., and let

$$
\begin{aligned}
& G_{1}=F / R \\
& G_{2}=I G_{1}=F^{*} / R^{*}
\end{aligned}
$$

with the isomorphism I given by

$$
\begin{aligned}
& I\left(x_{i}\right)=f_{i}\left(x^{*}\right), i: 1, \cdots, n \\
& I\left(g_{j}(x)\right)=x_{j}^{*}, j: 1, \cdots, n^{*}
\end{aligned}
$$

Form the groups
$H_{1}=\stackrel{\circ}{F} / \stackrel{\circ}{R}=\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n^{*}} ; R_{1}, \cdots, R_{k}, y_{j} g_{j}^{-1}(x), j: 1, \cdots, n^{*}\right)$
and

$$
\begin{gathered}
H_{2}=\stackrel{\circ}{F} * / \stackrel{\circ}{R} *_{R}=\left(x_{1}^{*}, \cdots, x_{n^{*}}^{*}, y_{1}^{*}, \cdots, y_{n}^{*} ; R_{1}^{*}, \cdots, R_{k^{*}}^{*}, y_{i}^{*} f_{i}^{-1}\left(x^{*}\right)\right. \\
i: 1, \cdots, n)
\end{gathered}
$$

These are new presentations of the same group and the following mapping, J_{1}, defines, and isomorphism between H_{1} and H_{2} [cf. 4]:

$$
\begin{aligned}
& J_{1}\left(x_{i}\right)=y_{i}^{*}, i: 1, \cdots, n \\
& J_{1}\left(y_{j}\right)=x_{j}^{*}, j: 1, \cdots, n^{*}
\end{aligned}
$$

Since

$$
x_{j}^{*}=I\left(g_{j}(x)\right)=g_{j}(I(x))=g_{j}\left(f\left(x^{*}\right)\right) \text { modulo } R^{*}
$$

and

$$
R\left(f\left(x^{*}\right)\right)=1 \text { modulo } R^{*}
$$

in G_{2}, and hence in H_{2}, one gets the following identities in H_{2} :

$$
\begin{aligned}
& J_{1}(R)=R\left(y^{*}\right)=R\left(f\left(x^{*}\right)\right)=1, \\
& J_{1}\left(y_{j} g_{j}^{-1}(x)\right)=x_{j}^{*} g_{j}^{-1}\left(y^{*}\right)=x_{j}^{*} g_{j}^{-1}\left(f\left(x^{*}\right)\right)=1
\end{aligned}
$$

Clearly, J_{1} maps not only H_{1} on H_{2}, but also $\stackrel{\circ}{F}$ on $\stackrel{\circ}{F} *$, and $\stackrel{\circ}{R}$ on $\stackrel{\circ}{R} *$, isomorphically.

Finally let

$$
H_{3}=F^{\prime} / R^{\prime}=\left(x_{1}^{*}, \cdots, x_{n^{*}}^{*}, z_{1}, \cdots, z_{n} ; R_{1}^{*}, \cdots, R_{k^{*}}^{*}, z_{1}, \cdots, z_{n}\right) .
$$

Under the transformation J_{2} given by

$$
\begin{aligned}
& J_{2}\left(y_{i}^{*}\right)=z_{i} f_{i}\left(x^{*}\right), i: 1, \cdots, n \\
& J_{2}\left(x_{j}^{*}\right)=x_{j}^{*}, j: 1, \cdots, n^{*}
\end{aligned}
$$

H_{2} is mapped isomorphically on H_{3} and J_{2} is also an isomorphism between the free groups involved:

$$
J_{2}(\stackrel{\circ}{F *})=F^{\prime \prime} \quad J_{2}(\stackrel{\circ}{R *})=R^{\prime}
$$

Writing $J=J_{2} J_{1}$ gives $J H_{1}=H_{3}, J \stackrel{\circ}{F}=F^{\prime}, J \stackrel{\circ}{R}=R^{\prime}$, since J maps two free groups of equal rank (namely $n+n^{*}$) onto each other. Hence

$$
\begin{aligned}
J \stackrel{\circ}{R} & =\left\{J R_{1}, \cdots, J R_{k}, J\left(y_{1} g_{1}^{-1}(x)\right), \cdots, J\left(y_{n^{*}} g_{n^{*}}^{-1}(x)\right)\right\} \\
=R^{\prime} & =\left\{R_{1}^{*}, \cdots, R_{k^{*}}^{*}, z_{1}, \cdots, z_{n}\right\},
\end{aligned}
$$

showing that R^{\prime} is the normal closure of $n^{*}+k$ elements.in spite of the possibility that k^{*} is minimal for R^{*} and that the R_{i}^{*} contain no z-symbols.

This concludes the proof.
Proof of Corollary 1. If $k^{*}=0$ then R^{\prime} becomes $\left\{z_{1}, \cdots, z_{n}\right\}$, the normal closure of a free factor of F^{\prime}, and so requires $n=n+k^{*}>n^{*}+k$ defining elements. This contradicts the theorem, so $k^{*} \neq 0$.

If $k^{*}=1$, then $R^{\prime}=\left\{R_{1}^{*}, z_{1}, \cdots, z_{n}\right\}=\left\{s_{1}, \cdots, s_{n}\right\}$ obtains. Now R^{\prime} contains the free factor $F\left(z_{1}, \cdots, z_{n}\right)$ of F^{\prime} and is the closure of n elements in F^{\prime}. Therefore, by [3], $R^{\prime}=\left\{z_{1}, \cdots, z_{n}\right\}$; and since the R_{j}^{*} contain no z-symbols, R_{1}^{*} is empty, so $k^{*}=0$. Hence $k^{*}>1$.

Proof of Corollary 2. Suppose, on the contrary, that there is a presentation with deficiency $d^{* *}>d$. Then k can play the role of k^{*} above and Corollary 1 is contradicted.

Bibliography

1. G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc., 68 (1962) 99-201.
2. A. G. Kurosh, Gruppentheorie, Akademieverlag, Berlin 1955.
3. W. Magnus, Ueber freie Faktorgruppen gegebener Gruppen, Monatshefte Math. Phys., 47 (1939), 307-313.
4. E. S. Rapaport, Note on Nielsen transformations, Proc. Amer. Math. Soc., 10 (1959), 228-235.

Polytechnic Institute of Brooklyn

