DERIVATIONS ON B* ALGEBRAS

PHiLip MILES

1. A derivation D of a B* algebra A is a linear map of A into
itself satisfying the multiplicative rule

D(zy) = (Dx)y + «(Dy) .
The obvious examples are the inner derivations D, (x in A) defined by
D,(y) = [», 9]l =2y — y=.

All other derivations are called outer. For future use, we call a
derivation D self-adjoint if

D(@*) = —(Dx)*

for all « in A. Thus inner derivation by a self-adjoint element is a
self-adjoint derivation. Every derivation can be written in the form
D = D, + 1D, where D, and D, are self-adjoint; indeed, we may take

Dy(x) = %{Dm — (Da*)*}
Dyw) = L{Dx + (Dz*)*}.
21

The central fact about derivations of B* algebras is that they
are bounded; this is proved by Sakai [6, Theorem 11.1]. Somewhat
more may be said when A is weakly closed. In particular, Kaplansky
[5] has shown that a derivation of an AW?™* algebra of type I is
necessarily inner. (It seems to be an open question whether or not
this is true of weakly closed algebras of types II and III).

Our purpose is to state a weak sense in which every derivation
of a B* algebra is inner. This cannot be true in a strict sense, as
is shown by the following typical example: Let A be all compact
operators on some Hilbert space H, with an identity adjoined if
desired. Then for any « in <#(H), D, is a derivation on A. If, for
some ¥ in & (H), D,= D, on A, then D, , is zero on A, so * — ¥
commutes with all elements of 4, and so # — ¥ is a scalar multiple
of the identity e. Thus if 2 is chosen so that & — Ae¢ is not in A4
for any scalar ) (e.g., if x is a shift), D, is an outer derivation on
A, The reason for calling this example typical is made clear by the
following theorem:
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THEOREM. Let A be a B* algebra, D a derivation on A. Then
there exist a Hilbert space H, a faithful representation @ of A in
Z (H), and an operator S in the weak closure of P(A) such that

P(Dx) = Dsp(x)
for all x in A.

As a sample consequence, we give two generalizations of Wielandt’s
result that if K is a self-adjoint element of <Z (H), there is no X in
 (H) such that KX — XK = +I; we view this as saying that
Dy does not take on the value ¢I.

COROLLARY. (i) (Generalized Putnam’s Theorem) If D ts e self-
adjoint derivation on a B* algebra A, and if x is an element of A
such that D*x) = 0, then Dx = 0.

(i) If D 4s a derivation on the B* algebra A, then D(x) is not
wn the interior of the positive cone for any x in A.

2. Proof of the theorem. The following fact is implicit in
much of the literature on derivations.

ProPOSITION. Let A be a B* algebra, D a derivation on A4, I a
closed, two-sided ideal in A. Then D(I) S I, so' D is a derivation on
I, If ¢: A— B is a *-homomorphism of A into a B* algebra B, then
the operator D, defined on @(A4) by

D, (9(x)) = p(Dx)

is a derivation on ®(A4).
One sees this by noticing that any 2 in I may be written in the
form

@ = hi — hi+ W(hi — k)

where the h; are self-adjoint elements of I. The multiplicative rule
for D and the fact that I is a two-sided ideal yield the result that
Dz is in I. For ¢ as above, the kernel of ¢ is a closed, two-sided
ideal, and so @(x) = 0 implies @(Dx) = 0. It follows that D, is well
defined, and the obvious verifications show it a derivation.

The Gelfand-Naimark representation referred to in the following
lemma is standard; it is described in some detail immediately follow-
ing the proof of the lemma.

_ LeMMA 1. Let A be a B* algebra, D a derivation on A. Let
A be the weak closure of (the tmage of) A in the Gelfand-Naimark
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representation formed by using all states of A. Then there s a
derivation D on A which agrees with D on (the image of) A.

Proof. Since D is necessarily bounded, the transformation D*
defined on A* by

(D*f)(x) = f(Dx)

is a bounded transformation of A* into itself. Likewise the trans-
formation D** defined on A** by

(D**6)(f) = &(D*Y)

is a bounded transformation of A** into itself. But A** can be
identified with A so that Arens multiplication on A** corresponds to
ordinary operator multiplication on A (and so that the linear and
norm structures of the two spaces coincide) [1, p. 869]. A straight-
forward verification via the definition of Arens multiplication shows
that D** is a derivation on A**, which we identify with the deri-
vation D on A.

To fix notation, we review the construction of the Gelfand-
Naimark representation of a B* algebra A.

Given a state f on A, we form the left ideal

I;={xecA: f(x*r) = 0}
and the difference space
X;=A01I.
We denote by x, the image of # in X;. X, has an inner product
(@, ¥5) = fly*a)

and the completion of X, under the norm induced by this inner product
is a Hilbert space, denoted by H;.
Given x in A, the operator ®,(x) defined on X, by

PA2)Y;s = (2Y)s

is bounded, and so has a bounded extension to Hy, also denoted by
®s(x). To obtain the Gelfand-Naimark representation, we form the
direct sum of the H,, extended over all states f; this Hilbert space
we call H, We think of its elements £ as “sequences,”

§={¢}

where &7 is the component of & in H;. The Gelfand-Naimark rep-
resentation @ is then the direct sum of the o;:
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P’} = {ps ()67} .

Given a pure state f, on A, let ® = {w’} be the element of H
defined by

W’ = {efo f :fO
0 f#7rh.
Define the vector state f, on A by
fuoT) = (Tw, w) .

As above, let I, = {ScA:f.(S*S)=0}, let X, = AO 1, let S,
be the image of S in X, and let H, be the completion of X, in the
norm induced by f..

LEmMMA 2. The map U: X; — X, defined by
U(.’E,o) = w‘,,

18 in fact an isometry of I—Ii0 onto H, (For simplicity, we have
identified A with its image in A).

Proof. Throughout the proof we replace “f,” by “0” in sub- and
superseripts.

Identifying A with its image in A, we have f,=f, on A.
Therefore

(Usy Uy) = @y Yu) = fuy*) = fo(y*a) = (20, Yo)

and U is an isometry on X,.

But since f, is a pure state, @A) acts irreducibly on H, It
follows from the theorem of Kadison [4, Theorem 1] that irreducibility
may be taken in a purely algebraic sense: thus, given any & in H,,
there is an « in A such that

& = px)e, = , .

Therefore, X, = H,. Since H, is complete and U an isometry,
UH, is complete, and so closed in H,. Thus any ?» in H, may be
written uniquely in the form

N=0+7, neUH,, neUH)*.

If » is in X, then, since 7,¢UH, & X,, 7, is also in X,, and so there
is some S in A with 7, = S,. Since 7,s(UH,)!,

0 = (72, Uo) = (8., ) = fu(@*S) = (S0, 1)
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for all z i A. On the other hand, since S is in A, we can find
in A making

| (Sw, (x — S)w) |
arbitrarily small. It follows that (Sw, Sw) =0, so Se¢IL, S, = 0.

Thus X, & UH,. Since X, is dense, and UH, closed, in H,, we
have UH, = H,.

LEMMA 3. p.(A) = Z(H,) .

Proof. Evidently the map +: <z (H,) — ZZ(H,) given by (S) =
USU* is a x-isomorphism of <#(H,) onto <#(H,), bi-continuous with
respect to the weak operator topologies. Thus

Jr(weak closure @(A)) = weak closure ¥(@y(4))
= weak closure @,(4).

Since @,(A) acts irreducibly on H, weak Nclosure ?(A) = & (H). On
the other hand, Jo is a vector state on A, and so normal [2, p. 54].
Consequently, @,(A) is a weakly closed subalgebra of <Z(H,) [2, p. 57].
Thus ‘

weak closure @,(A) S weak closure @,(4) = .(4).

G (H,) = y(weak closure ®,(4)) = weak closure ®,(4) S P.(A).

We now get at the proof of the theorem. By Lemma 1, the
derivation D on A extends to a derivation D on A. Since @, is a
s-homomorphism, D induces a derivation D, on %.,(Z) by

D(@T)) = @ (D(T)) .

As we have just seen, @,(A) is very much a type I weakly closed
algebra, so we may appeal to Kaplansky’s result to find an S in
“#(H,) such that

D (p.(T)) =[S, 2.(T)]

for all T in A.
Consequently,

PDx) = U*@,(Dx)U = U*D(pu(x) U
= (U*SUNU*p(x)U) — (U*p(x) UNU*SU).

Letting S, = U*SU, we thus have
(*) P D) = SPy(x) — Po()S, .

Assume for the moment that D is self-adjoint; it follows that
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P(D(x*)) = —(p(Dx))*

and so
Sepu(@)* — Py(@)*S, = SFP(®)* — Py(w)*Se*

for all  in A. In other words, S, — S;* commutes with @,(4), and
so is a scalar multiple of the identity. Now altering S, by adding a
scalar multiple of the identity does not affect any of the Lie produects
[Se; T]. Consequently we may choose S, so as to satisfy (x) and to
be self-adjoint.

By further addition of a real scalar multiple of the identity, we
may assure that the spectrum o(S,) is centered at the origin. We
assert that when this has been done, we have

IS Il 11Dl =11 DIl

the norm on the left being the norm in <#(H,) and the two on the
right (whose equality is easily verified via the identification D = D**)
the norms D and D have as operators on A and A respectively.

For, given any ¢ > 0, the spectral theorem applied to the self-
adjoint S, supplies us with vectors & and 7 in H, such that

WENl=1nll=1, &§L17n
|S&+51slie]| <e

|sa—%isim||<e.

Since & and 7 are orthogonal, there is a unitary element of <Z(H,)
which interchanges them. Appealing again to Kadison’s theorem [4,
Theorem 1], we have a unitary » in A such that ®,(») interchanges
£ and 7.

We thus have

|
|

Spo(v)é — —;— I Sell 7 ‘= \\SJ) - -%— I Sollv“ <e

Po(0)Sef + % 1Sl 7 \ = II%(”)(So& + ‘é‘ 115l 5)”

= el -

sos+%uso||s”<s.

Therefore

|50 203l — 1180117 < 26

and so
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[ [Ses PNl = | Soll < 7] — 2 =[S, — 2¢.
On the other hand,

1 [Ses P Il = [| PDV)E || S NI @6l - I DI - vl - [IE1l = | DI|

Combining these inequalities, we obtain ||D|| = || S,|] — 2¢ for any
positive &, which proves our assertion.

To obtain the promised representation, let &% be any family of
pure states maximal with respect to the property that the representa-
tions induced by any two distinet members of & shall not be
unitarily equivalent. Let H be the direct sum of the H,, extended
over all fin &, and @ the direct sum of the ¢,, also extended over
Z. Since the direct sum representation extended over all pure
states is faithful, @ must also be faithful. By the argument just
finished, there exists for each f in & an element S’ in <Z (H,)
satisfying

Pi(Dx) = S7p,(x) — Py (x)S”, all weA ||S7|| = || D]l
Thus the operator S defined on H by

S} = {S7¢7}

is in &#(H), and indeed ||S|| = || D||. It is at once verified that for
any x in A,

P(Da) = [S, p(@)] .

That S is in the weak closure of ®(A) is a consequence of the fact
[3, Cor. 4] that our choice of & causes the weak closure of ®(4) to
be the C* direct sum X P (H;) extended over #.

We have been operating for some time under the assumption that
D was self-adjoint. Since any derivation is a linear combination of
self-adjoint ones, and since the representation @ did not depend on
the derivation, it is clear that the theorem has in fact been proved
for any derivation D.

The relation of ||S|| and ||D|| when D is arbitrary remains a
loose end.

3. Proof of the corollary. (i) Given the self-adjoint deriva-
tion D on the B* algebra A, we take a faithful representation @ of
A in some <Z(H) and a self-adjoint S in <#(H) such that

P(Dx) = Sp(x) — P(x)S
for all x in A. If D*x) = 0, then
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0 = (D) = p(D(Dx)) =[S, [S, @)]] .

We can now apply the well known theorem of Putnam to con-
clude that [S, #(x)] = 0, and so that Dz = 0.

(i) If D is self-adjoint and D(x) is self-adjoint, then 2 = ¢k for
some self-adjoint k. Let @, S, H be as above: We may also take @(e)
to be the identity I on H. If 4D(k) is in the interior of the posi-
tive cone of A, then 4D(k) = de for some ¢ > 0, and consequently
1p(Dk) = o1.

Given any state f on <#(H), let f(Se(k)) = a + 468. Then

F(pk)S) = a —iB
Thus
if(@(DI)) = if([S, pk)]) = —28 = 0f(T) =5 .
Consequently
APRPASY = | FSPU0) P = a + 6 = 04 .

Thus f(o(k)?) is not zero for any state f. Since all multiplicative
functionals on the closed (commutative) algebra generated by @(k)
and I extend to states of <#(H), this implies @(k) regular.

Now for any scalar N, D(k + xe) = D(k). We may therefore
repeat the argument above with %k replaced by %k + \e, coming to the
conclusion that k¥ + \e is regular for all scalars )\, an impossibility.
Thus our original assumption was false, and (ii) is proved.
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