
DERIVATIONS ON 5* ALGEBRAS

PHILIP MILES

1* A derivation ΰ of a B* algebra A is a linear map of A into
itself satisfying the multiplicative rule

D(xy) = (Dx)y + x(Dy).

The obvious examples are the inner derivations A (x in A) defined by

All other derivations are called outer. For future use, we call a
derivation D self-adjoint if

D(x*) = -(Zte)*

for all x in A. Thus inner derivation by a self-adjoint element is a
self-adjoint derivation. Every derivation can be written in the form
D = A + ί A where A and A are self-adjoint; indeed, we may take

DM = UDX - (Dx*)*}
Δ

The central fact about derivations of Z?* algebras is that they
are bounded; this is proved by Sakai [6, Theorem 11.1]. Somewhat
more may be said when A is weakly closed. In particular, Kaplansky
[5] has shown that a derivation of an AW* algebra of type I is
necessarily inner. (It seems to be an open question whether or not
this is true of weakly closed algebras of types II and III).

Our purpose is to state a weak sense in which every derivation
of a 5* algebra is inner. This cannot be true in a strict sense, as
is shown by the following typical example: Let A be all compact
operators on some Hubert space H, with an identity adjoined if
desired. Then for any x in &(H), A is a derivation on A. If, for
some y in &{H), A = Dy on A, then A-? is zero on A, so x — y
commutes with all elements of A, and so x — y is a scalar multiple
of the identity e. Thus if x is chosen so that x — λe is not in A
for any scalar λ (e.g., if x is a shift), A is an outer derivation on
A. The reason for calling this example typical is made clear by the
following theorem:
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THEOREM. Let Abe a B* algebra, D a derivation on A. Then
there exist a Hilbert space H, a faithful representation φ of A in

and an operator S in the weak closure of φ{A) such that

φ(Dx) = Dsφ(x)

for all x in A.

As a sample consequence, we give two generalizations of Wielandt's
result that if K is a self-ad joint element of & (H), there is no -X" in
& (H) such that KX — XK = il; we view this as saying that
Όκ does not take on the value il.

COROLLARY, (i) (Generalized Putnam's Theorem) If D is a self-
adjoint derivation on a B* algebra A, and if x is an element of A
such that D\x) = 0, then Dx = 0.

(ii) If D is a derivation on the U* algebra A, then D(x) is not
in the interior of the positive cone for any x in A.

2. Proof of the theorem* The following fact is implicit in
much of the literature on derivations.

PROPOSITION. Let A be a B* algebra, D a derivation on A, I a
closed, two-sided ideal in A. Then D(I) £ 2, so D is a derivation on
J. If φ: A—>B is a *-homomorphism of A into a J3* algebra B, then
the operator Dφ defined on φ{A) by

Dφ{φ{x)) = φ(Dx)

is a derivation on φ(A).
One sees this by noticing that any x in I may be written in the

form

x = h\ - hi + i(hl - hi)

where the hi are self-adjoint elements of /. The multiplicative rule
for D and the fact that I is a two-sided ideal yield the result that
Dx is in I. For φ as above, the kernel of φ is a closed, two-sided
ideal, and so φ(x) = 0 implies φ(Dx) = 0. It follows that Dφ is well
defined, and the obvious verifications show it a derivation.

The Gelfand-Naimark representation referred to in the following
lemma is standard; it is described in some detail immediately follow-
ing the proof of the lemma.

LEMMA 1. Let A be a B* algebra, D a derivation on A. Let
A be the weak closure of {the image of) A in the Gelfand-Naimark
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representation formed by using all states of A. Then there is a
derivation D on A which agrees with D on (the image of) A.

Proof. Since D is necessarily bounded, the transformation D*
defined on A* by

(B*f)(x) = f(Dx)

is a bounded transformation of A* into itself. Likewise the trans-
formation Z?** defined on A** by

(B**ξ)(f) = ξ(D*f)

is a bounded transformation of A** into itself. But A** can be
identified with A so that Arens multiplication on A** corresponds to
ordinary operator multiplication on A (and so that the linear and
norm structures of the two spaces coincide) [1, p. 869]. A straight-
forward verification via the definition of Arens multiplication shows
that Z)** is a derivation on A**, which we identify with the deri-
vation D on A.

To fix notation, we review the construction of the Gelf and-
Naimark representation of a 23* algebra A.

Given a state / on A, we form the left ideal

If = {xeA:f(x*x) = 0}

and the difference space

We denote by xf the image of x in Xf. Xf has an inner product

and the completion of Xf under the norm induced by this inner product
is a Hubert space, denoted by Hf.

Given x in A, the operator ψ/{x) defined on Xf by

is bounded, and so has a bounded extension to Hf, also denoted by
<Pf(x). To obtain the Gelfand-Naimark representation, we form the
direct sum of the Hf, extended over all states /; this Hubert space
we call H. We think of its elements ξ as "sequences,"

where ξf is the component of ξ in Hf. The Gelfand-Naimark rep-
resentation φ is then the direct sum of the φf:
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= {φf(x)ξ'} .

Given a pure state f0 on A, let ω = {ωf} be the element of H
defined by

10 fΦf0.

Define the vector state fω on A by

As above, let Iω = {Se A :/ω(S*S) = 0}, let Xω = AQ iω, let Sω

be the image of S in Xω, and let Hω be the completion of Xω in the
norm induced by fω.

LEMMA 2. The map U: Xfo -• Xω defined by

is in fact an isometry of HfQ onto Hω (For simplicity, we have
identified A with its image in A).

Proof. Throughout the proof we replace "/ 0 " by "0". in sub- and
superscripts.

Identifying A with its image in A, we have f0 — fω on A.
Therefore

(UXo, Uy0) = (xω, yω) = fjy*x) = fo(v*x) = (^o, l/0)

and ί7 is an isometry on Xo.
But since / 0 is a pure state, 9>0(Ά) acts irreducibly on Ho. It

follows from the theorem of Kadison [4, Theorem 1] that irreducibility
may be taken in a purely algebraic sense: thus, given any ξ in HOf

there is an x in A such that

ξ = <Po(ίφo = ^o .

Therefore, Xo = Ho. Since Jϊo is complete and U an isometry,
UH0 is complete, and so closed in Hω. Thus any TJ in fl"ω may be
written uniquely in the form

If 37 is in Xω then, since y]xs UH0 £ Xω, % is also in Xω, and so there
is some S in A with % = Sω. Since 7]2s{UH0)

L,

0 - (%, C7α0) = (S., a?.) = fJp*S) =
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for all x in' A. On the other hand, since S is in A, we can find x
in A making

I (Sω, (x - S)ω) \

arbitrarily small. It follows that (Sω, Sω) = 0, so Sεlω, Sω = 0.
Thus Xω £ UH0. Since Xω is dense, and UH0 closed, in Hω, we

have UH0 = Hω.

LEMMA 3. φJΛ) = ^(Hω).

Proof. Evidently the map ψ: &(H0) -> ^(Hω) given by ψ(S) =
USU* is a ^-isomorphism of &(H0) onto ^?(Hω), bi-continuous with
respect to the weak operator topologies. Thus

^(weak closure φo(A)) = weak closure ψ(φQ(A))
= weak closure φω(A).

Since φo(A) acts irreducibly on Ho, weak closure φo(A) = &(H0). On
the other hand, /„ is a vector state on A, and so normal [2, p. 54].
Consequently, <£>ω(A) is a weakly closed subalgebra of &(Hω) [2, p. 57].
Thus

weak closure φω(A) £ weak closure <pω(A) = <

&(Hω) = ψ^(weak closure 0>oCA)) = weak closure 9ω(A) g
We now get at the proof of the theorem. By Lemma 1, the

derivation D on A extends to a derivation D on A. Since φω is a
*-homomorphism, D induces a derivation Dω on 9>ω(A) by

As we have just seen, φω(Ά) is very much a type I weakly closed
algebra, so we may appeal to Kaplansky's result to find an S in
&(Hω) such that

DMT)) = [S, φm(T)]

for all T in A.
Consequently,

φQ(Dx)= U*φm(Dx)U= U*Dω(φω(x))U
= (U*SU)(U*φω(x)U) - (U*φω(x)U)(U*SU).

Letting So = U*SU, we thus have

(*) <Po(Dx) — Soφo(x) — <po(aO£o

Assume for the moment that D is self-adjoint; it follows that
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φo(D(x*)) = -(φQ(Dx))*

and so

So<Po(x)* ~ <Po(x)*So = S0*φ0(x)* - φo(x)*So*

for all x in A. In other words, So — So* commutes with φo(A)f and
so is a scalar multiple of the identity. Now altering So by adding a
scalar multiple of the identity does not affect any of the Lie products
[SOf T]. Consequently we may choose So so as to satisfy (*) and to
be self-adjoint.

By further addition of a real scalar multiple of the identity, we
may assure that the spectrum σ(S0) is centered at the origin. We
assert that when this has been done, we have

\\S0\\<L\\D\\ = \\D\\,

the norm on the left being the norm in &(H0) and the two on the
right (whose equality is easily verified via the identification D = D**)
the norms D and D have as operators on A and A respectively.

For, given any ε > 0, the spectral theorem applied to the self-
adjoint So supplies us with vectors ξ and TJ in Ho such that

= 1, ξ±V

4ι ι so i i f l l<ε

fs^--i-||S||J?||<β.

Since ξ and rj are orthogonal, there is a unitary element of
which interchanges them. Appealing again to Kadison's theorem [4,
Theorem 1], we have a unitary v in A such that φo(v) interchanges
ξ and η.

We thus have

\soφo(v)ξ - i - II S0\\v\\ = \\SOV - i - 1 | S. ||^|| < e
J Δ 11 11 iLt J >

sj; + ± || So|| ξ

Therefore

and so
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II [SOf φo(v)]ξ II ^ II S o II II η II - 2 ε = || So || - 2 ε .

On the other hand,

\\[SQ,<Po(v)]ξ\\ = l l ^ o Φ ^ I I ^ l l ^ o I I I I D I I I M I I I i l l = I I 2 ) I I

Combining these inequalities, we obtain || D\\ ̂  || So | | — 2ε for any-
positive ε, which proves our assertion.

To obtain the promised representation, let j ^ ~ be any family of
pure states maximal with respect to the property that the representa-
tions induced by any two distinct members of &~ shall not be
unitarily equivalent. Let H be the direct sum of the Hf, extended
over all / in SΓ% and ψ the direct sum of the φf9 also extended over
^ 7 Since the direct sum representation extended over all pure
states is faithful, φ must also be faithful. By the argument just
finished, there exists for each / in &~ an element Sf in
satisfying

φf(Dx) = S'φf(x) - φf(x)S' , all xεA \\ S' \\ ^ || D||.

Thus the operator S defined on H by

S{ξ*} = {Sψ}

is in &(H), and indeed | | S | | ^ | | 2 ? | | It is at once verified that for
any x in A,

φφx) = [S, φ(x)] .

That S is in the weak closure of φ{A) is a consequence of the fact
[3, Cor. 4] that our choice of ^ causes the weak closure of φ(A) to
be the C* direct sum Σ 0 (Hf) extended over ^ Γ

We have been operating for some time under the assumption that
D was self-adjoint. Since any derivation is a linear combination of
self-adjoint ones, and since the representation φ did not depend on
the derivation, it is clear that the theorem has in fact been proved
for any derivation D.

The relation of | | S | | and | | D | | when D is arbitrary remains a
loose end.

3* Proof of the corollary* (i) Given the self-ad joint deriva-
tion D on the J3* algebra A, we take a faithful representation φ of
A in some &(H) and a self-adjoint S in &(H) such that

φ{Dx) = Sφ(x) - φ(x)S

for all x in A. If D\x) = 0, then
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0 = φ(D*X) = φ(D(Dx)) = [S, [S, φ(x)]\ .

We can now apply the well known theorem of Putnam to con-
clude that [S, φ(x)] = 0, and so that Dx = 0.

(ii) If D is self-ad joint and D(x) is self-ad joint, then x — ik for
some self-adjoint k. Let φ, S, H be as above: We may also take φ(e)
to be the identity / on H. If %D{k) is in the interior of the posi-
tive cone of A, then iD(k) ^ δe for some δ > 0, and consequently
iφ(Dk) ^ δl.

Given any state / on ^{H), let f(Sφ(k)) = a + iβ. Then

Thus

i/WDAO) - <Λ[Sf, φ(k)]) - -2/3 ^ δ/(J) = δ .

Consequently

Λ<P(mf(S2) ^ \f(Sφ(k) I2 ̂  α2 + β2 ^ δ2/4 .

Thus f(φ(kf) is not zero for any state /. Since all multiplicative
functionals on the closed (commutative) algebra generated by φ{k)
and I extend to states of &{H), this implies φ(k) regular.

Now for any scalar λ, D(k + Xe) = D(k). We may therefore
repeat the argument above with k replaced by k + Xe, coming to the
conclusion that k + Xe is regular for all scalars λ, an impossibility.
Thus our original assumption was false, and (ii) is proved.
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