
NATURAL SUMS AND ABELIANIZING

J. R. ISBELL

Introduction* It is a well known result, essentially due to Mac
Lane [13], that the addition in an abelian category is determined by
the multiplication, i.e. every categorical isomorphism is additive. The
sum / + g of two mappings f:A-+B, g:A—>B is defined—in fact,
overdefined—by the following diagram involving natural isomorphisms
of free sums A V A and direct products A x A.

A V Af-^>B\J B-^B

l^4

In many non-abelian categories, especially in the category of all
groups, one has not isomorphisms but naturally distinguished mappings
A\/ A—> A x A. The definition of a sum f + g becomes a problem,
which for groups may be best posed in the form

This form is chosen [6] because A\ί A—> Ax A is an epimorphism
—>-», so that there is at most one mapping > making the
diagram commutative; / and g are called summable if this mapping
exists, and then their sum is the composed mapping A -^ A x A —> B.
This partially defined addition, called the natural sum, turns out to
be the same as Fitting's [2] pointwise multiplication of homomorphisms
with commuting values; it has been used in extensive investigations
of direct decompositions by Euros [9] and Livsic [10, 11, 12].

Of course a dual diagram applies in categories which have naturally
distinguished monomorphisms A V A >—> A x A. In many categories
there is a naturally distinguished mapping AvA-+AxA which is
neither epimorphic nor monomorphic. This is the situation in the
category of homotopy types of topological spaces with base point, and
the theory of homotopy operations, despite some analogies, apparently
requires the apparatus currently in use there [1] which is not related
to Mac Lane's fundamental diagram. However, Mac Lane's approach
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can be pushed further when there is a natural factorization
A V A—>-+M>—> A x A. I indicated this development in [6], as-
suming certain axioms and asserting that the resulting partial sum
satisfies the axioms of Kuros [9]. This is wrong. The present paper
defines the partial sum more generally and determines conditions for
the distributive law (Axiom II of [9]). The decomposition theory as
developed by Livsic seems to require the distributive law. Without
it—for example, in non-associative binary systems with zero—we have
a theory of left abelian and right abelian objects, which behave like
suspension spaces and £Γ-spaces, also, there is a right abelianization of
any object, like a commutator quotient group (and dually); and the
two-sided abelian objects form a full subcategory (a retract of the
given category) having / + g always defined, commutative, associative,
and distributive. Such a category we call maclanian.

Groups form a left maclanian category, i.e. every object is left
abelian. There is a curious result to the effect that in every left
maclanian algebraic category, the distributive law holds; here "left"
cannot be replaced by "right".

The development depends on a distinguished factorization
A\/ A—>->ikf>—> A x A, i.e. on a bicategorical structure. Such a
structure is unique for groups but not in general, so that a given
category may have more than one operation of this type; non-uniqueness
occurs at least in some artificial algebraic examples and it occurs in a
natural way in the category of Banach spaces and norm-decreasing
operators.

1* Maclanian categories* We shall be interested in certain
categories ^ having zero mappings and finite free sums and direct
products. Note that there exist sum and product functors
V: ^ x ^ —» ̂ , x : ^ x ^ —* <g% unique up to natural equivalence;
for instance, V takes each pair of objects (A, B) to a free sum A V B9

with the obvious behavior on mappings. If V and x are naturally
equivalent, we call c<^ maclanian.

The basic facts on maclanian categories are indicated in [13], and
details added here (found by me at various times between 1958 and
1962) have been described by two referees as "largely in the folklore"*
The first few details lead up to the proposition (1.5) that if there is
some natural equivalence between V and x then there is a natural
equivalence of the precise form assumed in Mac Lane's paper [13].
Then we prove the uniqueness of + and the representation theorem,
results which are almost fully given in [13]; and we conclude with
two results to the effect that every operation is a sum of unary
operations. I do not know how much is folklore.

We define an w-ary partial operation in a category ^ as a
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function Q whose domain is some class of ordered ^-tuples (flf •••,/„)
of coterminal mappings of & and whose value Q(fu , /») is coterminal
with the /,. Q is natural if Q(fl/i, , flΛ) = fifQ(/i, , Λ) and
Qifiβf * 9 M = Q(/i, , /»)β whenever the expressions on the right
of these equations are defined; Q is total if its domain is the class of
all coterminal w-tuples.

To simplify notation we state 1.1 and 1.2 only for n = 2. The
generalizations to n > 0 for 1.1 and n > 1 for 1.2 will be left as
(easy) exercises, and will be invoked in 1.8 and 1.9. We still need
notation for projections ft i x B —>A, p2: A x B —• J5; a product A x A
also has a diagonal map J 4 : 4 ^ 4 x 4 . With similar notation (ilf i2, FA)
for sums, we have

1.1. In any category having finite sums and products there is
a one-to-one correspondence between natural total binary operations
Q and natural transformations Φ: x —•> V, established by the following
formulas:

^VBΦ{BίB) x (

for fuAiA^B.

The routine verification is omitted.
For the next lemmas we wτant the matrix notation; a matrix (fjk)

of mappings fάh\ Xk —> Yj denotes the mapping / from the free sum of
the Xk to the direct product of the Ys whose coordinates Pjfik are
fjk. In particular, a row vector is a free sum mapping; a column
vector may be conveniently printed as (gl9 , gm)x- A—>Bxx x Bm.
When there are zero mappings there is also the notion of a diagonal
matrix D(hu " ,hn), which is square with zeros off the diagonal and
hk down the diagonal.

1.2. // ^ has free sum and direct product functors V, x, and
there exists a natural transformation from V to x, then ^ has
zero mappings.

Proof. Given Ψ\ \ί —> x . For any objects A and B, consider
ΦU,B) A V J5—• A x B, which may be written as a 2 by 2 matrix (/,-*).
We claim /21: A~-+ B is a zero mapping. For any h; B—> B, by natu-
rality of ?Γ, (fίk) V (1^, A) = x (1^, h)(fjk); and taking coordinates,
/a = Λ/21. Similarly (in fact, dually), for every e: A —> A, f21e = /21.
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1.3. Any natural transformation Ψ: V —> x is determined by a
collection of matrices which, by the proof of 1.2, must be diagonal
matrices D(dx(Al9 A2), d2(Au A2)). More: the mapping dk(Alf A2): Ak—>Ak

is determined by the object Ak and the index k. The proof is a trivial
computation; and the result holds also for n-ίolά sum and product
functors on ^ x x <ĝ  to <ĝ .

Thus a natural transformation from V to x is determined by an
(arbitrary) ordered pair of unary natural total operations. Note that
in the maclanian case we have a more or less natural one-to-one
correspondence between w-ary natural total operations and w-tuples of
unary ones. The reservation "more or less" is removed by 1.5 and
the correspondence is exhibited in 1.9.

1.4. If Φ is a natural transformation from the identity to the
identity and C = Ax x A2 then Φo = x(ΦAl, @A)

Proof. The coordinate functions pk satisfy pkΦ0 — ®AkVk*
Let Π denote the natural transformation from V to x made up

by all the identity matrices D(1A, 1B).

1.5. THEOREM. For any category having the sum and product
functors V and x and some natural equivalence from V to x, the
category is maclanian (by 1.2) and Π is a. natural equivalence.

Proof. Consider a natural equivalence Φ given by matrices with
diagonal entries dk(A). The inverse transformation Φ~x corresponds
(by 1.1) to a binary operation Q; then the inverse of Π is given by
the operation R defined R(f, g) = Qifd^A), gd2{A)) for f,g:A-> B. To
check this, using 1.4 and its dual, is routine.

1.6. THEOREM. In a category having zero mappings and finite
sums and products, a binary natural total operation + satisfying
/ + 0 = 0 + / — / identically must be unique, commutative, and
associative) it corresponds (by 1.1) to the inverse of Π.

To prove this, use the formulas of 1.1 to write out the conditions
ΦΠ = 1, ΠΦ — 1, and check that although Π and its inverse are unique
only relative to a choice of V and x, + is absolutely unique.

The operation + in a maclanian category which exists by 1.5 and
1.1 and is characterized by 1.6 is called the natural sum.

The next result (Mac Lane's representation theorem) will be

1.7. THEOREM. Every small maclanian category is isomorphic



NATURAL SUMS AND ABELIANIZING 1269

with a full category of commutative semigroups with operators, under
an isomorphism preserving direct products.

The smallness assumption is weakened later (3.6); it probably cannot
be altogether removed, though I have no example. Mac Lane [13]
used a much weaker assumption, omitted the operators, and did not
get a full representation. However, the operators are by now a standard
device; 1.7 as stated is widely known; and I outline the proof only
for reference in the proof of 3.6.

For any object A of the small maclanian category <^, let A' be
the weak direct sum of all the additive semigroups of mappings Map
(X, A), X an object of <#. For any mapping f:A-+B, let / ' : A'-*B'
be the homomorphism which takes each mapping e: X—>A to fe (extended
linearly over the rest of A'). This represents ^ isomorphically in
semigroups. Introduce a semiring R of operators: the weak direct sum
of all Map (X, Y), with multiplication f*g = fg if fg exists in <£*,
f*g = o if fg does not exist in <£*, extended bilinearly. Then each
A' is a right ideal of R; let R operate by right multiplication. A
routine check establishes 1.7.

The representation is far from unique. However, there are es-
sentially no other algebraic representations except those which arise
from cutting down R. Precisely, we define a maclanian category of
algebras as a full category of algebras (not necessarily small) which
is a maclanian abstract category and is closed under finite algebraic
(Cartesian) direct product.

1.8. In any maclanian category of algebras the natural sum is
defined pointwise by an operation + on elements which makes the
algebras commutative semigroups. Every n-ary operation of these
algebras has the form ex(x^ + ••• + en(xn), where all e{ are +-endo-
morphic operations.

Proof. Under these hypotheses we may identify free sum and
Cartesian product. Then x + y is defined as P((x, y)). From 1.1, the
natural sum is defined pointwise by +; hence the algebras are com-
mutative semigroups under + . For an %-ary algebraic operation W,
define e{(x) = W(0, , x, , 0); we evaluate W(xlf , xn) in A by
considering zt — (0, , xif , 0) in An. The same device shows that
every unary algebraic operation is +-endomorphic.

I do not know whether there is a maclanian category of algebras
for which + is not expressible in terms of the algebraic operations
and 0. If 0 is not allowed, the abelian groups with the sole operation
x + y + z provide an example.



1270 J. R. ISBELL

1.9. Every natural total operation on a maclanian category is
a sum of unary operations, and the unary operations are +-endo-
morphic.

This can be deduced from the proofs of 1.7 and 1.8, or less arti-
ficially, from 1.1, 1.2 and 1.3.

2* Addition in bicategories* A category with a distinguished
factorization of mappings into epimorphisms and monomorphisms,
satisfying suitable axioms, is called a bicategory. The usual axioms
(which contain some redundancy) are as follows [5]. Certain epimor-
phisms are called projections; certain monomorphisms are called in-
jections. Both the projections and the injections are closed under
multiplication; isomorphisms, but no other mappings, are at once
projections and injections; every mapping has the form jp, where j is
an injection and p a projection, and this factorization is unique up to
an isomorphism z (which would give (jz'^izp)).

When dealing with bicategories, as we shall through most of the
rest of this paper, we specialize the two-headed arrow notation; A—>-*B
denotes a projection, A >—> B an injection. In a bicategory with zero
mappings, finite sums and finite products, any coterminal pair of mappings
/ , g from A to B determines a diagram

A y A —

\

(2.0) M
\

A > Bx B
ifg)x

in which A\/ A —>-> M >—> B x B is a distinguished factorization of
D{f, g). We call / and g summable if the diagram can be completed,
commutatively, with mappings w: A—+ M, k:M—>B; then the sum
/ + g is defined to be kw. The sum is uniquely defined because
projections are epimorphic and injections monomorphic. This defines a
binary partial operation +, not necessarily natural, which we call the
partial sum.

It is obvious that / + g = g + / and / + 0 = / . To support the
Kuros-Livsic decomposition theory, the partial sum should also be
natural and satisfy certain restricted associativity conditions. As to
naturality, the basic lemmas are

2.1. For a projection p: P—>•+ A and any mappings f:A—*B,
g: A—+ B, fp + gp exists if and only iff+g exists.
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2.2. Whenever both fe + ge and (/ + g)e exist, they are equal.

Thus the problem of naturality reduces to the case of fe + ge
where e is an injection, and the dual. This is not entirely unmanage-
able; we establish naturality for an extensive collection of algebraic
bicategόries in 4.1.

As for associativity, we can prove essentially all of Kuros' Axiom
I [9; as changed in the note of correction]. The missing portion, like
the missing Axiom V (see my previous paper [6]) is not used in t}ie
Kuros-Livsic applications [9, 10].

Toward the proofs, we introduce the notation f(A) for the middle
space M of a factorization A —>-> M>—> B of f: A—> B. Especially
for any two objects C, D, the natural transformation Π gives us an
object Π{OrD)(C V D) which we call the distinguished weak product
and designate CσD. The coordinate functions into C V D and on
C x D determine four coordinate functions for CσD. We remark that
σ is functorial. In fact, the factorization of all Π[OtD) yields a factori-
zation of Π: V —*σ—* x ; from this it follows readily that σ is com-
mutative and associative in the same sense that V and x are.

We want the diagram

AW A —>-» (fg)(A v A) >—» B

j %

q

(2.0*) f(A)σg(A)
[Wo \

A—>-> (fg)*(A) >—*BxB

First we show that the middle space M = D(/, g)(A V A) in (2.0) is
just f(A)σg(A). Clearly this will follow if we justify the factorization

A V A —^f(A) V g(A) —>-*f(A)σg(A) >—>f(A) x g(A) >—> Bx B .

The middle of this, from f(A) V g(A) to f(A) x g(A), is correct. We
need the following lemma and its dual.

2.3. In a bicategory having free sums, f V g is a projection
whenever f and g are projections.

Proof. In connection with /: A—>-+ C and g: B—>-* D consider the
coordinate functions iλ: A—> A\J B, i2: B —> A V B, jx: C —• C V D,
j2; D—+C\/D. Take distinguished factorizations fVg — kp, jx — lq,
piλ = mr. Now Iqf = jλf — (f V g)iλ — kpi± = kmr; this gives us two
distinguished factorizations of the same mapping, and applying an
isomorphism, we may assume I = km, qf — r. In particular, jλ has
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the form kyu where yx is mq. Similarly j2 is a multiple ky2. Consider
next (y± y2): CVD^(fV g)(A V B). For i = 1, 2, x the coordinate
k(yx y2)ji = kyi = j < β On a free sum this means k(yt y2) is the identity.
Since & is a monomorphic left factor of an identity, it is an isomorphism,
and / V g is a projection, as we wanted to prove.

Consequently (2.0*) arises from (2.0), as follows. Factor (fg) and
(fg)x as indicated. Factor k to f(A)σg(A)—>->M>—> B, and observe
that the two distinguished factorizations of (fg) may be identified;
and treat w in the same way.

The proof of 2.1 now reduces to attaching projections (p p) and p
on the left of (2.0*), and looking. For 2.2, draw the appropriate
diagram (E —> A—> B) and see that all paths from E to B x B give
the same mapping (fg)xe; since f(A)σg(A) goes into B x B monomor-
phically, the mapping E—>B is also independent of path.

Now consider any pair of objects C, D, and the coordinate retractions
r1:CσD-+C-+CσD, r2: CσD-> D~->CσD. We call {C,D} a right
distributive pair if for every injection h: H >—> CσD, h factors through
the distinguished injective factor of (rji r2h). Defining left distributive
dually, we have

2.4. THEOREM. In a bicategory having finite free sums and
direct products and zeros, the partial sum is natural if and only if
every pair of objects is both left and right distributive.

The proof is a routine computation; we omit it, using the space
instead to restate the definitions more intuitively. The distinguished
weak product AσB is the "subobject" of A x B "generated by A x 0
and 0 x B". Precising these terms offers no difficulty once we note
that equivalence of monomorphisms may be defined in the standard
way [4] but subobjects must be equivalence classes of injections (not
of arbitrary monomorphisms). These subobjects form at least an upper
semi-lattice, the supremum of i and j coming from the distinguished
factorization of (ij). The requirement for right distributivity is just
that every subobject (represented by) h in CσD is contained in the
supremum of rji and r2h.

To associativity: Kuros' associativity axiom is complicated in his
own terms [9], and stating it without introducing such terms is not
worth considering. Unfortunately this means we must introduce (inter
alia) a ternary operation Σ(flf f2, /3) not definable in terms of binary + .
The w-ary operations are essential for the decomposition theory [9,10
11, 12], and infinitary operations occur also.

For a coterminal family (flf •••,/») of mappings, one constructs a
diagram like (2.0) around the corresponding diagonal matrix and row
and column vectors; if the diagram can be completed, the family is
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called summable and the sum Σft is defined as the composed mapping
coterminal with (jQ. 2.1-2.4 generalize trivially. There is an important
detail; the problem of 2.4 is not magnified by the introduction of w-ary
operations. If every pair of objects is left (right) distributive, so is
every n-tuple of objects. The proof is straightforward.

Clearly a summable family {/J is associatively summable; that is,
every subset is summable, and any grouping of the whole family adds
up to the same sum.

2.5. Let {fι\ ie 1} be a family of mappings ft: A-+ A. Suppose
the index set I is partitioned into subsets Is(s e S) having sums gs =
Σ(fi:iel8); and gsft = f{gs = /< for iels. If also Σg8 exists, then
the whole family {/J is summable.

Proof. Let w8:A—>M8, ks: Ms —> A be the mappings accomplishing
the addition of {/4:iel.}. Let w*:A->Λf*, &*:ikf*^A add {g8}.
From the latter addition we want the distinguished factors of
D((gs)): ((qs)) AV V i ^ F , and ((ΐs))x: M* -> A x x A.
More fully, M* is the distinguished weak product of the objects gs(A).
The object M we must map through is the distinguished weak product
of all fi(A), which we may regard as the product of the partial products
M8 of {fi(A):ieI8}. Then we map gs{A) to Ms by w8i8, and A to M
by w = σ(wsis: se S)w*. We define &: Λf--> A dually.

The distinguished injection from ikf to the direct product of copies
Ai of A indexed by /, composed with w, turns out to have for sth
block of coordinates just ((/*:£ € Is))

xgs. The hypotheses say that this
is ((/*)), as we want, and duality completes the proof.

The full axiom [9] incorporates 2.5 for infinite sums, the remark
preceding 2.5, and finally, for finite sums, the same conclusion as in
2.5 with the conditions "fiQB = fΓ omitted from the hypotheses. For
infinite sums, of course, we can do everything above provided the
bicategory has infinite free sums and direct products. As for the
sharpened statement for finite sums, the main point is that it is not
used [9, 10, 11, 12]. It occurs in [9] (in the correction) probably
because it holds for groups; one can see by analyzing the proof of 2.5
that the sharpened statement holds, more generally, when σ = x .

Thus the Kuros-Livsic decomposition theory applies at least in
bicategories with zeros, free sums and direct products in which every
pair of objects is left and right distributive. It is a theory of additive
decompositions of identity mappings 1: A—> A, or more generally of
idempotent mappings e: A —»A. Kuros and Livsic call it a theory of
direct decompositions; but it is not that, if only because it is a self-
dual theory (the non-self-dual refinement in Axiom I going unused).
It is a theory of decompositions of distinguished weak products A =
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Axσ σAn. Precisely, an additive decomposition of 1: A —* A is defined
as a representation 1 = Σfif where fifi = /< and /</,- = 0 for i =£ ^.

2.6. Additive decompositions Σft = 1: A —> A correspond precisely
to distinguished weak decompositions A — fx{A)σ σfn(A).

The proof (omitted) does not require naturality.

3* Abelianizing* The addition of 1 and 1 (as noted in [6]) is
fraught with significance. In fact, to add 1 + 1 on A we need two
mappings: w: A—> AσA, dividing the diagonal Δ: A—> A x A (iw = Δ,
where i is the distinguished injective factor of ΠUfΛ)), and k: AσA—*A
dividing the codiagonal. We call A right abelian if merely k exists,
left abelian if w exists, two-sided abelian if both exist.

8.1. // A is right abelian then for every n there is a mapping
kn: Aσ σA-+ A dividing the codiagonal Fn. Every finite family
of mappings from a left abelian to a right abelian object has a sum
(commutative, associative and distributive).

Proof. Define k3 as k(kσl): (AσA)σA-^ AσA-^ A. One checks
readily that this has the required property, and concludes by induction,
kn+1 — k(knσΐ). With the dually defined mappings wn for left abelian
objects, one adds fl9 •••,/» on left abelian C to right abelian D by
factoring fxσ σfn as, say, rs, and checking Σfi = (knr)(swn). The
operation is commutative and associative by previous remarks and
distributive by 2.2 and its dual.

3.2. Every direct product of right abelian objects is right abelian;
every subobject of a right abelian object is right abelian. This is
not generally true for free sums; however, in the full subcategory
of all right abelian objects, σ becomes a free sum functor.

If AσA is already A V A then A is right abelian.

Proof. Let P be a direct product of objects Aa with coordinate
projections p*; let each A* be right abelian with kΛ: A^σA^ —• Aa

dividing Fa. Map PσP to the product P by the mapping k whose αth
coordinate is ka(paσpa). We omit the check.

If h;H—*A is an injection into a right abelian object, with
k:AσA—>A, we map HσH to A by k(hσh). Introduce the projective
factor of Π{EtB), z: H V H-+ HσH. Evidently

k(hσh)z = (1Λ lA)(h V h) = h(lH 1B) .
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The last factorization is distinguished; so k(hσh) is divisible by the
required mapping from HσH to H.

Right abelian objects are not closed under free sum, for example,
in the category of groups. However, whether A and B are right
abelian or not, every mapping from A V B to a right abelian object
C factors uniquely over AσB. For this, write the mapping as (fg)
and introduce fσg; there is no difficulty. The assumption that A and
B are right abelian serves (by the preceding) to make AσB right abelian.

The last assertion of 3.2 is trivial; k — 1.
Under additional conditions on the bicategory, we can associate to

every object a "nearest" right abelian quotient and left abelian subobject.
The conditions are that (1) every family of objects has free sums and
direct products, and that (2) each object has only a set (not a proper
class) of subobjects and a set of quotients. We call a bicategory
which satisfies (1) a complete bicategory; we call a bicategory satisfying
(2) well-founded.

The use of "complete" requires some explanation. Two slightly
different definitions of completeness for categories have been advanced
by Freyd [3] and me [8]. Each requires more than products. Freyd's
definition is shown in [8] to require, besides products, the following
condition: for each object X, for any set of ordered pairs (/„, ga), with
fω:X~-+Ya9 ga:X—>Yχ, there exists a monomorphism m:M—+X such
that the class of all mappings e into X satisfying fae = gae for all a
is the class of right multiples of m and (of course) the dual condition.
My definition extends the conditions to classes of pairs (fΛ, gΛ).

By straightforward arguments one can establish several relations
among these concepts; one gets a fuller picture if one introduces suitable
categorical notions of well-foundedness. Here it will suffice to note
the following.

3.3. Every complete well-founded bicategory is a complete category
in the strong sense of [8]. Moreover, the subobjects of any object
form a complete lattice in the natural partial ordering.

Now an idempotent functor R from a category W to itself, re-
tracting <ĝ  upon a subcategory ^ , is called a reflector if for every
object X there exists a mapping r: X—> R(X) such that every mapping
f:X—> S, S in &, can be expressed in a unique way as gr where
g: R(X) —• S is in &. The mappings r are called reflection mappings.
A subcategory & is reflective if there exists a reflection upon &.
The dual concepts are coreflector, coreflection, coreflective. (Reflectors
and coreflectors are left and right adjoints of embeddings.) Freyd has
a characterization [3] of reflective subcategories of categories which
.are, in a suitable sense, complete and wellfounded. The following is
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not a special case because we are using a weaker notion of well-
foundedness; but except for quibbles, it is a result of Freyd.

3.4. (Freyd's Theorem) A full snbcategory & of a complete well-
founded bicategory is reflective if it is closed under formation of
direct products and subobjects. The reflection mappings associated
with any reflector upon & are projections.

Proof. To construct r: JSΓ—> R(X), take a set of projections
pa: X —• YΛ representing all quotients of X in &. Form the mapping
p of X into the direct product of the YΛ which has coordinates pa,
and let ir be its distinguished factorization. This r at any rate is a
projection. It is clear that every mapping from X to an object of
& is a left multiple of some paf hence of r; and the representation
is unique since r is a projection. Then the definition of R is completed
as follows. For a mapping /: X-^Z having r: X-^R(X) and r': Z-+R(Z),
R(f) is the mapping solving R(f)r — r'f. One readily verifies (cf.
[3]) that R is a functor. Finally, the properties of reflection mappings
assure that any two choices of them (for the same or different reflectors)
are related by isomorphisms.

Note also that any two reflectors upon the same subcategory are
naturally equivalent. By 3.2 and 3.4, there is a reflector R upon the
right abelian objects. Dually, there is a coreflector L upon the left
abelian objects. R and L need not commute (even up to natural
equivalence). However, since the reflection mappings are projections,
R takes the image of L into itself; and dually. Therefore:

3.5. THEOREM. In a complete well-founded bicategory with zero
mappings there exist (unique up to natural equivalence) a reflector
R upon the right abelian objects and a coreflector L upon the left
abelian objects. Both RL and LR are idempotent functors retracting
the category upon the subcategory of two-sided abelian objects.

We note that a third retraction upon the two-sided abelian objects
can be constructed by means of factorizations of the mappings
rl: L(X) —> X—> R(X). Note also that the subcategories of right, left,
or two-sided abelian objects are again complete well-founded bicategories.

If we started with a full category of algebras, these subcategories
are again full categories of algebras. But the maclanian subcategory
of two-sided abelian objects is not likely to be a maclanian category
of algebras as defined just before 1.8; the categorical product in it is
not the Cartesian product, but the distinguished weak product a. So
we cannot say that it is a full category of semigroups with operators,
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until we establish and apply a suitable generalization of Mac Lane's
Theorem 1.7.

We need the notion of a left adequate set S of objects in a category
[7]. Let S? be the full subcategory on the objects of S. Each object
X of the whole category <g> determines a contravariant functor Map
( ^ , X) on & by Map ( ^ , X){A) = Map (A. X), Map (&>, X)(f)(g) =
gf. Now Map (6S, X) is an object of the category ^ of all contra-
variant functors from Sf to the category of sets; and JSΓ—> Map(^, X)
determines a covariant functor V: ^ —> ^ ^ . The condition for S to
be left adequate is that V embeds ^ as a full subcategory of ^£.

The leading example of a left adequate set in a large category is
the set of all free algebras on finite numbers of generators in any
quasi-primitive category of algebras [8].

3.6. Every maclanian category having a left adequate set of
objects is isomorphic with a full category of commutative semigroups
with operators, under an isomorphism preserving direct products.

The proof is a routine modification of the proof of 1.7. Let cέ?
be the category and S a left adequate set of objects. The semigroup
A* associated to an object A will be the weak direct sum of all Map
(X, A) for XeS. The semiring of operators is the weak direct sum
of all Map (X, Y) for X and Y in S. The rest is defined as before.
We omit the verification.

Half of the desired application is immediate. One may see easily
that reflectors R: <& —• & take left adequate sets in <& to left adequate
sets in &. One may see as easily that this is not true for coreflectors,
considering the coreflector from abelian groups to their torsion subgroups.
We fall back on the following lemma.

3.7. Let W be a full category of algebras and S a set of algebras
in ΐ f such that every X in ^ is a union of subalgebras isomorphic
with members of S, every two such subalgebras of any X in ^ are
contained in a single subalgebra of X isomorphic with a member of
S, and every homomorphic image in ^ of a member of S is iso-
morphic with a member of S. Then S is left adequate in ^.

This is so stated as to make the proof as trivial as possible. It
should be noted that the noncategorical notion "union" is essential. If
we try using direct limits, we run afoul of the dual of the category
of all sets (which is a full category of algebras, unless measurable
cardinals exist [8]); dualizing back, every set is an inverse limit of
finite quotient sets, any two such quotients are common quotients of
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a third, and subsets of finite sets are finite, but finite sets are not
right adequate.

For the proof of 3.7, we must show that, associating to algebras
X the functors Map {S^, X) they induce on the full subcategory with
the set of objects S, the obvious function from mappings /: X—> Y to
natural transformations Φ: Map {S^, X) —» Map (S^9 Y) is one-to-one and
onto. If f:X—>Y and g:X—>Y are unequal, they differ on some
element of X and hence have different compositions with some embedding
from ZeS to X; this shows that our function is one-to-one. Next
suppose Φ given. To define f:X—+Y on an element x of X, choose
an embedding e:Z—*X(Ze'S) with x — e{z)ee{Z), and put f(x) =
Φz(e)(z). To see that another embedding er: Zr —• X would give the
same result, use a subalgebra containing e(Z) (J e'(Z'). Similarly (using
finite unions; since algebraic operations are finitary) we see that / is
a homomorphism. The natural transformation corresponding to / is Φ,
since every mapping d: U—*X(UeS) factors across the embedding of
d(U)eS into X. This completes the proof.

3.7 applies if we started with a quasi-primitive category of algebras,
made into a bicategory & by the usual factorization, projections being
homomorphisms onto and injections one-to-one homomorphisms. The
condition for A to be left abelian is that every diagonal element (a, a)
of A x A is generated (finitely) by A x 0 and 0 x A. This requires
some al9 , an in A for the generating. In case there are an uncount-
able number m of algebraic operations, we may need an m-element
subalgebra to include all we want; but clearly every left abelian algebra
is a union of left abelian subalgebras of at most tn elements. By 3.7,
there is a left adequate set of 2m or fewer left abelian objects.

For summarizing the result, we may reasonably define a bicategory
of algebras as a category of algebras and homomorphisms made into a
bicategory with the usual factorization into one-to-one and onto factors.

3.8. In a quasi-primitive bicategory of algebras with zero, the
subcategories of left abelian and two-sided abelian objects, as well as
the whole category and the subcategory of right abelian objects, have
left adequate sets. Thus the two-sided abelian objects can be repre-
sented by commutative semigroups.

4* Examples. We call a bicategory left maclanian if every
object is left abelian; by the dual of 3.2, this means exactly that σ
is the direct product. We have

4.1. THEOREM. In a left maclanian quasi-primitive bicategory
of algebras with zero, addition is natural.
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But

4.2. EXAMPLE. There is a right maclanian quasi-primitive
bίcategory of algebras with zero in which addition is not natural.

In this connection note that, by 3.2, the right abelian objects in
a quasi-primitive bicategory of algebras themselves form a quasi-primitive
bicategory of algebras; but this is not true for the left abelian objects.
So we have not established naturality either in & or in £f in this
generality.

Proof of 4.1. In any left maclanian bicategory we have the right
distributive law. Consider h: H-+C x D (which is CσD). The mapping
(rji r2h) is (pji x pJι)π{HyE). The diagonal Δ:H—>Hx H gives us
(pji x p2h)Δ = h (check coordinate wise). Since π{HiΠ) is a projection,
the distinguished factorization of pji x pji will show us h factored
through (rxh r2h) (H V H).

Next consider a free algebra F on one generator x. Since π{TtF)

is onto F x F, the element (x, x) is algebraically generated by F x 0
and 0 x F. This means (x, x) = W((x, 0), (0, x)) for some algebraic
operation W. It follows that in every algebra A x A in the category,
{a, b) = W((a, 0), (0, 6)) identically; for there are homomorphisms /, g
of F to A taking α? to α and to 6, and / x g takes T7((#, 0), (0, x)) to
TΓ((α, 0), (0, &)).

For left distributivity we must consider projections q: C x D—+Q;
each must factor across the projection upon qj^C) x qj\(D). That is,
for those congruence relations a on C x D which determine a quotient
algebra in the category, inducing congruence relations ax on C, a2 on
D, we need the following inference: if (c, cr) e aλ and (ώ, <f) e a2, then
((c, c?), (c', d')) 6 α:. This is a sound inference, since TF((c, 0), (0, d)) and

', 0), (0, d')) must be congruent.

Construction of 4.2. The algebras have (besides the necessary
0-ary operation) just one binary operation, which we write as juxta-
position though it is not associative. Beginning with the primitive
category of algebras defined by 00 = 0 and xy = yx, we pass to the
subcategory of right abelian objects (with respect to the usual bicate-
gorical structure); by 3.2, this is a quasiprimitive bicategory of algebras.
In it we note some algebras A, B, and H = A x A. A is the zero
semigroup {0, a} with xy = 0 identically. B contains A, and has another
element 6, with 60 = ba — bb = a. In A x A, {(0, 0), (0, a), (a, 0)} is a
subalgebra; so it is AσA, and A is indeed right abelian. (k: AσA —• A
takes (0, 0) to 0 and the other elements to a.) BσB consists of BxO,
0 x B, and the element (a, a); B is right abelian, with k:BσB—>B
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defined in the obvious way. (In particular, k(a, a) = a.) The notation
gives us the embedding h: H—> BσB. But rji and r2h have images
A x 0 and 0 x A; the image of (rji r2h) is only AσA, and h does
not factor through it.

4.3. In every right maclanian bicategory, addition as we have
defined it can be extended to a natural operation.

This result we stated, in different language, in [6]. Livsic has
since given a proof [12].

Extension to a natural operation is not possible in general. In
particular, where I claimed to have defined a natural operation on the
last page of [6], no natural operation exists satisfying the normalization
condition 2.6. The example:

4.4. EXAMPLE. Consider the primitive category of algebras intro-
duced in 4.2. Besides B there is another right abelian algebra Bf

containing A, Bf = {0, α, 6'}, with δ'O = b'a = α, VV = 0. Form the
amalgamated product C (which is not right abelian) of B and Br along
A, i.e. the quotient of B V B' by the smallest congruence relation
making ae B congruent to ae B'. The notation indicates a unique
embedding i: A—> C. The two mappings (i 0)x, (0 i)x of A into C x C
both factor through CσC, giving us mappings i±: A —•> CσC, i2: A —> CσC

Assuming 2.6 and naturality, one can compute from 1 = rτ + r2

on i?σ.B to ix + i29 which turns out to have the same values (in
CσCcC x C) as (ΐ i)x. But a similar computation using B'σB' gives
ii + i2 = 0.

To conclude, I know almost nothing about the change in + when
one changes the bicategorical structure on a fixed category. Many
artificial algebraic examples and natural topological examples have more
than one bicategorical structure. There is at least one interesting
example, the category of all Banach spaces and all linear operators of
norm at most 1. It is easy to see that there are exactly two bicate-
gorical structures, one being left maclanian and the other right
maclanian. In either case abelianizing is trivial, 0 being the only
two-sided abelian object. The decomposition theory is not trivial, but
the uniqueness theorems are stronger than the Remak or Krull-Schmidt
theorems (as I shall show in a forthcoming paper), and the present
approach seems entirely inadequate for these bicategories.
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