# IDEMPOTENT SEMIGROUPS WITH DISTRIBUTIVE RIGHT CONGRUENCE LATTICES 

R. A. Dean and Robert H. Oehmike

A great deal of effort in the study of semigroups has been spent in an attempt to adopt group theoretic methods to semigroups and to find suitable analogues for group concepts that will be significant in the general structure theory of semigroups. Of particular importance in the study of groups are the various relationships between a group and its subgroups. As is well-known each subgroup in a group induces a decomposition of the group into right cosets. In turn, this decomposition corresponds to an equivalence relation that is invariant under right multiplication. We call such an equivalence relation a right congruence. Since there is a one-to-one correspondence between the set of right congruences of a group and the set of subgroups of the group it is clear that any subgroup-group relationship can be translated into one involving these right congruences.

In semigroup theory the importance of the subsemigroup structure to the nature of the semigroup is not quite so clear. This is due primarily to the fact that there is very little relationship between the homomorphisms of a semigroup and the subsemigroups of the semigroup. Thus in studying lattices associated with semigroups we have chosen to study the right congruences of a semigroup rather than the more obvious analogue of subgroup, the subsemigroup, studied by Ego, et al, $[3,7,8]$.

In $\S 1$ we show that these right congruences form a complete lattice which is compactly generated in the sense of Crawley and Dilworth [2, p. 2]. It is natural to ask what are the implications for the semigroup of restraints which may be placed on this related lattice.

As a first problem in this area we seek a characterization of those semigroups whose lattice of right congruences is distributive. For groups this answer was determined by Ore [6, Theorem 4] to be the locally cyclic groups. It is shown in $\S 2$ that the lattice of right congruences of a locally cyclic semigroup is distributive. (It should be noted here that Severin [7] has shown that the lattice of semigroups of a locally cyclic semigroup is not necessarily distributive.) However, as is seen, not all semigroups with distributive right congruence lattices need be locally cyclic. Thus the characterization problem remains. While we have no solution to this problem in general, we do give in §§ 3 and 4 necessary and sufficient conditions for an idempotent semigroup to have a distributive lattice of right congruences. § 3 treats

[^0]commutative idempotent semigroups (semi-lattices) and § 4 treats arbitrary idempotent semigroups. In $\S 5$ a necessary and sufficient condition for an idempotent semigroup to have both its lattice of right congruences and its lattice of left congruences distributive is given. Finally in $\S 6$ idempotent semigroups with a distributive lattice of right congruences are characterized in terms of simpler structures.

1. Let $\tau$ be an equivalence relation on a semigroup $S$. We shall write either $a \tau b$ or $a \equiv b(\bmod \tau)$ if the ordered pair $(a, b)$ belongs to the relation $\tau$.

An equivalence relation $\tau$ on a semigroup $S$ is a right (left) congruence if $a, b, c \in S$ and $a \tau b$ implies $a c \tau b c$ ( $c a \tau c b$ ).

In this section we denote by $\mathfrak{R}_{r}(S)$ the set of all right congruences on the semigroup $S$. We shall use Latin letters to denote elements of $S$ and Greek letters to denote elements of $\mathcal{R}_{r}(S) . \mathcal{Z}_{r}(S)$ is never empty since the relation $\subset$ defined by $a \iota b$ if and only if $a=b$ is trivially a right congruence as is the universal relation $v$ in which $a v b$ holds for all elements of $S$. We impose the natural ordering on $\mathcal{Z}_{r}(S)$; namely, that $\alpha \leqq \beta$ if and only if $a \alpha b$ implies $a \beta b$ for all $a, b$ in $S$. It is easy to see that if $\Gamma$ is any set of right congruences then $\cap \Gamma$ defined by $a \equiv b(\bmod \cap \Gamma)$ if and only if $a \gamma b$ for all $\gamma \in \Gamma$ is a right congruence on $S$, and is the greatest lower bound of $\Gamma$ in $\mathfrak{R}_{r}(S)$ under the partial ordering $\leqq$. This, together with the fact that $\nu$ is a maximal element in $\mathfrak{R}_{r}(S)$ guarantees that $\mathfrak{R}_{r}(S)$ is a complete lattice under $\leqq$.

It is important to obtain a better characterization of the least upper bound $\cup \Gamma$ of a set $\Gamma$ of right congruences. As is customary in such matters we have the following result whose proof we omit.

Lemma 1. Let $a, b \in S$, and let $\Gamma$ be a set of right congruences on $S, \quad a \equiv b(\bmod \cup \Gamma)$ if and only if there is a finite sequence $a=$ $x_{1}, x_{2}, \cdots, x_{n}=b$ of elements in $S$ and a sequence $\gamma_{1}, \cdots, \gamma_{n-1}$ in $\Gamma$ such that $x_{i} \gamma_{i} x_{i+1}$ for $i=1, \cdots, n-1$.

As a consequence of this lemma and of the definition of $\cup \Gamma$ it follows easily that $\mathcal{R}_{r}(S)$ is a sublattice of the lattice $\mathfrak{P}(s)$ of all partitions on $S$ considered as an abstract set.

To prove that $\ell_{r}(S)$ is compactly generated we need to identify the minimal congruence $\tau_{a, b}$ identifying $a$ with $b$. We have of course that $\tau_{a, b}=\cap\{\gamma \mid a \gamma b\}$. Of interest is the alternate description afforded by the next lemma.

Lemma 2. Let $\rho$ be any partition of $S$. Define $\rho^{\prime}$ by $a \rho^{\prime} b$ if and only if either $a \rho b$ or there are elements $r, s, t$ in $S$ such that $a=r t, b=s t$ and ros. If $\sigma$ is the transitive closure of $\rho^{\prime}$, then $\sigma$
is the smallest equivalent relation in $\mathfrak{P}(s)$ which is a right congruence ccontaining $\rho$, hence in $\mathfrak{R}_{r}(S), \sigma=\cap\left\{\alpha \in \mathfrak{Z}_{r}(S) \mid a \rho b \Rightarrow a \alpha b\right\}$.

Proof. A straightforward calculation shows that $\sigma$ is a right congruence containing $\rho$. Thus it remains to show that if $\tau$ is a right congruence containing $\rho$ it must also contain $\sigma$. Certainly if $\alpha \rho^{\prime} b$ then $a \tau b$ since $\tau$ is a right congruence and so $r \tau s$ implies $(r t) \tau(s t)$. From this it follows easily that if $a \sigma b$ then $a \tau b$ and thus $\sigma \leqq \tau$.

This lemma gives the characterization of $\tau_{a, b}$ by taking $\rho$ to be the partition which identifies $a, b$ and no other distinct pair of elements of $S$. The $\sigma$ of the lemma is then $\tau_{a, b}$.

Theorem 1. $\mathfrak{Z}_{r}(S)$ is a complete, compactly generated lattice.
Proof. We have already proved completeness. It is clear that if $\alpha \in \mathfrak{Z}_{r}(S)$ then $\alpha=\cup\left\{\gamma_{a, b} \mid \alpha \alpha b\right\}$ and so it remains only to show that for each pair of elements $\tau_{a, b}$ is a compact element of $\mathcal{R}_{r}(S)$. Suppose that $\tau_{a, b} \leqq \cup \Gamma$ where $\Gamma$ is any set of right congruences on $S$. In particular we have that $a \equiv b(\bmod \cup \Gamma)$ and by Lemma 1 there are sequences $a=x_{1}, \cdots, x_{n}=b$ and $\gamma_{1}, \cdots, \gamma_{n-1}$ such that $x_{i} \gamma_{1} x_{i+1}$. Thus $a \equiv b \bmod \left(\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{n}\right)$ and by Lemma 2 therefore $\tau_{a, b} \leqq \gamma_{1} \cup \cdots \cup \gamma_{n}$.

Another type of right congruence construction which we frequently employ is the following. Suppose that $I$ is a right ideal of $S$. Let $\tau=\tau(I)$ be defined by $a \tau b$ if and only if $a=b$ or $a$ and $b$ are both members of $I . \tau$ is easily seen to be a right congruence which, following Clifford and Preston [1, p.17], we call the Rees right congruence defined by $I$.

TheOrem 2. If $S$ is a semigroup having three mutually disjoint right ideals $I_{1}, I_{2}, I_{3}$ then $\mathcal{R}_{r}(S)$ is not distributive.

Proof. Clearly the set union of $I_{2}$ and $I_{3}$, denoted by $I_{2} \cup I_{3}$, is a right ideal. We let $\tau_{1}=\tau\left(I_{1}\right) \cup \tau\left(I_{2} \cup I_{3}\right)$ and define $\tau_{2}$ and $\tau_{3}$ as cyclic variants. Because $I_{i} \cap I_{j}=\varnothing$ it follows that $\tau_{i} \cap \tau_{j}=\tau\left(I_{1}\right) \cup \tau\left(I_{2}\right) \cup \tau\left(I_{3}\right)$ while $\tau_{i} \cup \tau_{j}=\tau\left(I_{1} \cup I_{2} \cup I_{3}\right)$ and so $\tau_{1} \cap\left(\tau_{2} \cup \tau_{3}\right) \neq\left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right)$.
2. Lemma 3. Let $S$ be an arbitrary semigroup, $\tau$ and $\sigma$ be right congruences on $S$ and $x \in S$. Then
(1) $A(\tau, x)=\left\{n: x^{i} \tau x^{j}\right.$ and $\left.n=i-j\right\}$ is an ideal in the ring of integers. If $A(\tau, x)=(d)$ we write $\alpha(\tau, x)=d$;
(2) if $(0) \neq A(\tau, x)=d$, then there is a unique positive integer $\mu(\tau, x)=r$ such that $x^{r} \tau x^{r+a}$ and if $x^{a} \tau x^{s}$ with $1 \leqq a<r$ then $a=s$;
(3) for all $x \in S, \quad A(\sigma \cap \tau, x)=$ l.c.m. $\quad(\alpha(\sigma, x), \alpha(\tau, x))$ and $\mu(\sigma \cap \tau, x)=\max (\mu(\sigma, x), \mu(\tau, x)) ;$
(4) if $S$ is the cyclic semiqroup $\langle x\rangle$ then $\alpha(\sigma \cup \tau, x)=$ g.c.d. $(\alpha(\sigma, x), \alpha(\tau, x))$ and $\mu(\sigma \cup \tau, x)=\min (\mu(\sigma, x), \mu(\tau, x))$.

Proof. To prove (1), suppose that $n$ and $m \in A(\tau, x)$, say $x^{i} \tau x^{i+n}$ and $x^{i} \tau x^{i+m}$. Hence $x^{i+j} \tau x^{i+j+n}$ and $x^{i+j} \tau x^{i+j+m}$ so that $x^{i+j+n} \tau x^{i+j+m}$. Thus $n-m \in A(\tau, x)$ and so $A(\tau, x)$ is an ideal.

To prove (2), choose $\mu(\tau, x)$ to be the least positive integer $r$ such that $x^{r} \tau x^{r+a}$. Now suppose $x^{a} \tau x^{s}$ with $1 \leqq a<r$ and $a \neq s$. Without loss of generality we may assume $a<s$. Then we may conclude $x^{r-1} \tau x^{t}$ where $t=s+(r-a)-1$ and $r-1<t$. Now $d \mid(r-1)-t$ so that $t=(r-1)+k d=r+k d-1=r+(d-1)+(k-1) d$ with $k \geqq 1$. From $x^{r} \tau x^{r+a}$ we conclude $x^{r} \tau x^{r+(k-1) a}$. Therefore $x^{r+(a-1)} \tau x^{r+(a-1)+(k-1) a}$ and $x^{r-1+a} \tau x^{t}$. But $x^{t} \tau x^{r-1}$ and so $x^{r-1} \tau x^{(r-1)+a}$, contrary to the choice of $r$.

In the proof of (3) and (4) we may suppose $A(\tau, x) \neq(0) \neq A(\sigma, x)$ since if $A(\tau, x)=(0)$ then clearly $A(\sigma \cap \tau, x)=A(\sigma \cup \tau, x)=A(\sigma, x)$. We let $A(\tau, x)=(p), \mu(\tau, x)=r, A(\sigma, x)=(q)$, and $\mu(\sigma, x)=s$. Assume $r \leqq s$.

To prove (3) let $m=$ l.c.m. $(p, q)$ with $m=p p_{1}=q q_{1}$. We have $x^{r} \tau x^{r+p} \tau x^{r+p p_{1}}$ and so $x^{s} \tau x^{s+m}$. Similarly $x^{s} \sigma x^{s+m}$ so that $m \in A(\sigma \cap \tau, x)$. Let $A(\sigma \cap \tau, x)=m_{1}$ and $\mu(\sigma \cap \tau, x)=t$. Thus $x^{t}(\sigma \cap \tau) x^{t+m_{1}}$ and in particular $x^{t} \sigma x^{t+m_{1}}$ so that $p \mid m_{1}$ and similarly $q \mid m_{1}$. Hence $m \mid m_{1}$ and since $m \in\left(m_{1}\right)$, we have $m=m_{1}$. From $x^{s}(\sigma \cap \tau) x^{s+m}$ it follows that $\mu(\sigma \cap \tau, x) \leqq s$. On the other hand from $x^{t}(\sigma \cap \tau) x^{t+m}$ it follows that $x^{t} \sigma x^{t+m}$. Now (2) implies that either $m=0$ or $s \leqq t$.

To prove (4) let $d=$ g.c.d. $(p, q)$. There is a solution $w$ for the congruence $w p \equiv d(\bmod q)$ with $w$ arbitrarily large. Indeed, if we choose $v$ so that $r+d+v p>s$ then we may find a solution $w$ so that for $u=w+v$ we have $r+u p>s$. With these choices we have $(u-v) p \equiv d(\bmod q)$ and $x^{r} \tau x^{r+u p}$ and $x^{r+u p} \sigma x^{r+a+v p}$ since $q \mid d+v p-u p$ and $r+u p>s$. But $x^{r+a+v p} \tau x^{r+d}$ and so $x^{r}(\sigma \cup \tau) x^{r+d}$. This shows that $d \in A(\sigma \cup \tau, x)$.

Now let $t=\mu(\sigma \cup \tau, x)$ and $(e)=A(\sigma \cup \tau, x)$. Thus $e \mid d$. From $x^{t}(\sigma \cup \tau) x^{t+e}$ we know there are integers $t=a_{0}, a_{1}, \cdots, a_{n}=t+e$ so that $x^{a_{i}} x^{a_{i+1}}$ where $\delta=\sigma$ or $\tau$ and where $a_{i} \neq a_{i+1}$. For each $i$ we have either that $p \mid a_{i+1}-a_{i}$ or $q \mid a_{i+1}-a_{i}$ and so for all $i$ we have $d \mid a_{i+1}-a_{i}$. Hence $d \mid \Sigma_{i}\left(a_{i+1}-a_{i}\right)$ or $d \mid a_{n}-a_{0}=e$. Hence $d=e$ and since $x^{r}(\sigma \cup \tau) x^{r+a}$ it follows that $\mu(\sigma \cup \tau, x)=t \leqq r \leqq s$. Now consider $x^{t} \delta x^{a_{1}}$. Since $t \neq a_{1}$ it follows from (2) that $t \geqq r$ if $\delta=\tau$ and $t \geqq s \geqq r$ if $\delta=\sigma$. In either event, $t \geqq r$. Hence $t=r$ and the lemma is proved.

From this lemma the following theorem is easily established.
Theorem 3. If $S$ is a locally cyclic semigroup then its lattice of right congruences is distributive. (The word "right" is superfluous
since a locally cyclic semigroup is abelian.)
Proof. Let $\rho, \sigma, \tau$ be congruences on $S$. We are to show $\rho \cap(\sigma \cup \tau)=$ $(\rho \cap \sigma) \cup(\rho \cap \tau)$. To simplify notation let $\phi=\rho \cap(\sigma \cup \tau)$ and $\theta=$ $(\rho \cap \sigma) \cup(\rho \cap \tau)$. As in any lattice $\phi \supseteqq \theta$ so we need only show $\phi \subseteq \theta$. Let $a \phi b$. Then $a \rho b, a(\sigma \cup \tau) b$ and there is a sequence $a=a_{1}, \cdots, a_{n}=b$ with $a_{i} \delta a_{i+1}$ and $\delta=\sigma$ or $\tau$. Since $S$ is locally cyclic there is a $c$ with $a=c^{e}, b=c^{f}$ and $a_{i} \in\langle c\rangle$. Hence we can assume $\left.S=<c\right\rangle$. By Lemma 3

$$
\begin{aligned}
\alpha(\phi, c) & =\text { l.c.m. }(\alpha(\rho, c), \text { g.c.d. }(\alpha(\sigma, c), \alpha(\tau, c))) \\
= & \text { g.c.d. (l.c.m. }(\alpha(\rho, c), \alpha(\sigma, c))), \text { l.c.m. }(\alpha(\rho, c), \alpha(\tau, c))) \\
& =\alpha(\theta, c), \\
\mu(\phi, c) & =\max (\mu(\rho, c), \min (\mu(\sigma, c), \mu(\tau, c))) \\
& =\min (\max (\mu(\rho, c), \mu(\sigma, c)), \max (\mu(\rho, c), \mu(\tau, c))) \\
& =(\mu(\theta, c)
\end{aligned}
$$

Let $\alpha(\phi, c)=\alpha(\theta, c)=d$ and $\mu(\phi, c)=\mu(\theta, c)=r$ and $e=f$. Then either $e=f$ or $r \leqq e<f$ and $d \mid f-e$. Hence from $c^{e} \phi c^{f}$ we easily get $c^{e} \theta c^{f}$.

Corollary. If $S$ is an infinite cyclic semigroup then its congruence lattice is the direct product of a countably infinite chain and the lattice of integers partially ordered by division. If $S$ is a finite cyclic semigroup, $\left\{a, a^{2}, \cdots, a^{r}, a^{r+1}, \cdots, a^{r+m}=a^{r}\right\}$ then its congruence lattice is the direct product of a chain of length $r$ and the divisor lattice of $m$.

Proof. It is easily verified that if $S$ is a cyclic semigroup with generator $a$, the mapping $\phi \rightarrow(\mu(\phi, \alpha), \alpha(\phi, \alpha))$ is a one-to-one mapping of the congruence lattice onto the direct product of the lattices mentioned in the corollary. It is also easy to see that $\phi \leqq \theta$ in the congruence if and only if $\mu(\phi, a) \geqq \mu(\theta, a)$ and $\alpha(\theta, a) \mid \alpha(\phi, a)$, so that the correspondence is a lattice isomorphism. Note that the ordering of the chain reverses the "natural" ordering.
3. A semilattice is a commutative idempotent semigroup $S$. If we define

$$
\begin{equation*}
a \leqq b \text { if and only if } b a=a \tag{1}
\end{equation*}
$$

then $S$ is partially ordered by this relation and $a b=a \cap b=$ greatest lower bound of $a$ and $b$.

Let $S$ be a semilattice. Whenever $a \geqq b$ we let $a / b=\{x \mid a \geqq x \geqq b\}$ which we call the quotient $a$ over $b$. We say that $a / b$ projects down to $c / d$ if $a \geqq c \geqq d \geqq b c$. We write $a / b \rightarrow c / d$.

Lemma 4. In the semilattice $S$, the following properties hold:
(i) $a / b \rightarrow c / d$ implies $a / b \rightarrow c x / d x$ for all $x \in S$;
(ii) $a / b \rightarrow c / d$ and $c \geqq e \geqq f \geqq d$ imply $a / b \rightarrow e / f$;
(iii) $a / b \rightarrow c / d$ and $a / b \rightarrow d / e$ imply $a / b \rightarrow c / e$;
(iv) $a / b \rightarrow c / d$ and $c / d \rightarrow e / f$ imply $a / b \rightarrow e / f$.

Proof.
(i) We have $a \geqq c \geqq d \geqq b c$. From $c \geqq d \geqq b c$ we conclude $c \geqq$ $c x \geqq d x \geqq(b c) x \geqq b(c x)$.
(ii) We have $a \geqq c \geqq e \geqq f \geqq d \geqq b c$. From $c \geqq e$ we conclude $b c \geqq b e$ while from $e \geqq b c$ we conclude $b e \geqq b(b c)=b c$. Hence $b c=b e$ and $a \geqq e \geqq f \geqq b e$.
(iii) We have $a \geqq c \geqq d \geqq b c$ and $a \geqq d \geqq e \geqq b d$. From $d \geqq b c$ we have $b d \geqq b(b c)=b c$ and thus $a \geqq c \geqq e \geqq b d \geqq b c$. Thus $a / b \rightarrow c / e$.
(iv) We have $a \geqq c \geqq d \geqq b c$ and $c \geqq e \geqq f \geqq d e$. From $d \geqq b c$ we have $d e \geqq(b c) e=b(c e)$. Now $c \geqq e$ implies $e=c e$, hence $d e \geqq b e$ 。 Thus $a \geqq e \geqq f \geqq b e$, that is $a / b \rightarrow e / f$.

Theorem 4. Let $S$ be a semilattice. Let $a \geqq b$ in $S$. The minimal congruence identifying $a$ and $b, \tau_{a, b}=\tau$, is characterized by

$$
x \tau y \text { if and only if } x=y \text { or } a / b \rightarrow x / x y \text { and } a / b \rightarrow y / x y .
$$

Proof. For brevity let us write $x \sim y$ if $x=y$ or if $a / b \rightarrow x / x y$ and $a / b \rightarrow y / x y$. The relation $(\sim)$ is clearly reflexive and symmetric.

First we establish that $x \sim y$ implies $x \tau y$. We suppose that $a / b \rightarrow$ $x / x y$ and $a / b \rightarrow y / x y$. We shall show that $x \tau x y$ and, by symmetry, $y \tau x y$; whence $x \tau y$ follows. Now $a / b \rightarrow x / x y$ means $a \geqq x \geqq x y \geqq b x$. $a \geqq x$ implies $a x=x$ and so $a x y=x y$ and $x \geqq x y \geqq b x$ implies $b x \geqq$ $b x y \geqq b x$, hence $b x=b x y$. On the other hand $a \tau b$ implies $a x \tau b x$ and $a x y \tau b x y$; in other words $x \tau b x$ and $x y \tau b x$. Thus $x \tau x y$.

We next show that $(\sim)$ is a congruence relation on $S$ and $a \sim b$. This completes the proof, since the above paragraph then shows that $(\sim) \leqq \tau$ while $\tau \leqq(\sim)$ by the minimal nature of $\tau$.
(i) $a \sim b$ holds by the definition of a projection since $a b=b$.
(ii) $x \sim y$ implies $x z \sim y z$ since if $a / b \rightarrow x / x y$, then $a / b \rightarrow x z / x y z$ by property (i) of Lemma 3.
(iii) To show that $(\sim)$ is transitive suppose that $x \sim y$ and $y \sim z$. If $x=y$ or $y=z$ then clearly $x \sim z$. Thus we suppose that $a / b \rightarrow$ $x / x y, a / b \rightarrow y / x y, a / b \rightarrow y / y z$, and $a / b \rightarrow z / y z$. By property (i) we have $a / b \rightarrow x y / x y z$ and thus by property (iii) $a / b \rightarrow x / x y z$. Finally, since $x \geqq x z \geqq(x z) y=x y z$ it follows from property (ii) that $a / b \rightarrow x / x z$. By symmetry $a / b \rightarrow z / x z$ and thus $x \sim z$.

Corollary. With the notation of the theorem, a $x x$ if and only
if $a \geqq x \geqq b$.

Proof. If $a \geqq x \geqq b$ then $a x=x, b x=b$ and $a x \tau b x$ implies $x \tau b$ and hence $a \tau x$. Conversely, $a \tau x$ implies $a / b \rightarrow a / x a$ and $a / b \rightarrow x / x a$; hence $a \geqq a \geqq x a \geqq b a=b, a \geqq x \geqq x a \geqq b x$ and $a \geqq x \geqq b$.

Theorems. In a semilattice $S$, for any two elements $a, b$ it is true that $\tau_{a, b}=\tau_{a, a b} \cup \tau_{b, a b}$.

Proof. $a\left(\tau_{a, a b} \cup \tau_{b, a b}\right) b$ since $a \tau_{a, a b} a b \tau_{b, a b} b$. Hence $\tau_{a, b} \leqq \tau_{a, a b} \cup \tau_{b, a b}$. On the other hand for any congruence $\tau, a \tau b$ implies $a \tau a b$ and $a b \tau b$. Thus in particular $\tau_{a, b} \geqq \tau_{a, a b}$ and $\tau_{a, b} \geqq \tau_{b, a b}$ which implies $\tau_{a, b} \geqq$ $\tau_{a, a b} \cup \tau_{b, a b}$.

For semilattices we need the concepts of an ideal and a dual ideal. A subset $I$ of a semi-lattice is called an ideal, if when $a \in I$ and $x \leqq a$ then $x \in I$. It is clear, that this is but a reformulation of an ideal in a semigroup in the special case when the semigroup is a semilattice. A dual ideal is a subset $J$ such that if (i) $a \in J$ and $a \leqq x$ then $x \in J$ and (ii) if $a \in J$ and $b \in J$ then $a b \in J$.

Theorem 6. Let $S$ be a semilattice containing three distinct elements $a, b, c$ such that $b$ and $c$ are noncomparable but such that $a>b$ and $a>c$. Then the lattice of congruences on $S$ is nonmodular.

Proof. Let $\rho=\tau_{b, b c}, \sigma=\tau_{a, b}$ and $\tau=\tau_{a, c .}$ Clearly $\rho \leqq \tau$ as $a / c \rightarrow b / b c$ and so $b \tau b c$. We shall prove that while $\rho \leqq \tau$ it is false that $\tau \cap(\rho \cup \sigma)=\rho \cup(\sigma \cap \tau)$.

First note that since $a>b$ and $a>c$ while $b$ and $c$ are noncomparable, the corollary to Theorem 4 implies that $a \not \equiv c(\bmod \sigma)$.

Second note that $a / b \rightarrow c / b c$ and so $c \sigma b c$. Thus we have $c \sigma b c, b c \rho b$, and $b \sigma a$; that is, $c(\rho \cup \sigma) a$. Thus $\tau \leqq \rho \cup \sigma$ and $\tau \cap(\rho \cup \sigma)=\tau$. It now suffices to show that $a \not \equiv c \bmod \rho \cup(\sigma \cap \tau)$.

To simplify matters we replace $\rho$ by a possibly larger congruence $\varphi$. $\varphi$ is the Rees congruence generated by the ideal $I=\{x: x \leqq b\}$. Since $b \varphi b c$ it follows that $\rho \leqq \varphi$. We claim in fact that $\alpha \not \equiv c \bmod (\varphi \cup(\sigma \cap \tau))$.

Note that $x \varphi y$ and $x>b$ imply $x=y$ and in particular that $a \varphi x$ implies $a=x$. Also, from the corollary if $a \sigma x$ and $a \tau x$ then $a \geqq x \geqq b$ and $a \geqq x \geqq c$. Suppose, then, that there is a sequence

$$
a=x_{1}, x_{2}, \cdots, x_{n}=c \quad(n>2)
$$

so that $x_{i} \varphi x_{i+1}$ or $x_{i}(\sigma \cap \tau) x_{i+1}$. Without loss of generality we suppose that we have selected a sequence of minimal length. Now if $a=x_{1} \varphi x_{2}$,
then $x_{2}=\alpha$ and $x_{2}$ could have been deleted from the sequence. Thus $a=x_{1}(\sigma \cap \tau) x_{2}$ and $a \geqq x_{2} \geqq b$. In fact, since $a \not \equiv b(\bmod \tau)$ we have $x_{2}>b$. Now if $n \geqq 3$, and if $x_{2}(\sigma \cap \tau) x_{3}$, then $x_{1}(\sigma \cap \tau) x_{3}$ and $x_{2}$ could have been deleted. Thus if $n \geqq 3$, it must be that $x_{2} \varphi x_{3}$. But $x_{2}>b$ and hence $x_{3}=x_{2}$ so that $x_{3}$ could have been deleted from the sequence. Thus it must be that $n=2$ and that $a(\sigma \cap \tau) c$; the latter is a contradiction since $a \not \equiv c(\bmod \sigma)$.

Theorem 7. Let $S$ be a semilattice. A congruence $\tau$ is uniquely determined by the set of quotients a/b such that azb. That is if $Q(\tau)=\{a / b \mid a \tau b\}$ then $Q(\tau)=Q(\sigma)$ implies $\sigma=\tau$. Moreover $\sigma \leqq \tau$ if and only if $Q(\sigma) \subseteq Q(\tau)$.

Proof. It clearly suffices to prove the last conclusion of the theorem. If $\sigma \leqq \tau$ then $Q(\sigma) \leqq Q(\tau)$ holds trivially. Suppose then that $Q(\sigma) \subseteq Q(\tau)$ and that $x \sigma y$. Thus $x \sigma x y$ and $x y \sigma y$. Thus $x / x y$ and $y / x y \in Q(\sigma) \subseteq Q(\tau)$. Thus $x \tau x y$ and $x y \tau y$, whence $x \tau y$, and consequently $\sigma \leqq \tau$.

Theorem 8. Let $S$ be a semilattice in which elements with a common upper bound are comparable i.e., for all $a, b, c \in S$, if $a \geqq b$ and $a \geqq c$ then either $b \geqq c$ or $c \geqq b$. The lattice of congruence relations on $S$ form a distributive lattice.

Proof. Let $\rho, \sigma, \tau$ be three elements of $\mathfrak{R}_{r}(S)$. We are to show that $\rho \cap(\sigma \cup \tau)=(\rho \cap \sigma) \cup(\rho \cap \tau)$. Since $\rho \cap(\sigma \cup \tau) \geqq(\rho \cap \sigma) \cup(\rho \cup \tau)$ in any lattice we need only establish the reverse relation and in view of Theorem 7 we need only show that $Q[\rho \cap(\sigma \cup \tau)] \cong Q[(\rho \cap \sigma) \cup(\rho \cap \tau)]$.

We shall first prove that under the conditions of the theorem if $a / b \in Q(\sigma \cup \tau)$ then there is a sequence $a=x_{1} \geqq x_{2} \geqq \cdots \geqq x_{n}=b$ so that for each $i, x_{i} / x_{i+1} \in Q(\sigma) \cup Q(\tau)$. Now if $a / b \in Q(\sigma \cup \tau)$ we have $a(\sigma \cup \tau) b$ so that there is a sequence $a=y_{1}, y_{2}, \cdots, y_{n}=b$ with $y_{i} \alpha_{i} y_{i+1}$ where $\alpha_{i}=\sigma$ or $\tau$. From this sequence we construct the desired sequence by setting $x_{i}=y_{1} y_{2} \cdots y_{i}$. Clearly $x_{i} \geqq x_{i+1}$ and $x_{i}=$ $y_{1} \cdots y_{i} \alpha_{i} y_{1} \cdots y_{i} y_{i+1}$ so that $x_{i} / x_{i+1} \in Q(\sigma) \cup Q(\tau)$. Since $a \geqq x_{i}$ and $a \geqq b=y_{m} \geqq x_{m}$, from the hypothesis it must be the case that $x_{i}$ and $b$ are comparable, for all $i$. If we choose $n$ as the least integer such that $b \geqq x_{n}$, then we may conclude that $a=x_{1} \geqq \cdots \geqq x_{n-1}>b$ and thus $x_{1}, \cdots, x_{n-1}, b$ is the desired chain.

Now suppose that $c / d \in Q[\rho \cap(\sigma \cup \tau)]$. Then $c \rho d$ and $c / d \in Q(\sigma \cup \tau)$. By the preceeding paragraph there is a chain $c=x_{1} \geqq x_{2} \geqq \cdots \geqq x_{n}=d$ with $x_{i} / x_{i+1} \in Q(\sigma) \cup Q(\tau)$. Since cod it follows from the Corollary to Theorem 4 that $x_{i} \rho x_{i+1}$ and thus $x_{i}(\rho \cap \sigma) x_{i+1}$ or $x_{i}(\rho \cap \tau) x_{i+1}$; in any event $c \equiv d \bmod (\rho \cap \sigma) \cup(\rho \cap \tau)$.

We may now combine Theorems 6 and 8 to obtain an answer to our question in the case of semilattices.

Corollary. A semilattice has a distributive lattice of congruences if and only if every pair of elements with a common upper bound are comparable.
4. We define a relation $R$ on the idempotent semigroup $S$ by $a R b$ if and only if

$$
a b=b \quad \text { and } \quad b a=a
$$

and a relation $L$ by $a L b$ if and only if

$$
a b=a \quad \text { and } \quad b a=b
$$

It has been shown by McLean [5, Lemma 4] that both $R$ and $L$ are equivalence relations. In fact $R$ is a left congruence and $L$ is a right congruence [5, Lemma 5]. We shall denote the equivalence class of $a$ under $R$ and $L$ respectively by $R_{a}$ and $L_{a}$.

Further, if $W$ is the relation defined by $a W b$ if and only if

$$
a b a=a \quad \text { and } \quad b a b=b
$$

then $W$ is a two-sided congruence (homomorphism) on $S$, the homomorphic image of $S$ under $W$ is a semilattice $\mathfrak{W}$ [5, Theorem 1] and $W_{a}$, the equivalence class of a under $W$, is the direct product of $L_{a}$ and $R_{a}$ [4, Lemma 1] and $W_{a}=L_{a} R_{a}$.

We shall use the notations $W_{a} \circ W_{b}$ for the multiplication in $\mathfrak{W}$ and $W_{a} W_{b}$ for ordinary complex multiplication. Also, we shall use the notation $W_{a} \leqq W_{b}$ for the ordering defined in (1) on the semilattice $\mathfrak{W}$.

We prove the following elementary consequences of these results:
(2) $W_{x} \circ W_{a}=W_{a} \circ W_{x}=W_{x a}=W_{a x}$.
(3) $W_{x y} \leqq W_{x}$ and $W_{x y} \leqq W_{y}$.
(4) $W_{a} \leqq W_{b}$ implies $W_{a} \circ W_{b}=W_{a}$ and $W_{b} W_{a} \cup W_{a} W_{b} \subseteq W_{a}$.
(5) $\quad R_{a} \cong W_{a}$ and $L_{a} \subseteq W_{a}$.
(6) If $W_{y}=R_{y}$ and $W_{y} \leqq W_{a}$ then $a y=y$.
(7) If $W_{y}=L_{y}$ and $W_{y} \leqq W_{a}$ then $y a=y$.

The first three of these were obtained by McLean [5]. From $W_{a}=$ $L_{a} R_{a}, a R_{a}=R_{a}$ and $L_{a} a=L_{a}$ it follows that (5) holds. If $W_{y}=R_{y}$ and $W_{y} \leqq W_{a}$ then $W_{a y}=W_{y}$ and $a y \in W_{y}=R_{y}$. Therefore $y(a y) y=y$. But $y(a y)=a y$ and we have (6). We prove (7) in a similar manner.

Theorem 9. If $S$ is an idempotent semigroup such that the lattice $\bigotimes_{r}(S)$ is modular then for all $y \in S$ either $L_{y}=\{y\}$ or $R_{y}=\{y\}$.

Proof. Assume $z \in L_{y}$ and $z \neq y$. We shall consider three basic
right congruences, $\tau_{1}, \tau_{2}$ and $L . L$ was defined above. $\tau_{1}$ shall be the right congruence whose only possible nontrivial equivalence classes are $R_{y}$ and the ideal $I=\left\{x \mid W_{x}<W_{y}\right\} . \tau_{2}$ shall have only $R_{z}$ and $I$ as its possible nontrivial equivalence classes.

First we prove that $\tau_{1}$ and (by symmetry) $\tau_{2}$ are right congruences. Set $a \tau_{1} b$. We are to show $a c \tau_{1} b c$ for all $c \in S$. We have $W_{a c} \leqq W_{a}$ and $W_{b c} \leqq W_{b}$. Thus if $a, b \in I$ then $a c, b c \in I$ and thus $a c \tau_{1} b c$. If $a, b \in R_{y}$ then $a, b \in W_{y}$ and $W_{a c}=W_{b c}$. If $W_{a c} \leqq W_{y}$ then $a c$ and hence $b c \in I$ so that $a c \tau_{1} b c$. If $W_{a c}=W_{y}=W_{b c}$ then $a c, b c \in R_{y}$ since $W$ is an equivalence relation. Hence $a c \tau_{1} b c$.

Now, to complete the proof of the theorem, let $x \in R_{y}$. We will show $x=y$. We use the fact that modularity implies

$$
\left(\tau_{1} \cup \tau_{2}\right) \cap\left(\tau_{2} \cup L\right)=\tau_{2} \cup\left[\left(\tau_{1} \cup \tau_{2}\right) \cap L\right]
$$

By the definition of $\tau_{1}$ we have $x \tau_{1} y$ and hence $x\left(\tau_{1} \cup \tau_{2}\right) y$. Next we show $x\left(\tau_{2} \cup L\right) y$. First we note $y L z$ and hence $y x L z x$. Since $x \in R_{y}$, $y x=x$, so that $x L z x$. Now $z x \in R_{z}$ since $z(z x)=z x$ and $(z x) z=z$ by the definition of $W_{y}$. Therefore $z \tau_{2} z x$. We now have

$$
x L z x ; z x \tau_{2} z ; z L y
$$

and

$$
x\left(L \cup \tau_{2}\right) y
$$

In summary $x \equiv y \bmod \left(\tau_{1} \cup \tau_{2}\right) \cap\left(\tau_{2} \cup L\right)$ and by modularity $x \equiv$ $y \bmod \tau_{2} \cup\left[\left(\tau_{1} \cup \tau_{2}\right) \cap L\right]$. However both $x$ and $y$ are in trivial equivalence classes of $\tau_{2}$. If $y \equiv a \bmod \left(\left(\tau_{1} \cup \tau_{2}\right) \cap L\right)$ then $y L a$ and $y\left(\tau_{1} \cup \tau_{2}\right) a$. Thus we have $a \in L_{y}$. But $R_{z} \cap R_{y}=\varphi$ for if $b \in R_{z} \cap R_{y}$ then $z b=b$, $b y=y$ and $(z b) y=b y=y$. However, $z(b y)=z y=z$. It follows that the only possible nontrivial equivalence classes of $\tau_{1} \cup \tau_{2}$ are $R_{y}, R_{z}$ and $I$. Hence $a \in R_{y}$. We now have $a \in R_{y} \cap L_{y}=\{y\}$. Thus $y$ lies in a trivial equivalence class under both $\tau_{2}$ and $\left(\tau_{1} \cup \tau_{2}\right) \cap L$ and hence under $\tau_{2} \cup\left[\left(\tau_{1} \cup \tau_{2}\right) \cap L\right]$. Therefore $y=x$ and $R_{y}=\{y\}$.

Theorem 10. Let $S$ be an idempotent semigroup. $\mathfrak{Z}_{r}(S)$ is distributive if and only if
(i) $\mathfrak{L}(\mathfrak{W})$ is distributive.
(ii) For all $a \in S, W_{a}$ contains at most two elements.
(iii) If $W_{a}=L_{a} \neq\{a\}$ then $W_{a}$ is the smallest element of $\mathfrak{W}$.
(iv) If $W_{x}<W_{y}$ then either $W_{x} W_{y}=\{x y\}$ or $W_{x}=L_{x}$.

Proof. We first assume $\mathfrak{R}_{r}(S)$ is distributive. If $\sigma$ is a right congruence of $\mathfrak{W}$ define $\sigma^{\prime}$ by

$$
a \sigma^{\prime} b \text { if and only if } \quad W_{a} \sigma W_{b} .
$$

A straightforward proof shows that the correspondence $\sigma \rightarrow \sigma^{\prime}$ is a lattice isomorphism of $\mathcal{R}(\mathfrak{W})$ into $\mathfrak{R}_{r}(S)$. Hence $\mathbb{R}(\mathfrak{W})$ is distributive.

By Theorem 9, $\mathrm{W}_{y}=L_{y}$ or $R_{y}$.
In order to prove that (iii) is necessary for $\mathcal{R}_{r}(S)$ to be distributive we assume $y$ is an element of $S$ such that $L_{y}=W_{y} \neq\{y\}$. Now let $T$ be a subset of $L_{y}$ and $I$ the right ideal defined by

$$
I=\left\{x \mid W_{x}<W_{y}\right\}
$$

If $a \in S$ and $z \in L_{y}$ then by (3), $W_{z a} \leqq W_{z}=L_{y}$. If $W_{z a}=W_{z}$ then $W_{z} \leqq W_{a}$ and by (7) we have $z a=z$. This says that if $T$ is any subset of $L_{y}$ then either

$$
\begin{equation*}
T a \cong I \quad \text { or } \quad T a=T \tag{8}
\end{equation*}
$$

Now let $\mathfrak{I}$ be any decomposition of $L_{y}$ into disjoint subsets and let $\rho$ be the equivalence relation defined by
$a \rho b$ if and only if $a=b$ or $a, b \in I$ or $a, b \in T$ for some $T \in \mathfrak{I}$.
It follows from (8) that $\rho$ is a right congruence. Now let $T_{0} \in \mathfrak{T}$ and define an equivalence relation $\rho^{\prime}$ by

$$
\begin{aligned}
& a \rho^{\prime} b \text { if and only if } a=b \text { or } a, b \in T_{0} \cup I \text { or } \\
& \qquad a, b \in T \text { for some } T \in \mathfrak{I} .
\end{aligned}
$$

Again it follows from (8) that $\rho^{\prime}$ is a right congruence.
Now let $y \neq z \in L_{y}$ and $\tau_{1}, \tau_{2}$ and $\tau_{3}$ be the right congruences whose only possible nontrivial equivalence classes are

$$
\begin{aligned}
& \tau_{1}:\{y\} \cup I \\
& \tau_{2}:\{z\} \cup I \\
& \tau_{3}:\{z, y\}, I .
\end{aligned}
$$

The only possible nontrivial equivalence class of either $\tau_{1} \cap \tau_{2}$ or $\tau_{1} \cap \tau_{3}$ is $I$. Therefore if $a \in I$ then

$$
y \not \equiv a\left(\bmod \left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right)\right)
$$

However $\tau_{1} \leqq \tau_{2} \cup \tau_{3}$ and $a \tau_{1} y$. Therefore

$$
a \equiv y\left(\bmod \tau_{1} \cap\left(\tau_{2} \cup \tau_{3}\right)\right)
$$

and

$$
\tau_{1} \cap\left(\tau_{2} \cap \tau_{3}\right) \neq\left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right)
$$

Hence if $\mathcal{R}_{r}(S)$ is distributive then we must assume $I$ is empty and thus (iii) holds.

In the same way, if $w$ is an element of $L_{y}$ distinct from $y$ and $z$
we can show that the right congruences $\tau_{1}, \tau_{2}, \tau_{3}$ whose nontrivial equivalence classes are

$$
\begin{aligned}
& \tau_{1}:\{y, z\} \\
& \tau_{2}:\{y, w\} \\
& \tau_{3}:\{w, z\}
\end{aligned}
$$

fail to satisfy the distributive law. Therefore (ii) holds for all $W_{v}=L_{y}$.
To prove (ii) in the case $W_{y}=R_{y}$ we shall proceed as in the case $W_{y}=L_{y}$. However, to establish the necessary right congruence properties we need a weak form of (iv); namely, if $R_{y}<W_{a}$ then $R_{y} a=$ $\{y a\}$. Assume $R_{y}<W_{a}$ and there is a pair $x, x^{\prime}$ in $R_{y}$ such that

$$
x a \neq x^{\prime} a .
$$

We let $x a=y$ and $x^{\prime} a=y^{\prime}$. Then $y a=y$ and $y^{\prime} a=y^{\prime}$. Let $\sigma_{y}$ and $\sigma_{y^{\prime}}$ be the right congruences defined by

$$
\begin{gathered}
c \sigma_{y} b \text { if and only if } y c=y b \\
c \sigma_{y}, b \text { if and only if } y^{\prime} c=y^{\prime} b .
\end{gathered}
$$

We have

$$
a \sigma_{y} y \text { and } a \sigma_{y}, y^{\prime} .
$$

Therefore

$$
y \equiv y^{\prime}\left(\bmod \sigma_{y} \cup \sigma_{y^{\prime}}\right) .
$$

Thus if $\tau_{y, y^{\prime}}$ is the minimal right congruence relating $y$ and $y^{\prime}$ we must have

$$
\tau_{y, y^{\prime}} \leqq \sigma_{y} \cup \sigma_{y^{\prime}}
$$

and

$$
y \equiv y^{\prime}\left(\bmod \tau_{y, y^{\prime}} \cap\left(\sigma_{y} \cup \sigma_{y^{\prime}}\right)\right) .
$$

Now let $z \in R_{y}$ and $z \equiv z^{\prime}\left(\bmod \tau_{y, y^{\prime}} \cap \sigma_{y}\right)$. Since $z \sigma_{y} z^{\prime}$ we have $y z^{\prime}=$ $y z=z$ and $R_{y}=R_{y z}=W_{y z^{\prime}} \leqq W_{z^{\prime}}$. But we also have

$$
\begin{equation*}
z \tau_{y, y, z^{\prime}} . \tag{9}
\end{equation*}
$$

Let $\tau$ be the right congruence corresponding to the right ideal

$$
J=\left\{x \mid W_{x} \leqq R_{y}\right\} .
$$

Since $y \tau y^{\prime}$ we have $\tau_{y, y^{\prime}} \leqq \tau$. Therefore from $z \in R_{y}$ and (9) we have $z^{\prime} \in J$ and $W_{z^{\prime}} \leqq R_{y}$. Thus $W_{z^{\prime}}=R_{y}$ and $z^{\prime}=y z^{\prime}=y z=z$. We can now conclude that if $z \in R_{y}$ then $z$ is in a trivial equivalence class of

$$
\left(\tau_{y, y^{\prime}} \cap \sigma_{y^{\prime}}\right) \cup\left(\tau_{y, y^{\prime}} \cap \sigma_{y}\right) .
$$

To avoid a contradiction to the assumption that $\mathfrak{R}_{r}(S)$ is distributive we must assume that if $W_{a} \geqq R_{y}$ then $y^{\prime} a=y a$ for all $y^{\prime} \in R_{y}$ or

$$
R_{y} a=\{y a\}
$$

We now have sufficient multiplicative properties for $R_{y}$ to show, just as in the case $W_{y}=L_{y}$, that if $\mathfrak{I}$ is any decomposition of $R_{y}$ then the collection $\mathfrak{I} \cup\{I\}, I=\left\{x: W_{x}<R_{y}\right\}$, can be extended in a trivial way to a decomposition of $S$ and the corresponding relation is a right congruence. This follows chiefly from the fact proved above that if $T \subseteq R_{y}$ then either $T_{a}$ is a single element of $R_{y}$ or $T a \leqq I$. If $x, y, z$ are distinct elements of $R_{y}$ then the three right congruences $\tau_{1}, \tau_{2}, \tau_{3}$ corresponding to the decompositions of $R_{y}$ :

$$
\begin{aligned}
& \tau_{1}:\{x, y\}, \\
& \tau_{2}:\{y, z\}, \\
& \tau_{3}:\{x, z\},
\end{aligned}
$$

do not satisfy the distributive law since

$$
x \equiv y\left(\bmod \tau_{1} \cap\left(\tau_{2} \cup \tau_{3}\right)\right)
$$

and

$$
x \not \equiv y\left(\bmod \left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right)\right)
$$

Therefore $R_{y}$ contains at most two elements.
We can now prove a slightly stronger result on the multiplicative properties of the $R_{y}$ 's and thus prove (iv). Assume $R_{y}=\{y, z\}$ and $W_{a}>R_{y}$. If $W_{a}=\{a\}$ then from the above results we have $R_{y} W_{a}=$ $R_{y} a=\{y a\}$. We shall show that the same result holds if $W_{a}=\{a, b\}$. Since $W_{a}>R_{y}$ we cannot have $W_{a}=L_{a}$. Hence we must have $W_{a}=R_{a}$. Let $\rho$ and $\delta$ be the right congruences defined by

$$
\begin{aligned}
& c \rho d \text { if and only if } W_{c}=W_{d} \leqq R_{a} \\
& c \delta d \text { if and only if } W_{c}=W_{d}<R_{a} .
\end{aligned}
$$

If $\mathfrak{R}_{r}(S)$ is distributive then since $\delta \leqq \rho$ we have

$$
\begin{equation*}
\rho \cap\left(\sigma_{y} \cup \delta\right)=\left(\rho \cap \sigma_{y}\right) \cup \delta \tag{10}
\end{equation*}
$$

where $\sigma_{y}$ was defined above. Assume $R_{y} a=\{y\}$. Then $y a=y^{2}$ and $y \equiv a\left(\bmod \sigma_{y}\right) . \quad$ Multiplying by $b \quad$ we have $y b \equiv a b\left(\bmod \sigma_{y}\right) \quad$ and $y b \equiv b\left(\bmod \sigma_{y}\right)$. Therefore

$$
\begin{aligned}
& a \equiv b\left(\bmod \sigma_{y} \cup \delta\right) \\
& a \equiv b\left(\bmod \rho \cap\left(\sigma_{y} \cup \delta\right)\right)
\end{aligned}
$$

On the other hand, by (10), there is a minimal sequence $a=x_{1}, \cdots, x_{n}=b$ such that $x_{i} \alpha_{i} x_{i+1}$ where $\alpha_{i}$ is either $\rho \cap \sigma_{y}$ or $\delta$. Since $a$ is in a trivial equivalence class of $\delta$ and the sequence $x_{1}, \cdots, x_{n}$ is minimal we have $a \neq x_{2}$ and $a \equiv x_{2}\left(\bmod \rho \cap \sigma_{y}\right)$. Therefore $a \rho x_{2}$. But $x_{2} \in R_{a}$; thus $x_{2}=b, a \equiv b\left(\bmod \rho \cap \sigma_{y}\right)$ and $a \equiv b\left(\bmod \sigma_{y}\right)$. Therefore $y a=y b$ and $R_{y} R_{a}=\{y a\}$.

We now prove the sufficiency of the four conditions of the theorem. Since each $W_{a}$ contains at most two elements we must have either $W_{a}=R_{a}$ or $\mathrm{W}_{a}=L_{a}$.

Lemma 5. If $R_{a}=\{a, b\}$ and $\sigma$ is a right congruence such that $a \sigma x$ for $x \neq a$ then $a \sigma b$.

Proof. Since $a b=b$ and $a \sigma x$ we have

$$
a \sigma(x a)
$$

and

$$
b \sigma(x b)
$$

Also, $W_{x b}=W_{x a}$. If $W_{x b}$ is a singleton then $x b=x a$ and $a \sigma b$. If $W_{x b}=R_{x b} \leqq W_{b}$ then $x a \in W_{x b}$ and (iv) implies $(x a) a=(x a) b$ and $x a=x b$. Thus $a \sigma b$.

If $W_{x b}=L_{x b}$ then $(x b) a=x b$ by (7). But $(x b) a=x(b a)=x a$. Then $x b=x a$ and again $a \sigma b$.

Lemma 6. If $a \equiv b(\bmod \sigma \cup W)$ then either
(1) $a \sigma b$,
(2) $a W b$, or
( 3 ) there exist distinct elements $y$ and $z$ such that $a z=y, b y=z$, $L_{y}=\{y, z\}$ and $a \sigma y W z \sigma b$.

Proof. Assume there is a minimal sequence $x_{1}, \cdots, x_{n}$ such that $a=x_{1}, b=x_{n}$ and $x_{i} \alpha_{i} x_{i+1}$ where $\alpha_{i}=\sigma$ or $W$. If all $\alpha_{i}$ are equal then, by transitivity either $a \sigma b$ or $a W b$. Also since the sequence of $x$ 's is minimal we can assume $\alpha_{i} \neq \alpha_{i+1}$. Therefore for some $i$ we have either $x_{i-1} \sigma x_{i} W x_{i+1}$ or $x_{i-1} W x_{i} \sigma x_{i+1}$; say the first of these holds. By Lemma 5, if $W_{x_{i}}=R_{x_{i}}$ then $x_{i-1} \sigma x_{i+1}$. But then the minimality of the sequence is contradicted. Therefore we can assume that each $x_{i} \neq a, b$ must be in $W_{y}=L_{y}=\{y, z\}$. If $i>4$ then either $y$ or $z$ is duplicated in the sequence, and hence it could be shortened. Therefore we must have either

$$
a W x_{2} \sigma x_{3} W b
$$

or

$$
a \sigma x_{2} W x_{3} \sigma b
$$

If the first of these alternatives hold we have $a, b \in L_{y}$, since $x_{2}, x_{3} \in L_{y}$, and $W_{a}=W_{b}$. So assume the second alternative holds. Then

$$
a x_{3} \sigma x_{2} x_{3}=x_{2} \quad \text { and } \quad x_{3}=x_{3} x_{2} \sigma b x_{2} .
$$

If either $a x_{3}=x_{3}$ or $b x_{2}=x_{2}$ then $x_{3} \sigma x_{2}$ and $a \sigma x_{2} W x_{3} \sigma b$ implies $a \sigma b$ and the lemma is proved.

Lemma 7. If $a z=y, \quad b y=z, L_{y}=\{y, z\}, y \neq z$ and arb then $a, b, y$ and $z$ are congruent under $\sigma$.

Proof. Let $c \in S$ such that $W_{c}=R_{c}$. If $c z=y$ then $c y=c^{2} z=$ $c z=y$. If $d \in R_{c}$ then $d=c d$ and $d z=c d z=c(d z)=y$ since $d z \in L_{y}$. Therefore $R_{c} L_{y}=\{y\}$. In the same way if $c y=z$ we have $R_{c} L_{y}=\{z\}$. Now $b a b, a b a \in W_{a b}$. Thus, if $W_{a b}=R_{a b}$ then $b a b z=a b a z$. But by a direct calculation $b(a b z)=z$ and $a(b a z)=y$. Hence $W_{a b} \neq R_{a b}$ and indeed $b a b$ and $a b a$ are distinct. Since $b a b z \neq a b a z$ we must have $W_{a b}=L_{y}$; i.e., $a b, b a \in L_{y}$. From $a b z=y$ and $b a y=z$ and the definition of $L_{y}$ we have $a b=y$ and $b a=z$. We can now conclude that $a \sigma b$ implies $a^{2} \sigma b a$, $a b \sigma b^{2}$ and consequently $a \sigma z$ and $y \sigma b$.

For any right congruence $\delta$ we define $\delta^{\prime}$ as $\delta^{\prime}=\delta \cup W$. It is clear that $\delta^{\prime}$ is a right congruence on $\mathfrak{W}$ and $\delta_{1}^{\prime} \cup \delta_{2}^{\prime}=\left(\delta_{1} \cup \delta_{2}\right)^{\prime}$. In addition we have

Lemma 8. $\quad\left(\delta_{1}^{\prime} \cap \delta_{2}^{\prime}\right)=\left(\delta_{1} \cap \delta_{2}\right)^{\prime}$.
Proof. It follows readily from the definition of $\delta_{i}^{\prime}$ and latticetheoretical properties that

$$
\delta_{1}^{\prime} \cap \delta_{2}^{\prime} \geqq\left(\delta_{1} \cap \delta_{2}\right)^{\prime} ;
$$

therefore we assume

$$
a \equiv b \bmod \delta_{1}^{\prime} \cap \delta_{2}^{\prime}
$$

and show

$$
\begin{equation*}
a \equiv b \bmod \left(\delta_{1} \cap \delta_{2}\right)^{\prime} \tag{11}
\end{equation*}
$$

Since $a \equiv b \bmod \delta_{1}^{\prime}$ we can conclude that for each $i$; (1), (2) or (3) of Lemma 6 holds. If the same case holds for both $\delta_{i}$ then clearly (11) is satisfied, Again (11) is satisfied if for either $\delta_{i}$ (2) holds. This
leaves a mixed case, say $a \delta_{1} b$ and $a \delta_{2} y W z \delta_{2} b$ where $a z=y$, and $b y=z$. Applying Lemma 7 we have $a \delta_{1} y, z \delta_{1} b$ and $a \delta_{1} y W z \delta_{1} b$. Therefore $a\left(\delta_{1} \cap \delta_{2}\right) y W z\left(\delta_{1} \cap \delta_{2}\right) b$ and the proof is complete.

To prove the distributivity of $\mathcal{R}_{r}(S)$ we consider three right congruences $\tau_{1}, \tau_{2}$ and $\tau_{3}$. By lattice-theoretical properties we have

$$
\tau_{1} \cap\left(\tau_{2} \cup \tau_{3}\right) \geqq\left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right) .
$$

So assume

$$
\begin{equation*}
a \equiv b\left(\bmod \tau_{1} \cap\left(\tau_{2} \cup \tau_{3}\right)\right) . \tag{12}
\end{equation*}
$$

If $W_{a}=W_{b}$ and $a \neq b$ then from (12) we have $a\left(\tau_{2} \cup \tau_{3}\right) b$ and therefore there is an $x \neq a$ such that either $a \tau_{2} x$ or $a \tau_{s} x$. If $W_{a}=W_{b}=R_{a}$ then by Lemma 5 we have either $a \tau_{2} b$ or $a \tau_{3} b$. In either case $a \equiv b \bmod \left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right)$. If $W_{a}=W_{b}=L_{y}=\{y, z\}$ then $y \equiv$ $z\left(\bmod \tau_{2} \cup \tau_{3}\right)$ and there is a sequence $y=x_{1}, \cdots, x_{n}=z$ such that

$$
x_{i} \alpha_{i} x_{i+1}
$$

for all $i=1, \cdots, n$ and $\alpha_{i}=\tau_{2}$ or $\tau_{3}$. Multiplying by $y$, we have $x_{i} y \alpha_{i} x_{i+1} y$. Since $x_{1} y=y, x_{n} y=z$ and $x_{i} y$ is either $y$ or $z$ there must be an $i$ such that $y \alpha_{i} z$. Hence either $a \tau_{2} b$ or $a \tau_{3} b$ and

$$
\begin{equation*}
a \equiv b \bmod \left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right) . \tag{13}
\end{equation*}
$$

It remains to show (13) holds when $W_{a} \neq W_{b}$. From (12) we have

$$
a \equiv b \bmod \tau_{1}^{\prime} \cap\left(\tau_{2}^{\prime} \cup \tau_{3}^{\prime}\right) .
$$

By the distributivity of $\mathcal{R}(\mathfrak{W})$ we then have

$$
a \equiv b \bmod \left(\tau_{1}^{\prime} \cap \tau_{2}^{\prime}\right) \cup\left(\tau_{1}^{\prime} \cap \tau_{3}^{\prime}\right) .
$$

But, by Lemma 8,

$$
\left(\tau_{1}^{\prime} \cap \tau_{2}^{\prime}\right) \cup\left(\tau_{1}^{\prime} \cap \tau_{3}^{\prime}\right)=\left(\tau_{1} \cap \tau_{2}\right)^{\prime} \cup\left(\tau_{1} \cap \tau_{3}\right)^{\prime}=\left[\left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right]^{\prime}=\sigma^{\prime}\right.
$$

and either (13) holds or (3) of Lemma 6 holds. However if (3) holds then from (12) and Lemma $7 a, b, y, z$ are related by $\tau_{1} \cap\left(\tau_{2} \cup \tau_{3}\right)$. Since $W_{y}=W_{z}=L_{y}$ then by the argument above $y \equiv z \bmod \sigma$. Also, from Lemma 6, we have $a \sigma y W z \sigma b$.

Therefore $a \sigma y ; y \sigma z ; z \sigma b$ and $a \sigma b$. Hence (13) holds in all cases and

$$
\tau_{1} \cap\left(\tau_{2} \cup \tau_{3}\right)=\left(\tau_{1} \cap \tau_{2}\right) \cup\left(\tau_{1} \cap \tau_{3}\right) .
$$

Thus $\mathfrak{R}_{r}(S)$ is distributive.
5. We now let $\mathfrak{R}_{r}(S)$ be the lattice of right congruences of $S$ and $\mathfrak{R}_{l}(S)$ be the lattice of left congruences of $S$ we have

Theorem 11. Let $S$ be an idempotent semigroup. Then $\mathbb{Z}_{r}(S)$ and $\mathfrak{L}_{l}(S)$ are distributive if and only if $S$ is a distributive semilattice or $S$ is the union of two nonempty distributive semilattices $Z_{x}$ and $Z_{y}$ with zeros $x$ and $y$ respectively such that if $a \in Z_{x}$ and $b \in Z_{y}$ then
(1) $a b=x$ and $b a=y$
or
(2) $a b=y$ and $b a=x$.

Proof. We first assume $\mathfrak{Z}_{r}(S)$ and $\mathfrak{Z}_{l}(S)$ are distributive. While the results of the preceding theorem and proof were obtained for $\mathbb{R}_{r}(S)$ it can be seen that the dual results hold for $\Omega_{l}(S)$. Thus for example since any nontrivial $L_{y}$ must satisfy $L_{y} \leqq W_{a}$ for all $a$ we have, by duality, that any nontrivial $R_{y}$ must satisfy $R_{y} \leqq W_{a}$ for all $a$. Hence if there is any nontrivial $W_{y}$ we must have $W_{y} \leqq W_{a}$ for all $a$.

We now prove one further result for a nontrivial $R_{y}=\{y, x\}$ using the distributivity of $\mathbb{R}_{r}(S)$. We let

$$
\begin{aligned}
& Z_{y}=\{a \mid y a=y\}=\{a \mid x a=y\} \\
& Z_{x}=\{a \mid x a=x\}=\{a \mid y a=x\}
\end{aligned}
$$

Since $R_{y} a=\{y a\} \in R_{y}$ we have $Z_{y} \cap Z_{x}=\phi$. If $W_{a}>R_{y}, y a=y$ and $b \in W_{a}$ then $y b=y$ since $R_{y} W_{a}=\{y a\}$, i.e., if $a \in Z_{y}, b \in W_{a}$ and $W_{a}>R_{y}$ then $b \in Z_{y}$. Similarly if $a \in Z_{x}, b \in W_{a}$ and $W_{a}>R_{y}$ then $b \in Z_{x}$. Let $a \in Z_{x}, b \in X_{y}$ then

$$
y(a b)=(y a) b=x b=x
$$

Therefore $a b \in Z_{y}$. In this manner we show that both $Z_{y}$ and $Z_{x}$ are left ideals of $S$. Then $a b a \in Z_{x}$. But $a b a \in W_{a b}$ and $a b \in Z_{y}$. Therefore if $W_{a b}>R_{y}$ we have $a b a \in Z_{y}$ and $a b a \in Z_{x} \cap Z_{y}$. Hence we must have $W_{a b}=R_{y}$. Since the only element of $R_{y}$ in $Z_{y}$ is $y$ we have $a b=y$. Similarly $b a=x$.

Since $R_{y}=\{y, x\}$ must satisfy $R_{y} \leqq W_{a}$ for all $a$ we have $S=$ $Z_{y} \cup Z_{x}$. Also, since there is only one nontrivial $W_{a}$ then $Z_{y}$ and $Z_{x}$ must be semilattices.

Again using the duality principle, if $L_{y}=\{y, x\}$ then there are two disjoint semilattices $Z_{x}$ and $Z_{y}$ such that $x$ is a zero of $Z_{x}, y$ is a zero of $Z_{y}$ and $a \in Z_{x}$ and $b \in Z_{y}$ implies

$$
a b=x \quad \text { and } \quad b a=y
$$

In this case let $\sigma$ be a right congruence of $S$. Let $\sigma_{x}$ and $\sigma_{y}$ be
the right congruences induced by $\sigma$ on $Z_{x}$ and $Z_{y}$ respectively. Also let $\delta$ be the congruence whose only nontrivial equivalence class is $L_{y}$.

Now, since $Z_{x}$ is a right ideal any (right) congruence $\tau$ on $Z_{x}$ may be extended to a (right) congruence $\tau^{\prime}$ on $S$ by defining $a \tau^{\prime} b$ if and only if $a=b$ or $a, b \in Z_{x}$ and $a \tau b$. In this way we extend $\sigma_{x}$ and $\sigma_{y}$ to congruences $\sigma_{x}^{\prime}$ and $\sigma_{y}^{\prime}$.

We claim that $\sigma=\sigma^{\prime}$ where

$$
\begin{array}{lll}
\sigma^{\prime}=\sigma_{x}^{\prime} \cup \sigma_{y}^{\prime} & \text { if } & x \not \equiv y \bmod \sigma \\
\sigma^{\prime}=\sigma_{x}^{\prime} \cup \sigma_{y}^{\prime} \cup \delta & \text { if } & x \equiv y \bmod \sigma
\end{array}
$$

We note that if $a \sigma b$ with $a \in Z_{x}, b \in Z_{y}$ then $a \sigma b a$, or $a \sigma y$ and $a b \sigma b$ or $x \sigma b$; hence $x \sigma y$. Thus $\sigma \geqq \sigma^{\prime}$. Conversely, suppose $a \sigma b$. If $\{a, b\} \subseteq Z_{x}$ or $Z_{y}$ then clearly $a \sigma^{\prime} b$. If for example $a \in Z_{x}$ and $b \in Z_{y}$ then, as above, $a \sigma y \sigma x \sigma b$, so that $a \sigma_{y}^{\prime} y \delta x \sigma^{\prime} b$, and we have $a \sigma^{\prime} b$. It now follows that

$$
\mathfrak{R}_{r}(S)=\mathfrak{R}_{r}\left(Z_{x}\right) \times \mathfrak{R}_{r}\left(Z_{y}\right) \times\{c, \delta\}
$$

Note that since $Z_{x}$ and $Z_{y}$ are semilattices then the congruences of $\mathfrak{Z}_{r}\left(Z_{x}\right)$ and $\mathcal{Z}_{r}\left(Z_{y}\right)$ are two sided. Also both $L$ and $\delta$ are two sided. Therefore $\mathfrak{Z}_{l}(S)=\mathfrak{Z}_{r}(S)$.

Using the duality once more we can concluded that we have the same result if $R_{y}=\{y, x\}$.

We have just shown that if $S=Z_{x} \cup Z_{y}$ with $Z_{x}$ and $Z_{y}$ defined as in the statement of the theorem then

$$
\mathbb{Z}_{r}(S)=\mathbb{R}\left(Z_{x}\right) \times \mathbb{R}\left(Z_{y}\right) \times\{\ell, \delta\} .
$$

Since $\{c, \delta\}$ is a distributive lattice then a necessary and sufficient condition that $\mathcal{R}_{r}(S)$ be distributive is that both $\mathcal{L}\left(Z_{x}\right)$ and $\mathcal{R}\left(Z_{y}\right)$ be distributive. This concludes the proof of the theorem.

The following corollary is a consequence of one of the remarks made in the above proof.

Corollary. If $\Omega_{r}(S)$ and $\Omega_{l}(S)$ are both distributive then every congruence of $S$ is two-sided.
6. In this section we give a more detailed description of an idempotent semigroup $S$ whose right congruence lattice is distributive. Throughout this section we shall consider a semigroup satisfying conditions (i), (ii), (iii), and (iv) of Theorem 10. We denote by $y$ and $z$ the unique pair (if they exist) of elements such that $W_{y}=L_{y}=\{y, z\}$.

Definition. For $a \in S$ let $S_{a}=\left\{b \mid W_{a b} \neq L_{y}\right\}$.
In particular $S_{y}$ is empty and if no $y$ and $z$ exist, $S_{a}=S$. Also, if $W_{a} \neq W_{y}$ then $a \in S_{a}$ so that $S_{a} \neq \phi$.

Lemma 9. If $W_{a} \geqq W_{b} \neq W_{y}=L_{y}$ then $S_{a}=S_{b}$. In particular if $x \in S_{a}, S_{a}=S_{a x}=S_{x}$.

Proof. Now $W_{a} \geqq W_{b}$ implies $W_{a x} \geqq W_{b x}$ for all $x \in S$. Thus if $W_{b x} \neq L_{y}$, then $W_{a x} \neq L_{y}$ and so $S_{b} \subseteq S_{a}$. On the other hand, suppose that $x \in S_{a}$. Since $W_{a} \geqq W_{a x}$ and $W_{a} \geqq W_{b}$ from condition (i) we must have that $W_{a x} \geqq W_{b}$ or $W_{b} \geqq W_{a x}$. Hence $W_{a x} \circ W_{b}=W_{a x b}$ is either $W_{b}$ or $W_{a x}$, neither of which is $W_{y}$. But $W_{b x} \geqq W_{a x b}$ and so $W_{b x} \neq W_{y}$. Thus $x \in S_{b}$ so that $S_{a} \cong S_{b}$.

As an immediate consequence we have that if $x \in S_{a}$, then $S_{a}=$ $S_{a x}=S_{x}$.

Lemma 10. For all $a, b, \in S$, either $S_{a} \cap S_{b}=\varphi$ or $S_{a}=S_{b}$.

Proof. If $S_{a} \cap S_{b} \neq \varphi$, let $c \in S_{a} \cap S_{b}$. From Lemma 9, $S_{a}=S_{a \varepsilon}=$ $S_{c}$ while $S_{b}=S_{b c}=S_{c}$.

Lemma 11. If $S_{a}$ is nonempty, $S_{a}$ is a sub-semigroup of $S$ and $S_{a} \cup W_{y}$ is a two-sided ideal.

Proof. Let $b, c \in S_{a}$. From Lemma 9 we have $S_{a}=S_{b}=S_{b c}$; in particular $b c \in S_{a}$. The fact that $S_{a} \cup W_{y}$ is a two-sided ideal follows easily from the observation that for all $x \in S, W_{a} \geqq W_{a x}=W_{x a} \geqq W_{y}$.

Lemma 12. If $a, b \notin L_{y}$ and $W_{a} \circ W_{b}=L_{y}$ then $a S_{b}=\{a b\}$.
Proof. Let $b$ and $b^{\prime} \in S_{b}$. Thus $W_{b b^{\prime}} \neq L_{y}$ and so $W_{b b^{\prime}}=R_{b b^{\prime}}$. By (6) we then have, since $W_{b}>W_{b b^{\prime}}$, that $b\left(b^{\prime} b\right)=b^{\prime} b$. Again, since $a b$ and $a b^{\prime} \in L_{y}$, and $W_{b^{\prime} b}>W_{y}$ it follows from (7) that $a b=a b\left(b^{\prime} b\right)$ and $\left(a b^{\prime}\right) b^{\prime} b=\left(a b^{\prime}\right) b=a b^{\prime}$. Thus $a b=a b b^{\prime} b=a b^{\prime} b=a b^{\prime}$.

Lemma 13. Let $a \notin L_{y}$. If $x \in S_{a}$ and $x z=x y$ then $u y=u z=x z$ whenever $u \in S_{a}$ and $W_{u} \leqq W_{x}$.

Proof. Without loss of generality suppose $x y=x z=y$. Now $W_{u} \leqq W_{x}$ and $W_{u}=R_{u}$ so that $x u=u$. Also the hypothesis implies $u x z=u y$.

If $u x=u$, then $u z=u y$ and it must follow that $u z=u y=y$ for if it were the case that $u z=u y=z$ then $y=x z=x(u z)=(x u) z=$ $u z=z$; a contradiction. Thus we may suppose that $W_{u}=R_{u}=\left\{u, u^{\prime}\right\}$ and that $u x=u^{\prime}$, hence that $u x=u^{\prime} x=u^{\prime}$. On the other hand since $u^{\prime} x=u^{\prime}$ we may replace $u$ by $u^{\prime}$ in the above argument to conclude $u^{\prime} y=u^{\prime} z=y$ and so $u u^{\prime} y=u y$. But $u u^{\prime}=u^{\prime}$ so that $u y=y$. Simi-
larly if $u z=z$ it follows that $u^{\prime} u z=u^{\prime} z$, or $u z=u^{\prime} z=z$, a contradiction. In this way we have $y=u y=u z$.

Lemma 14. Let $a \notin L_{y}$. If $a z=y$ then for $x \in S_{a}, x y=y$.
Proof. We have $a z=a y=y$. Let $x \in S_{a}$. If $W_{x} \leqq W_{a}$ the result is that of Lemma 13. On the other hand if $W_{x} \geqq W_{a}$ and $x y=z$ then from Lemma 13 it would follow that $a z=a y=z$, a contradiction. Hence $x y=y$ in this case. Finally suppose that $W_{x}$ and $W_{a}$ are incomparable. We have $W_{a}>W_{a x}$ By Lemma $13 a x z=a x y=y$. Also $W_{x}>W_{a x}$ and if $x y=z$, then Lemma 13 gives $a x y=z$, a contradiction. Thus $x y=y$.

Corollary. Let $a \notin L_{y}$. Either $x y=y$ for all $x \in S_{a}$ or $x z=z$ for all $x \in S_{a}$.

Proof. If $b z=y$ for some $b \in S_{a}=S_{b}$, then, from Lemma 14, $x y=y$ for all $x \in S_{b}=S_{a}$.

Lemma 15. In $S$, the following two alternatives obtain:
(1) For all $a \notin L_{y}, a y=a z$.
(2) There exists a vnique $S_{a}$ such that for some $a_{0} \in S_{a}$ it is true that $a_{0} y=y$ and $a_{0} z=z$. Moreover if $W_{a_{1}} \geqq W_{a_{0}}$, then $a_{1} y=y$ and $a_{1} z=z$.

Proof. Suppose that (1) does not hold. Then for $a_{0} \notin L_{y}, a_{0} y=y$ and $a_{0} z=z$. (If $a_{0} y=z$, then $a_{0} y=a_{0} z=z$.) Now if $b \notin S_{a_{0}}$ then $\mathrm{b} a_{0} \in L_{y}$ and so

$$
\left(b a_{0}\right) y=b a_{0}=b\left(a_{0} y\right)=b y
$$

and

$$
\left(b a_{0}\right) z=b a_{0}=b\left(a_{0} z\right)=b z
$$

so that $b y=b z$. Thus it follows that if $a y=y$ and $a z=z$ it must be the case that $a \in S_{a_{0}}$. This establishes the uniqueness of $S_{a_{0}}$.

Now suppose that $W_{a} \geqq W_{a_{0}}$. If $a y=a z$ then Lemma 13 shows that $a_{0} y=a_{0} z$, a contradiction. Hence $a y=y$ and $a z=z$.

Corollary. The set $D=\left\{W_{a} \mid a y=y\right.$ and $\left.a z=z\right\}$ forms a dual ideal of $\mathfrak{W}$.

Proof. First note that from condition (2) of Lemma $15, D$ is well defined, and indeed if $W_{a} \in D$ and $W_{a_{1}} \geqq W_{a}$ then $W_{a_{1}} \in D$. Lastly, if
$W_{a} \in D$ and $W_{b} \in D$ then $W_{a} \circ W_{b}=W_{a b} \in D$ since from $a y=b y=y$ and $a z=b z=z$ it follows that $a b y=y$ and $a b z=z$.

Lemma 16. If $a \notin L_{y}$ and $a y=a z$ then for $b \notin S_{a}, a b=a y=a z$. Moreover, if $x y=x z$ for all $x \in S_{a}$ then if $S_{b} \neq S_{a}, S_{a} S_{b}=\{a y\}$. Finally if $a \notin L_{y}$ and $a y=y, a z=z$ then for $b \notin S_{a}, a b=b y$.

Proof. Since $b \notin S_{a}, a b \in L_{y}$ and so $a b=a(a b)=a y=a z$. Under the second assumption $x y=x z=a y=a z$ and so $x b=a b=a y=a z$, for all $x \in S_{a}$. On the other hand, from Lemma 12, $a S_{b}=\{a b\}$, thus $S_{a} S_{b}=\{a b\}=\{a y\}$. Under the third assumption we have $a b \in W_{y}$, $a b=a b y=b y$ since $b y \in W_{y}$.

As a result of Lemmas 10 and 11 we may write $S$ as the disjoint union of sub-semigroups $S_{a}$ and the sub-semigroup $W_{y}=L_{y}=\{y, z\}$. Lemmas $12-16$ describe how these semigroups multiply. The typical possibilities are summarized in the table below. We assume that
(14) $S_{a}$ contains an element $a_{0}$ such that $a_{0} y=y$ and $a_{0} z=z$ and other elements $x$ such that $x y=x z$;
(15) that $S_{b} \neq S_{a}$ and $b y=b z=y$, and
(16) $\quad S_{c} \neq S_{a}$ and $c y=c z=z$. A single entry in a box means that all entries in that box have the entered value.

|  | $S_{a}$ |  | $S_{b}$ | $S_{c}$ | $\cdots$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $S_{a}$ | $a_{0}$ | $\cdots$ | $y$ | $z$ | $\cdots$ | $y$ | $z$ |
|  | $x$ | $S_{a}$ |  |  |  |  |  |
| $S_{b}$ |  | $y$ | $x y$ | $x y$ | $x y$ | $x y=x z$ |  |
| $S_{c}$ |  | $S_{b}$ | $y$ | $y$ | $y$ | $y$ |  |
| $\vdots$ |  | $z$ | $S_{c}$ | $z$ | $z$ | $z$ |  |
| $y$ |  | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |  |
| $z$ |  | $z$ | $z$ | $y$ | $y$ | $y$ | $y$ |

Another way of decomposing $S$ is to construct

$$
\begin{aligned}
I_{y} & =\{x \mid x y=x z=y\} \\
I_{z} & =\{x \mid x y=x z=z\}
\end{aligned}
$$

and

$$
J=\{x \mid x y=y, x z=z\}
$$

It is easy to see that these sets are mutually disjoint and that $I_{y}$ and $I_{z}$ are left ideals. It is clear that if $J$ is nonempty it contains those elements of the single set $S_{a}$ such that $b y=y$ and $b z=z$. Any other $S_{x}$ falls into either $I_{y}$ or $I_{z}$. The remainder (if any) of the $S_{a}$ falls into either $I_{y}$ or $I_{z}$ depending on whether $b y=y$ or $b z=z$ for all $b \in S_{a}$.

Idempotent semigroups whose right congruence lattices are distributive may be constructed by pasting together semigroups with the structure of an $S_{a}$ by using the rules laid down in Lemma $9-16$. Thus let $\mathbb{S}$ be a collection of distinct semigroups $S_{a}$ satisfying conditions (i), (ii), (iv), and in addition that $W_{x}=R_{x}$ for all $x$. Let $y$ and $z$ be elements not appearing in $\cup \subseteq$. $\cup \subseteq \cup\{y, z\}$ is made into a semigroup by defining the multiplication between the sets $S_{a}$ and $\{y, z\}$. It is convenient to think of this as being done in a multiplication table. We insist that $y x=y, z x=z$, for all $x$. For all $S_{b}$, with one possible exception we may choose with complete freedom, we define for $x \in S_{b}$, $x y=x z \in\{y, z\}$. The choice of the particular value is arbitrary. Then for all $c \notin S_{b}, x c$ is defined to be $x y=x z$. For $c \in S_{b}$, the multiplication is of course to be that of $S_{b}$. After this stage only the exceptional semigroup, call it $S_{a}$, has yet to be handled. In $\mathfrak{M}\left(S_{a}\right)$ let $D$ be any dual ideal. We define $d y=y, d z=z$ if $W_{d} \in D$. For all $x \notin D$ we make $x y=x z \in\{y, z\}$ and the choice is again arbitrary. We now claim that under these rules $\cup \mathfrak{S} \cup\{y, z\}$ is an idempotent semigroup with distributive right congruence lattice.

To verify that the associative law holds we need to check several cases of the identity $p(q r) \equiv(p q) r$.

Case 1. $S_{p}=S_{q}=S_{r}$ or $\{p, q, r\} \leqq\{y, z\}$. Here $p, q, r$ belong to a set assumed to be a sub-semigroup.

Case 2. $p \in\{y, z\}$. Here the multiplication gives $(p q) r=p r=$ $p=p(q r)$.

Hereafter we assume that $p \notin\{y, z\}$.
Case 3. $p y=p z$. By Lemma 16, $p x=p y=p z$ for all $x \notin S_{p}$ so that associativity holds here.

Case 4. $p y=y$ and $p z=z$. Thus $p \in S_{a}$ and in $\mathfrak{M}\left(S_{a}\right), W_{p} \in D$. In view of the corollary to Lemma 14 we may suppose, without loss of generality, that for all $x \in S_{a}$ such that $W_{x} \notin D, x y=x z=y$.

If $q \in\{y, z\}$ then $p(q r)=p q=q$ while $(p q) r=q r=q$, and so we may assume $q \notin\{y, z\}$. We may also suppose that $q r \notin S_{a}$, otherwise $S_{p}=S_{q}=S_{r}$. Under these assumptions for Case 4 two main subcases arise.

Case 4.1. $\quad S_{q}=S_{r} \neq S_{a}$. From Lemma 13 we have $p q=p r=p(q r)$ and since $p q \in\{y, z\}$ we have $(p q) r=p q$. Thus associativity holds.

Case 4.2. $S_{q} \neq S_{r}$. Here $q r \in\{y, z\}$ so that under the hypothesis of Case 4, $p(q r)=q r$. If $S_{p} \neq S_{q}$, then from Lemma 16 we have $p q=q y=q z=q r$, so that $(p q) r=(q r) r=q r$. Thus in this case we may assume $S_{p}=S_{q}=S_{a} \neq S_{r}$, in particular we have $p q \in S_{p}=S_{a}$. Now if $W_{p q} \in D$, then since $W_{q} \geqq W_{p q}$ we have $W_{q} \in D$ and thus $q y=y$ and $q z=z$. Since $S_{r} \neq S_{q}$ it follows that $r y=r z$ and thus from Lemma 16, that $q r=r y=r z=(p q) r$. On the other hand, if $W_{p q} \notin D$ it follows that, since $W_{p} \in D$, it must be the case that $W_{q} \notin D$. Thus $(p q) r=y$ and $q r=y$ from the Case 4 assumptions; so that $p(q r)=$ $p y=y$. This completes the verification of the associative law.

Finally we need to see that conditions (i), (ii), (iii) and (iv) of Theorem 10 are satisfied. From the multiplication table it is easily seen that for all $x \in \cup \subseteq, W_{x}$ is unchanged in the large semigroup while $W_{y}=L_{y}=\{y, z\}=L_{z}=W_{z}$ is the minimal element of $\mathfrak{W}$. Thus conditions (ii) and (iii) hold. $\mathcal{L}(\mathfrak{W})$ is distributive since for the large semigroup, $\mathfrak{W}$ is the set sum of the individual $\mathfrak{W}_{a}$ of the member semigroups together with $W_{y}$. The only new order relations present are $W_{y}<W_{x}$ for all $x \in \cup \subseteq$. For this reason it is clear that (iv) holds since if $L_{a} \neq W_{a}<W_{b}$ it must be that $S_{a}=S_{b}$ and condition (iv) was assumed to hold in $S_{a}$.

## Bibliography

1. A. H. Clifford, and G. B. Preston, The Algebraic theory of semigroups, Volume 1 Amer. Math. Soc., (1961).
2. R. P. Dilworth and Peter Crawley, Decomposition theory for lattices without chain conditions, Trans. Amer. Math. Soc., 96 (1960), 1-22.
3. M. Ego, Structures des demi-groupes dont le treillis des sous-demi-groups satisfait à certaines conditions, Bull. Soc. Math. France 91, (1963), 138-201.
4. N. Kimura, The structure of idempotent semigroups, Pacific J. Math., 8 (1958), 257275.
5. D. McLean, Idempotent semigroups, Amer. Math. Mon., 61 (1954), 110-113.
6. O. Ore, Structures and group theory, Duke Math. J., 21 (1938), 247-269.
7. L. N. Sevrin, Semigroups with certain types of sub-semigroup lattices, Dokl. Akad. Nauk. S.S.S.R., 138 (1961), 796-798.
8. Takayuki Tamura, Semigroups and their subsemigroup lattices, Pacific J. Math., 13 (1963), 725-736.

California Institute of Technology
Institute for Defense Analysis


[^0]:    Received August 13, 1963.

