
FUNCTIONS WITH CONVEX MEANS

T. K. BOBHME AND A. M. BRUCKNER

1* Introduction* Let / be Lebesgue summable on [0, α], a > 0.

The function F, defined on [0, a] by Fx{x) = l/x[mf(t)dt, F(0) =/(0)
Jo

is called the mean of the function /. Inductively, we may define the

Nth mean of / on [0, a] by FN{x) = l/x\* F^ifydt, FN(0)=f(0),
Jo

provided, of course, that FN-t is summable on [0, α]. Some questions
involving the mean of certain classes of functions have been examined
in Beckenbach [1] and Bruckner and Ostrow [2].

The primary purpose of this paper is to consider the problem of
determining when a function / has its JVth mean convex for N suf-
ficiently large. To develop the necessary machinery, we devote § 2 to
obtaining some properties of the means which we shall need in the
sequel, and we devote § 3 to obtaining representations for functions /
possessing means of all orders. In particular, Theorem 3 shows how a
wide class of functions / admit representations as sums of infinite series
whose iVth term involves the JVth mean of /. Then in § 4 we examine
the question posed at the beginning of this paragraph. (Lemma 6
together with Theorem 5 yields a condition which is necessary and sufficient
for a sufficiently well behaved function to have its iVth mean convex. We
then use this theorem to obtain two sufficient conditions for a star-
shaped function to have its iVth mean convex for N sufficiently large.
This is done in Theorems 6 and 7. Finally, in Theorem 8, we use the
Baire Category Theorem to show that not every continuous starshaped
function has one of its means convex.

2* Preliminaries* We begin with some remarks and simple
observations. In the sequel, we shall denote the iVth mean of / by
FN{f :x). As circumstances warrant, this notation will be shortened
to FN{f), FN(x), or simply FN.

The fact that / is summable does not insure that means of all
orders exist. Thus, the mean of the function / given by f(x) =
α-Hlog αOΛ/ίO) = 0 is F,(x) "= -x^Qogx)-1, i*\(0) = 0, but F, is not
summable on any neighborhood of the origin.

DEFINITION. The function / is in the class M(a) provided /
possesses means of all orders on [0, α].

It is easily seen from Lemma 1 below that / 6 M(ά) if the functions
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f(t)(logt)N are summable for all N= 1, 2, 3, •••.

LEMMA 1. Let feM(a). Then the following representations for
valid for x > 0 omcZ N — 1, 2, 3, :

x) = • 7 (
(iV — 1)! Jo

Proof. Equation (1) is obtained by interchanging the order of
integration on the N times iterated integral. Equation (2) is then
obtained from (1) by the change of variable v = xu.

Now write kN{u) = [(-ly-'KN- l)!](logu)*~\ N = 1, 2, 3, .
Then equation (2) becomes

(3) FN(f: x) = [f(xu)kN(u)du .
Jo

The following lemma shows that kN is an approximation to the Dirac
δ function.

LEMMA 2. The kernel kN{n) has the following properties:

( i ) kN{u) ^ 0 N = 1, 2, 3, -

(ii) ^kN{u)du = 1 N = 1, 2, 3,
Jo

(iii) limjŷ oc kN{n) = 0. Tfee convergence is uniform on every
interval [ε, 1], ε > 0.

(iv) kN{u) is nonincreasing on (0,1) for each N.

Proof. Parts (i), (iii) and (iv) follow from inspection of the kernel
kN, and part (ii) can be obtained by setting / = 1 in (3).

THEOREM 1. Let fe M(a). If /(0+) exists and is finite, then the
sequence {FN(f: x)} converges uniformly to /(0+) on [0, a].

Proof. Let ε > 0. Choose δ > 0 so that \f(x) - /(0+) | < ε when
0 < x 5g δ. Noting Lemma 2, we have

I FN(x) - /(0+) I rg [\f(xu) - /(0+) I kN{u)du
Jo

^ ε\δkN(u)du + kN(δ)[\f(xu) - /(0+) | du
Jo Jδ

^ ε + kN(δ)[\f(xu) - /(0+) I du .
Jδ
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Since lim^..^ kN(d) = 0 and the last integral is bounded (as a function
of x), we infer that for N sufficiently large,

I FJp) - /(0+) I < 2ε for all x e [0, a] .

As ε was arbitrary, the theorem follows.

It is easy to see from the definition of the means that if feM(a),
then F^f) is differentiate on (0, a] for N > 1 and Fx(f) is differ-
entiable a.e. on (0, a]. Theorem 2 considers the differentiability of FN

at the origin.

THEOREM 2. Let feM(a). Iff is differentiable at the origin
then so too is FN{f) for N = 1, 2, 3, •••, and F'N(f: 0) = 2"JV/'(0).
Furthermore, for N > 1, Ff

N{f) is continuous, and if Fλ{f) is differ-
entiable in a neighborhood of the origin, then F((f) is continuous at
the origin.

Proof. We prove the theorem for N = 1. The general result
follows by induction and by observing that for N > 1, FN(f) is differ-
entiable on (0, a].

We have

Fx(x) - J\(0) _ Fix) - /(0)

x2 JoL u

as x -+ 0. This proves that 2F/(0) = /'(0).
Now, if Fx is differentiable on a neighborhood U of the origin, then

F!(x) = [/(»)/»] - [Ft(x)lx] = {[/(x) - /(0)]M - {[̂ (a?) - ^(0)]/^} on
U. Since / and ί\ are assumed differentiable at the origin, lim^o F&x) =

3* Representation theorems* In this section we show how a
function feM(a) for which /(0+) exists can be represented as the sum
of an infinite series involving its means.

Let feM(a) and let x be a point at which / is the derivative of

its integral. Then from the equation Fx{x) — \\x\ f(t)dt we obtain
Jo

f(x)/x = Fl(x) + [Fx{x)lx\. Inductively we obtain the finite represen-
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tation

X n=i X

which is valid for any x at which / is the derivative of its integral.
In particular, (4) is valid at every Lebesgue point of /.

THEOREM 3. Let feM(a). If /(0+) is finite then

X

a.e. on any interval [ε, α], 0 < ε 5J α. In particular, the convergence
is uniform on the set of points in [ε, α] at which f is the derivative
of its integral.

Proof. By noting (4) we see that it suffices to show that
l i m ^ [Fg{f: x) - f(0+)]/x == 0, uniformly on [ε, a]. Since FN{f\ x) -
/(0+) = FN{f — /(0 + ): x) is the mean of a function which has zero for
the limiting value at the origin, it tends uniformly to zero on [ε, a]
by Theorem 1.

LEMMA 3. Let /(0+) = 0. If f(x)/x is summable on [0, a], then

(5) \xlA£jJ^du = Fj\^^du:x) for 0< α ̂  α .
Jo U \Jo U /

Proof. We have

U Jo V Jo

o u
for 0 < x ̂  a .

The first and third equalities follow from (3) and the interchange of
order of integration in the second equality is justified by the sum-
mability of f(x)/%.

THEOREM 4. If /(0+) is finite and [f(x) - /(0+)]/# is summable
on [0, α], then
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The convergence is uniform on [0, a].

Proof. Without loss of generality, assume /(0+) = 0. Using (4)
and Lemma 3, we have

=\'± Fl(f:u)du
Jo»=io U

( \ X I ^ ) for

We see from Theorem 1 that lim*--*, Fj 1 [f(u)/u]du : x j = 0, uniformly

on [0, a] and Theorem 4 follows.

4* Convexity of the means* We now turn to the problem of deter-
mining when a function / has convex means FN{f) for sufficiently large
N. Theorem 5 together with Lemma 6 gives a necessary and sufficient
condition for the Nth mean FN(f) to be convex. This condition is in terms
of a kernel integral which is not practical to use for specific functions.
We use this condition to obtain two sufficient conditions in Theorems
6 and 7. These theorems state that a starshaped function / (that is,
one for which the function [f(x) — f(0)]/x is increasing) has one of its
means convex provided f(x) behaves sufficiently well for small x.

To motivate these results, we first observe that it was shown in
[2] that any function / for which Fx{f) is convex, must be starshaped.
It is easy to verify that the converse is not valid. However, if / is
starshaped, then it follows immediately from Theorem 4 that Σ^i-PVί/: x)
is convex. Since the operation of taking a mean is a "smoothing"
operation, this suggests that FN{f) is convex for N sufficiently large.
This is false as Theorem 8 shows, but is true, as stated before, if /
is sufficiently well behaved for small x. We note in passing that the
condition of starshapedness cannot be entirely removed from the
hypothesis of Theorems 6 and 7. Thus, the function which is equal
to x on [0,1] and one on [1, co) satisfies the hypotheses of these
theorems (except for starshapedness), but all of its means are concave.
To simplify some of the calculations, we shall henceforth assume that
all functions vanish at the origin.

It was shown in [2] that the means of a convex function are
convex, and the means of a continuous starshaped function are star-
shaped. Lemma 4 below does not require / to be continuous.

LEMMA 4. If f is convex (starshaped) on [0, α], then FN{f) is
convex (starshaped) on [0, α], N = 1, 2, 3,

Proof. A function g is convex on [0, a] if and only if
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g(ax + (1 - a)y) g ag(x) + (1 - a)g{y) for all a, 0 g a ^ 1 and all x and
2/ in [0, α]. If /satisfies this inequality, then equation (3) shows FN(f)
does also.

Now let / be starshaped on [0, a]. Then f(x)/x is an increasing

function of x, so that \ [f(u)/u]du is convex. From Lemma 3, we

have V[FN{f:u)lu]du^FN(Vu{^)l^¥^^)' The right side of this

equality is the Nth mean of a convex function, hence convex. Thus

the left side is also convex, so that FN(f: u)/u must be increasing, so

that FN{f: u) is starshaped.
The following lemma was proved in [2].

LEMMA 5. The function FN{f) is star shaped on [0, a] if and only
if 2FN{x) ^ FN~x(x) on [0, a]. It is convex on [0, a] if and only if
2F#(x) ^ F'N-λ{x) on [0, a]. (If N = 1, we must replace these derivatives
by lower derivatives at points where the derivative fails to exist).

Since Fr

N{x) = [FN-X{x) — FN(x)]/x, the condition for convexity can
be written in the form

2[FN-X{x) - FAx)] ̂  FN-2{x) - FjΓ-άx) , O^^α

or

( 5 ) QM(x) ΞΞ 2FN{x) - 3i<V-i0*0 + F*-*(x) ^ 0., O^x^a.

L E M M A 6. If N^S, then FN is convex on [0, a] if and only if
for all x e [0, a]

( 6 ) QN{x) = [f(xu)kN^(u)PAn)du ^ 0 (N ̂  3)
Jo

where

P (V\ - 2(\oguY Sjlogu) ι

Proof. Utilizing the integral representation (3) to express (5)
yields (6).

We are especially interested in the case where / is starshaped on
[0, a] and / is convex on [0, ε], ε < α. Thus we need the following
theorem.

THEOREM 5. If f{x) = xg(x) on [ε, a] where g is absolutely con-
tinuous, and if f and f are absolutely continuous on [0, ε], then for
iSΓ>3
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(7) QN(x) = x2[f"(xu)rN(u)du + x2[g'(xu)sN(u)du
Jo Jδ

where δ is any number such that 0 ^ δA ^ ε and

rN{u) — u2kN(u) — δukN(δ)

and

Proof. We will write equation (6) in two parts as QN(x) =
fδ ri

\ + I = I-ι + h where Ix and J2 are the integrals from [0, δ] and [δ, 1]
J o J δ #

respectively.
Two integrations by parts gives

- xf{xδ) [\
Jo Jo

Using the fact that the second derivative of u2kN{u) is

(u2kN(u))" = (2ukN(u) - ukN^(u)Y = kN-2{u)PN{u)

we have

ίί)] - xδψ(xδ)kN(δ)

f"(xu)u2kN(u)du .

tkN-2(t)PN(t)dt — u\kN(u) — kN-λ{u)) (in parti-
0

cular, this is zero when u = 1, JV ^ 2) integration by parts shows

S w l ri

tkN-2{t)PN(t)dt — x2\ gf{xu)u\kN{u) — k^-
0 δ Jδ

Thus

( 8 ) rδ ri

+ #2\ /"(xu^kxiuϊdu + #2\ ^'
Jo Jδ

Since /(0) = 0 we can use the expression

x2\*f"(xu)udu = -\**f"(u)udu = -f(0)+f(xδ) - (xδ)f(xδ)
Jo Jo
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to rewrite the first term on the right in equation (8); thus yielding
equation (7).

In order to utilize Theorem 5 we need to know some of the prop-
erties of the kernel functions s^ and rN. These are given in the
following lemma.

LEMMA 7. The kernel sN has the properties:
( i ) s#(u)<0 ueiO e-^-v)

sN(u) > 0 ue (β- ( J M ) , 1)

( i i ) SN[sN(u)du = 2 N = 3, 4,
Jo

sN{u)du —• 0 as N~* oo .
0

The kernel rN has the following properties on [0, δ] for sufficiently
large N:

(iv) there is exactly one point, δN, such that 0 < δN < δ and
TA^N) — 0 We have δN —> 0 as N—> oo.

( v ) ?v /ιαs exactly two inflection points on [0, δ], / / they occur
at uuir and u2tN, 0 < ultir < u2>ir < δ ί^e^ u2>If-+ 0 as iV—• oo.

(vi) rN{u) ^ r^(«)(w - δ) on [u2tin δ].
(vii) 7/ min[0,δi7] rN(u) = - ε ^ , ίfe^ % = o(| ri(5) |) as N-+co.

Proof. ( i ) Is easily established by inspecting sN.
( i i ) The integral from 0 to 1 of s* is just FN-λ{x2:1) - FN{x2:1) =

8-(jsr-i) __ 3-^ = 2.3-^.

(iii) It is clear that

I sN{u) I ̂  ^2fc^(^)

and since u^k^^iu) is monotone increasing on [0, e~N] we have

8*+11 βjr+ifa) I g S"+1er*»N"/Nl. By Stirling's formula the integral in

(iii) is Ottδe-T-1) = o(l).
(iv) rN is negative near zero and positive near δ. Thus, there

is at least one zero of rN between zero and δ. We will utilize property
(v) to complete (iv). Since there are exactly two inflection points on
[0, δ], and rN is concave up near δ, there is at most one zero, δ^, and
this lies to the left of U2tN. Thus δN —> 0.

( v ) r'i(v) = kN-2{u)PN{u) and kN-2{u) > 0 on (0,1). PN has ex-
actly two zeros uUN and u2fN on (0,1). If N is sufficiently large these
lie on [0, δ]. As iV—• oo, u2>JV.—»0.

(vi) rN is concave upwards on [u2tN, δ] and r^(5) = 0.
(vii) Since -δkN{δ) ^ukN(u) - δkN(δ) ^ 0 on [0, δ^], we have

-δNδkjy(u) g r^(u) ^ 0 on that interval. Thus ε^ g δNδkN(δ). Now

- 1) log δ] ,
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so that I r'N(δ) | ^ (δ/2)kN^(δ) when JV is sufficiently large; thus ε^ ^
[2δjy log (l/δ)/(N - 1)] \r's(δ)\ which completes the proof of the lemma.

ukN(u)

THEOREM 6. Let f satisfy the continuity and differentiability
conditions of Theorem 5. If f is starshaped on [0, a] and convex on
[0, ε] then FN is convex on [0, α] for sufficiently large JV.

Proof. We will show that QN{x) is nonnegative on [0, a] for suf-
ficiently large JV. Since gr{xu) ^ 0 a.e. for u e [0,1], x 6 [0, α], it follows
from property (i) of Lemma 7 that the second integral on the right in
(7) is nonnegative for sufficiently large JV. We will show that there
is an JV such that

JN(x) = (*f"{χu)rN{u)du ^ 0
Jo

for all x e [ε, a] by using the fact that f"(xu) ^ 0 for u e [0, δ] and
x G [0, a]. We need only consider the case where / " vanishes on no
neighborhood [0, ε'], since otherwise by providing that δa < ε' we have
JN ΞΞΞ 0 and are done. If / " vanishes on no neighborhood of the origin,
using the notation of Lemma 7, we have

f"(xu)(u - δ)du - sJ\Nf"{xu)du
u2>N Jo

and since r^(δ) < 0,

( 9 ) f"{xu){δ - U)du -
x\r'N(δ)\ Jo

ffr(u)du^\ f"(u)du>-+0 as JV—> oo (uniformly in x on
o Jo

[0, α]), property (vii) of Lemma 7 shows that the last term on the right
in (9) is o(l) (uniformly in x on [ε, a]). But, the continuous functions
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KN{x) = Γ f"(xu)(δ - u)du -* [ *f"{xu){8 - u)du
U Joo

uniformly on [ε, a] as N—> oo, and since / " vanishes on no neighbor-
hood of the origin the continuous function

K(x) = \'f"(xu)(δ - u)du
Jo

is bounded away from zero on the compact interval [ε, a]. It follows
that past some sufficiently large N the functions KN{x) are uniformly
bounded away from zero and thus the JN{x) are strictly positive on
[ε, a].

This shows QN(x) > 0 on [ε, a] for N sufficiently large. Since
Qjsrix) ^ 0 on [0, ε] as a result of the convexity of / on [0, ε], it follows
that QN(x) έ θ on [0, a] for sufficiently large N.

COROLLARY. Let f be a function defined on [0, a]. If there is a
positive integer k such that Fk(f) satisfies the conditions of Theorem
6, then FN{f) is convex on [0, a] for sufficiently large N. In par-
ticular, if f is superadditive on [0, a] and satisfies the continuity
and differentiability conditions of Theorem 5, then the conclusion
follows.

Proof. The first statement is obvious. The second follows by
noting that if / is superadditive, then Fλ(f) is starshaped [2].

We are now ready to prove a theorem which shows that for a
wide class of starshaped functions, the means are eventually convex.

THEOREM 7. Let f be starshaped on [0, α],/(0) = 0. Let g(x) =
f(x)/x, g(0) — /'(0). // g is absolutely continuous on [0, α] and if
there exists a nondecreasing function p and a positive constant a such
that ap(x) ^ g'(x) <; p{x) for all x in [0, e], then FN(f) is convex on
[0, α] for sufficiently large N.

Proof. We take δ = 0 in equation (7). Then

^ αη ap{xe~*) I s^+^du — p{xe~N) \ sN+1(u)du

= x2p(xe~N)[2a +

as iSΓ—> co by properties (ii) and (iii) of Lemma 7. Thus QN{x) ^ 0 on
[0, ε] for sufficiently large N. By Theorem 6 FN(f) is convex on [0, a]
for sufficiently large N.
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We note that if the function g of Theorem 7 is differentiate,
then g must also be absolutely continuous. This follows from the fact
that if / is starshaped, g is increasing, and any differentiate monotonic
function must be absolutely continuous.

COROLLARY. Let f be starshaped on [0, α],/(0) = 0, and let g be
defined as in Theorem 6. // g is absolutely continuous and

either (1) f is a polynomial

or ( 2 ) 0'(O)>O

then FN{f) is convex for sufficiently large N.

The conditions of Theorem 7 are not necessary for FN{f) to be
convex for sufficiently large JV.

EXAMPLE. Let f(x) = x2 + x\X sin (l/u)du,/(0) = 0. Then g(x) =

S x Jo

sin (l/u)du and g\x) — 1 + sin (IIx). It is clear that there exist
0

no p and a satisfying the conditions of Theorem 7. However, equation
(7) (with δ = 0) gives

BNQN(x) = x2\ΫsN{u)du + Γsinf—)sN(u)du~\
LJo Jo \χ/ J

From the Riemann-Lebesgue lemma it is easy to see that for fixed N9

there is a ε > 0 such that when 0 < x < ε the last integral above is
less than 2 in absolute value and thus QN(x) ^ 0 on [0, ε]. It follows
then from Theorem 6 that for any a > 0 there is an N for which
FN{f) is convex on [0, a].

We now show that not every starshaped continuous function which
vanishes at the origin must have its means FN{f) be convex for N
sufficiently large. We first prove a lemma.

LEMMA 8. Let a and δ be positive numbers and let c > 2δ.
Define a function f(a, δ : x) by

f(a,

For every positive integer N and every a > 0, there exists δ > 0
such that FN{f{a, δ: x)) is not convex on [0, c\.

0
2a(x —

ax
S)

0

8

2δ

VII

<

<

X

X

X

VII

^2δ
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Proof. Let g(a, 3 : x) = f(a, 3 : x)/x. The function g(a, 3 : x) is
absolutely continuous on [0, c] and differentiate except at x — 3 and
x = 23. We have

ι,δ:x) ~

0 0 ^ x < 8

8 < x < 28

0 28 < x g c .

Now choose 8 so that 23c < e~N. Since the function s^+1 is negative

on (0, e~N)9 we have, I g\a, 3 : cu)sN+1(u)du < 0. It now follows from
Jo

Theorem 5, that Fn(f(a, 3: x)) is not convex on [0, c].

THEOREM 8. There is a continuous starshaped function defined
on [0, a] such that none of its means is convex on [0, a].

Proof. Let S be the class of functions which are continuous, non-
negative, and starshaped on [0, a] and vanish at the origin. This class
may be considered as a subspace of C[0, a]. Since S is closed in C[0, a],
S is a complete metric space. For each positive integer JV, let S^ de-
note that class of functions in S whose JVth means are convex. It
suffices to show that each SN is closed and has a dense complement
in S. For then each S^ is nowhere dense in S and Theorem 8 follows*
from the Baire Category Theorem.

Let {/&} be a sequence of functions in S& converging uniformly to
a function / . It is clear that fe S, and it follows from [2; Theorem
2] that FN{fk) —* FN{f). Since FN{fk) is convex on [0, α] by hypothesis,,
and the limit of a sequence of convex functions is convex, the function
FN{f) is also convex on [0, a]. Thus feS^- and S& is closed.

Now let fe S and let ε > 0. Choose c < α so that [f(c)/c]x < e
for all x, 0 ̂  x ^ c. Let α = f(c)/c. Now choose δ so that the
function f{a, 3: x) satisfies the conditions of Lemma 8. Define a
function /• by

f f(a, Six) if 0 < x < cf*(x\ — j v * / _ —
(f(x) if c ̂  a? ̂  α .

It is clear that supo^«β l/*0*0 - /(&) I < e and it follows from
Lemma 8 that F^if*) is not convex on [0, c], and α fortiori, f* is not
in SN. Thus the complement of S& is dense. ,

In view of Theorem 6, Theorem 8 can be restated as follows:

COROLLARY. There exist a continuous, nonnegative, starshaped,
function f with the property that no mean FN{f) is convex on any
interval [0, ε].
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