FUNCTIONS WITH CONVEX MEANS

T. K. BoeHME AND A. M. BRUCKNER

1. Introduction. Let f be Lebesgue summable on [0, a], & > 0.

z

The function F) defined on [0, a] by Fy(x) = l/xg F@dt, F0) = £(0)
is called the mean of the function f. Inductively,o we may define the
Nth mean of f on [0,a] by Fuy(x) = l/erN_l(t)dt, F(0) = £(0),
provided, of course, that F'y_, is summable 0101 [0, @]. Some questions
involving the mean of certain classes of functions have been examined
in Beckenbach [1] and Bruckner and Ostrow [2].

The primary purpose of this paper is to consider the problem of
determining when a function f has its Nth mean convex for N suf-
ficiently large. To develop the necessary machinery, we devote §2 to
obtaining some properties of the means which we shall need in the
sequel, and we devote §3 to obtaining representations for functions f
possessing means of all orders. In particular, Theorem 3 shows how a
wide clags of functions f admit representations as sums of infinite series
whose Nth term involves the Nth mean of f. Then in § 4 we examine
the question posed at the beginning of this paragraph. (Lemma 6
together with Theorem 5 yields a condition which is necessary and sufficient
for a sufficiently well behaved function to have its Nth mean convex. We
then use this theorem to obtain two sufficient conditions for a star-
shaped funection to have its Nth mean convex for N sufficiently large.
This is done in Theorems 6 and 7. Finally, in Theorem 8, we use the
Baire Category Theorem to show that not every continuous starshaped
function has one of its means convex.

2. Preliminaries. We begin with some remarks and simple
observations. In the sequel, we shall denote the Nth mean of f by
Fy(f:x). As circumstances warrant, this notation will be shortened
to Fiy(f), Fy(x), or simply Fl.

The fact that f is summable does not insure that means of all
orders exist. Thus, the mean of the function f given by f(z) =
2 Y(log )% £(0) = 0 is Fyx) = —z'(log )™, F}(0) = 0, but F; is not
summable on any neighborhood of the origin.

DEFINITION. The function f is in the class M(a) provided f
possesses means of all orders on [0, a].
It is easily seen from Lemma 1 below that f € M(a) if the functions
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Sf(®)(log t)¥ are summable for all N=1,2,38, -,

LEMMA 1. Let fe M(a). Then the following representations for
Fyu(f:x) are valid for € >0 and N=1,2,8, «-+:

. _ 1 z 2L N —1
(1) Fylf:2) = mgof ) [l°g (;)] du
(2) PS5 9) = {5 ) rlog .

Proof. Equation (1) is obtained by interchanging the order of
integration on the N times iterated integral. Equation (2) is then
obtained from (1) by the change of variable v = au.

Now write ky(u) = [(—1)* /(N — D!Jdogu)™*, N =1,2,8, «--.
Then equation (2) becomes

(3) Folf o) = | f@wlywdu .

The following lemma shows that k, is an approximation to the Dirac
0 function.

LEMMA 2. The kernel ky(u) has the following properties:
(i) kN(u’)gO N=1,2,3,"'
(ii) SlkN(u)du -1 N=1,23, -

0

(iii) limy_.ky(uw) =0. The convergence is uniform on every
wnterval [e, 1], > 0.
(iv) ky(u) is monincreasing on (0, 1) for each N.

Proof. Parts (i), (iii) and (iv) follow from inspection of the kernel
ky, and part (ii) can be obtained by setting f =1 in (8).

THEOREM 1. Let fe M(a). If f(0%) ewists and s finite, then the
sequence {Fy(f : )} converges uniformly to f(0%) on [0, a].

Proof. Let € > 0. Choose ¢ > 0 so that | f(x) — f(07)| < ¢ when
0 <2 =<0. Noting Lemma 2, we have

| Faf@) — £09)| = | [ Flaw) — £09)| kyu)du
= ol ku(w)du + k0| | f@w) — £(09)| du

S ¢+ ky0)[ | Flaw) — £0) | du.
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Since limy.. kx(0) = 0 and the last integral is bounded (as a function
of x), we infer that for N sufficiently large,

| Fy(x) — f(0%)| < 2 for all z€[0, a] .

As ¢ was arbitrary, the theorem follows.

It is easy to see from the definition of the means that if fe M(a),
then F,(f) is differentiable on (0, a] for N > 1 and F\(f) is differ-
entiable a.e. on (0, ¢]. Theorem 2 considers the differentiability of F'y
at the origin,

THEOREM 2. Let fe M(a). If f is differentiable at the origin
then so too is Fyu(f) for N=1,2,8, -+, and Fx(f:0) = 277f'(0).
Furthermore, for N > 1, Fy(f) is continuous, and if Fi(f) is differ-
entiable in a neighborhood of the origin, then FY(f) ts continuous at
the origin.

Proof. We prove the theorem for N = 1. The general result
follows by induction and by observing that for N > 1, Fiy(f) is differ-
entiable on (0, a].

We have
Fix) — F\(0) _ Fy(x) — f(0)
* x

1 (T .f(w) — f(0)
= o [T fuu

= L{1r© + oludu
z?

_f , 1¢(* (V)

=12+ = Soo(u)du = + o(1)

as x— 0. This proves that 2F7(0) = f'(0).

Now, if F, is differentiable on a neighborhoocd U of the origin, then
Fi(@) = [f(@)/2] — [Fi@)/x] = {{[f(x) — f(0))/2} — {[Fi(x) — Fy(0)]/z} on
U. Since fand F are assumed differentiable at the origin, lim,_, F}(x) =
f'(0) — Fi(0) = Fy(0).

3. Representation theorems. In this section we show how a
funetion fe M(a) for which f(0*) exists can be represented as the sum
of an infinite series involving its means.

Let fe M(a) and let' « be a point at which f is the derivative of

its integral. Then from the equation Fi(x) = l/a:S f(t)dt we obtain
0

f@)/x = F{(x) + [Fy(x)/x]. Inductively we obtain the finite represen-
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tation

(4) f@) _ & Fiy + T
X n=1 €

which is valid for any = at which f is the derivative of its integral.
In particular, (4) is valid at every Lebesgue point of f.

THEOREM 3. Let fe M(a). If f(0%) 48 finite then
f@®) — f(0%) _ i Fl(x)
x n=1

a.e. on any interval [¢, a], 0 < e = a. In particular, the convergence
18 uniform on the set of points in [e, a] at which f is the derivative
of its integral.

Proof., By noting (4) we see that it suffices to show that
limy_. [Fiy(f: 2) — £(07)]/2z = 0, uniformly on [¢, a]. Since Fy(f:2x) —
J(O") = Fu(f — f(0%) : x) is the mean of a function which has zero for
the limiting value at the origin, it tends uniformly to zero on [e, a]
by Theorem 1.

LemMA 8. Let f£(07) = 0. If f(x)/x is summable on [0, a], then

(5) So——ll(i——@-du— (S f(u)du x) Jor 0<z=a.

0

Proof. We have

S’_fizv_(_fi_’«‘ldu 1 S F(ow)k y(w)du dw
0 wu v

-,
_ SO[SO S dv]k (w)du
:F(Sof(u)du w> for 0<2=a.

The first and third equalities follow from (8) and the interchange of
order of integration in the second equality is justified by the sum-
mability of f(x)/x.

THEOREM 4. If f(0%) is finite and [f(x) — f(0H)]/x s summable
on [0, a], then

Sz fﬂ%ﬂ_@_du = 5; (FN(CU) — Fy(0%) .



FUNCTIONS WITH CONVEX MEANS 1141
T he convergence is uniform on [0, a].

Proof. Without loss of generality, assume f(0*) = 0. Using (4)
and Lemma 3, we have

Sz_f'(y_)'d“ = Sx S FUSw)du + SZMW

0 U 0 n=1 0 A

=§Fn(f:m)+FN(S:f%b)—du:x> for 0ss=<a.

We see from Theorem 1 that limy,.... FN<Sx[ f)/uldu : x) = 0, uniformly
0
on [0, @] and Theorem 4 follows.

4. Convexity of the means. We now turn to the problem of deter-
mining when a function f has convex means Fj(f) for sufficiently large
N. Theorem 5 together with Lemma 6 gives a necessary and sufficient
condition for the Nth mean F'y(f) to be convex. This condition is in terms
of a kernel integral which is not practical to use for specific functions.
We use this condition to obtain two sufficient conditions in Theorems
6 and 7. These theorems state that a starshaped function f (that is,
one for which the function [f(x) — f(0)]/x is increasing) has one of its
means convex provided f(x) behaves sufficiently well for small z.

To motivate these results, we first observe that it was shown in
[2] that any function f for which F\(f) is convex, must be starshaped.
It is easy to verify that the converse is not valid. However, if f is
starshaped, then it follows immediately from Theorem 4 that >, F.(f: %)
is convex. .Since the operation of taking a mean is a “smoothing”
operation, this suggests that Fy(f) is convex for N sufficiently large.
This is false as Theorem 8 shows, but is true, as stated before, if f
is sufficiently well behaved for small x. We note in passing that the
condition of starshapedness cannot be entirely removed from the
hypothesis of Theorems 6 and 7. Thus, the function which is equal
to z on [0,1] and one on [1, ) satisfies the hypotheses of these
theorems (except for starshapedness), but all of its means are concave,
To simplify some of the calculations, we shall henceforth assume that
all functions vanish at the origin.

It was shown in [2] that the means of a convex function are
convex, and the means of a continuous starshaped function are star-
shaped. Lemma 4 below does not require f to be continuous.

LEMMA 4. If f is convex (starshaped) on [0, a], then Fy(f) is
convex (starshaped) on [0,a], N=1,2,8, ---.

Proof. A function g is convex on [0,a] if and only if
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gar+ (1l —a)y) =agx) + (1 — a)g(y) foralla, 0 £ a <1 and all  and
¥ in [0, a]. If f satisfies this inequality, then equation (8) shows Fy(f)
does also.
Now let f be starshaped on [0, a]. Then f(x)/x is an increasing
function of z, so that | [f(u)/u]du is convex. From Lemma 3, we
@ 0 @
have So[FN(‘f rw)/uldu = FN(S [f(w)/u]du : x) The right side of this
0
equality is the Nth mean of a convex function, hence convex. Thus
the left side is also convex, so that Fy(f: )/ must be increasing, so
that Fu(f:w) is starshaped.
The following lemma was proved in [2].

LEMMA 5. The function Fy(f) is starshaped on [0, a] ©f and only
if 2Fy(x) < Fy_(x) on [0,a]l. It is convex on [0, a] &f and only if
2F(x) = Fy_(x)on [0, a]. (If N = 1, we must replace these derivatives
by lower derivatives at points where the derivative fails to exist).

Since Fj(x) = [Fy_(x) — Fy(x)]/2, the condition for convexity can
be written in the form

2[Fy (%) — Fy(®)] = Fy_y(x) — Fy(2), t=rx=a
or

(5) Qu(r) = 2Fy(x) — 3Fy_(¥) + Fyo() 20, O=2=a.

LEMMA 6. If N =3, then Fj is convex on [0, a] &f and only if
for all xel0, a]

(6) Qo) = [ e Piwduz0 Nz 9

where

2(ogu)* __ , 8(logw)

N—D)(N—2 " N-2 & L

Py(u) =

Proof. Utilizing the integral representation (8) to express (5)
yields (6).

We are especially interested in the case where f is starshaped on
[0, a] and f is convex on [0,¢],e < a. Thus we need the following
theorem.

THEOREM 5. If f(x) = 2g(x) on [e, a] where g is absolutely con-
tinuous, and if f and f' are absolutely continuous on [0, €], then for
Nz=3
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(7) Qo) = & F@uyrydu + | o @wsy(w)dn

where 0 1s any number such that 0 < 6A < ¢ and
ry(w) = wky(u) — ouky(0)

and

s() = u*kN_l(u)[l n %3;1‘—1] :

Proof. We will write equation (6) in two parts as Qy(x) =

8
S + S: = I, + I, where I, and I, are the integrals from [0, 6] and [J, 1]

[1]
respectively.

Two integrations by parts gives
8 S(u
1, = £@)| ewms) Pawidu — af (@0) | | Tew-s() Pau)itdu
) ut
+ 2] 7ren) (| ew-s@ Prterdedt )au .
0 0Jo
Using the fact that the second derivative of w’k,(u) is
(Why(w))" = Qukyu) — uky_(w)) = ky_(u)Py(u)
we have

I = f(%0)0[2Ky(0) — ky-1(0)] — 20°f"(€0)k(0)
-+ ngzf "(xw)uwk y(w)du .

Using the fact that S:tkN_g(t)PN(t)dt — w¥(ley(w) — Foys(w)) (in parti-
cular, this is zero when v = 1, N = 2) integration by parts shows

I, = ag(ew)| thy- ()P0t |, — o*| o' @uullg(u) — oy-o()]du
= —F@lIn(®) — TegiO)] + o g @wllen- ) — Renw)ldu .
Thus

Qu@) = I + I, = [f (@) — (20)f"(¢0)]0k +(3)

(8) + x’S: I (xu)u’k y(u)du + nglg’(xu)u"[klv(u) — ky_(u)]du .

Since f(0) = 0 we can use the expression

_sz:f"uu)udu = - S:af"(u)udu = —f(0) + £(@d) — (#3)f"(xd)
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to rewrite the first term on the right in equation (8); thus yielding
equation (7).

In order to utilize Theorem 5 we need to know some of the prop-
erties of the kernel functions s, and ry. These are given in the
following lemma.

LEMMA 7. The kernel s, has the properties:
(i) sy(w) <0 ue (0, e~ ")
sy(u) >0 u € (e=-1 1)

(ii) SNYSN(u)du —2 N=34 -
0

(iif) 3NS:
The kernel ry has the following properties on [0,0] for sufficiently
large N:

(iv) there is exactly ome point, 6, such that 0 < dy < 6 and
ry(0y) =0. We have 6y — 0 as N— o,

(v) 7y has exactly two inflection points on [0, 6]. If they occur
at u,y and Uy y, 0 < Uy < Ugy < 6 then U,y — 0 as N — oo,

(vi) ry(@) = ry@)(w — 3) on [u,,y, d].

(vii) If ming,s,;75(w) = —é&y, then ey = o(| r3(0) ) a8 N— .

— (N1
sy(u)du — 0 as N— oo,

Proof. (i) Is easily established by inspecting sy.

(ii) The integral from 0 to 1 of sy is just Fly_,(x*:1) — Fy(x*: 1) =
g- -1 _ g-§¥ —_ 9.8-¥,

(iii) It is clear that

|sy(u) | = why(u)

and since w%'ky.,(4) is monotone increasing on [0,e "] we have
3 | gpi(u) | < 8¥+e " N¥/N1, By Stirling’s formula the integral in
(iii) is 0((8e™»* 1) = o(1).

(iv) 7y is negative near zero and positive near 6. Thus, there
is at least one zero of 7, between zero and 6. We will utilize property
(v) to complete (iv). Since there are exactly two inflection points on
[0, 6], and 7y is concave up near J, there is at most one zero, é,, and
this lies to the left of U, y. Thus 6,— 0.

(v) 7ryw) = ky—y(u)Py(u) and ky_o(u) > 0 on (0,1). P, has ex-
actly two zeros u,y and %,y on (0,1). If N is sufficiently large these
lie on [0, 6]. As N — oo, %, y— 0.

(vi) 7y is concave upwards on [u,y, 6] and r4(6) = 0.

(vii) Since —0ky(0) = uky(u) — 0kx(0) <0 on [0,6y], we have
—0y0ky(u) = ry(u) = 0 on that interval. Thus ey < 0,0ky(8). Now

r5(0) = 0(ky(0) — ky-1(9)) = —0ky~(®)[1 + (1/N — 1) log J],
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so that |74(0)| = (0/2)ky—(0) when N is sufficiently large; thus ¢y <

[20 log (1/0)/(N — 1)]| r%(9)| which completes the proof of the lemma.

ke y (%)

0k (0)

0 0 1

THEOREM 6. Let f satisfy the continuity and differentiability
conditions of Theorem 5. If f is starshaped on [0, a] and convexr on
[0, €] then Fy is convex on [0, a] for sufficiently large N.

Proof. We will show that Qy(x) is nonnegative on [0, a] for suf-
ficiently large N. Since ¢’(zu) = 0 a.e. for w € [0, 1], x € [0, a], it follows
from property (i) of Lemma 7 that the second integral on the right in
(7) is nonnegative for sufficiently large N. We will show that there
is an N such that

Ty(@) = | f@uyrawdu = 0

for all z € e, a] by using the fact that f”(xu) =0 for we[0, ] and
x€[0,a]. We need only consider the case where f” vanishes on no
neighborhood [0, €'], since otherwise by providing that da < &’ we have
Jr» = 0 and are done. If /" vanishes on no neighborhood of the origin,
using the notation of Lemma 7, we have

8
L2

To0) 2 15O e — du — o] " @

and since 75(0) < 0,

(9) In@) > Ss I (@)@ — u)du — ° Sast "(w)dw .

— &
|7%@) | — Juay @ [ry(9)] Jo

E2) ad
since So Nf "(w)du = So Nf "(w)ydu — 0 as N-— co (uniformly in « on
[0, a]), property (vii) of Lemma 7 shows that the last term on the right
in (9) is o(1) (uniformly in 2 on [¢, a]). But, the continuous functions
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K, (@) = Ss Fa@u)(® — wydu— S:f”(xu)(b‘ — wdu

uniformly on [¢, a] as N— o, and since f” vanishes on no neighbor-
hood of the origin the continuous function

K@) = S:f”(am)(é — wdu

is bounded away from zero on the compact interval [e, a]. It follows
that past some sufficiently large N the functions K,(x) are uniformly
bounded away from zero and thus the J,(x) are strictly positive on
[e, al.

This shows Qy(x) >0 on [¢, a] for N sufficiently large. Since
Qx(x) = 0 on [0, €] as a result of the convexity of f on [0, ¢], it follows
that Qy(x) = 0 on [0, ] for sufficiently large N.

COROLLARY. Let f be a function defined on [0, al. If thereisa
positive integer k such that F\(f) satisfies the conditions of Theorem
6, then Fy(f) is convex on [0, a] for sufficiently large N. In par-
ticular, if f ts superadditive on [0, a] and satisfies the continuity
and differentiability conditions of Theorem 5, then the conclusion
JSollows. :

Proof. The first statement is obvious, The second follows by
noting that if f is superadditive, then F\(f) is starshaped [2].

We are now ready to prove a theorem which shows that for a
wide class of starshaped functions, the means are eventually convex.

THEOREM 7. Let f be starshaped on [0, a], f(0) = 0. Let g(x) =
S @)z, 9g(0) = f7(0). If g vs absolutely continuous on [0,a] and <f
there exists a nondecreasing function p and a positive constant o« such
that ap(x) < g'(x) < p(x) for all x in [0, €], then Fy(f) is convex on
[0, a] for sufficiently large N.

Proof. We take 0 = 0 in equation (7). Then

87 1Qu1(s) = 27| o' Wy (W

= w’[ap(xe‘" )Sl_NsNH(u)du — p(xe™r) S:‘NSNH(u)du]
= o’p(re~")[2a + o(1)]

as N — o by properties (ii) and (iii) of Lemma 7. Thus Q,(x) = 0 on
[0, €] for sufficiently large N. By Theorem 6 F,(f) is convex on [0, a]
for sufficiently large N.
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We note that if the function g of Theorem 7 is differentiable,
then ¢ must also be absolutely continuous. This follows from the fact
that if f is starshaped, g is increasing, and any differentiable monotonic
function must be absolutely continuous.

COROLLARY. Let f be starshaped on [0, a], f(0) = 0, and let g be
defined as in Theorem 6. If g is absolutely continuous and

either (1) f is a polynomial
or (2) ¢'(0)>0

then Fy(f) ts convex for sufficiently large N.

The conditions of Theorem 7 are not necessary for Fy(f) to be
convex for sufficiently large N.

ExAmMPLE. Let f(x) = 2* + xr sin (1/w)du, f(0) = 0. Then g(x) =
z 0
x + S sin (1/u)du and ¢'(x) = 1 + sin (1/x). It is clear that there exist
0

no p and « satisfying the conditions of Theorem 7. However, equation
(7) (with ¢ = 0) gives

3"Qy(2) = x’[S:sN(u)du + S: sin (-%)sN(u)du]
= x”[2 + SNEN(;% sin (-Z—)dv] .

1

From the Riemann-Lebesgue lemma it is easy to see that for fixed N,
there is a € > 0 such that when 0 < 2 < ¢ the last integral above is
less than 2 in absolute value and thus Qy(x) = 0 on [0, ¢]. It follows
then from Theorem 6 that for any a > 0 there is an N for which
Fy(f) is convex on [0, a].

We now show that not every starshaped continuous function which
vanishes at the origin must have its means Fy(f) be convex for N
sufficiently large. We first prove a lemma.

LemMmA 8. Let a and 6 be positive numbers and let ¢ > 20.
Define a function f(a, o :x) by

0 0<2x=90
fla, d:2) = {2a(x — 0) 0<x=20
ax 2W<r=c.

For every positive integer N and every a > 0, there exists 6 > 0
such that Fy(f(a, 0 : z)) is not convex on [0, c].
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Proof. Let g(a,d:2) = f(a,d:x)/x. The function g(a,d:2) is
absolutely continuous on [0, ¢c] and differentiable except at 2 = ¢ and
x = 20. We have

0 0=2<9o
g'(a, d:x).= 4 2000/x* 0< <20
0 W<r=sec.

Now choose é so that 20c < e¥. Since the function sy, is negative
1

on (0, e¥), we have, Sg'(a, 0:cu)sy(w)du < 0. It now follows from
0

Theorem 5, that F,(f(«, d:)) is not convex on [0, c].

THEOREM 8. There is a continuous starshaped function defined
on [0, a] such that none of its means is convex on [0, al.

Proof. Let S be the class of functions which are continuous, non-
negative, and starshaped on [0, a] and vanish at the origin. This class
may be considered as a subspace of C[0, a]. Since S is closed in C[0, a],
S is a complete metric space. For each positive integer N, let S, de-
note that class of functions in S whose Nth means are convex. It
suffices to show that each S, is closed and has a dense complement
in S. For then each S, is nowhere dense in S and Theorem 8 follows.
from the Baire Category Theorem.

Let {f.} be a sequence of functions in S converging uniformly to
a function f. It is clear that fe S, and it follows from [2; Theorem
2] that Fy(fi) — Fyx(f). Since Fy(f;) is convex on [0, a] by hypothesis,
and the limit of a sequence of convex functions is convex, the function
Fy(f) is also convex on [0,a]. Thus fe Sy and Sy is closed.

Now let feS and let ¢ > 0. Choose ¢ < a so that [f(c)/c]x <&
for all ¢, 0<2=<e¢. Let a=flc)Je. Now choose & so that the
function f(a, d:x) satisfies the conditions of Lemma 8. Define a
function f* by

fla, d:x) if 0sz=c
f(®) if esrx=a.

fr(@) =

It is clear that sup,<i<. |f*(@) — f(x)| < e and it follows from
Lemma 8 that F(f*) is not convex on [0, ¢], and a fortior:, f* is not
in Sy;. Thus the complement of Sy is dense.

In view of Theorem 6, Theorem 8 can be restated as follows:

COROLLARY. There exist a continuous, monnegative, starshaped.
Sfunction f with the property that no mean Fy(f) is convex on any
interval [0, €].
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