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COLLINEATION GROUPS
OF SEMI-TRANSLATION PLANES

T. G. OSTROM

This paper consists in an investigation of the collineations
of a class of planes constructed by the author. The construction
consists of replacing the lines of a net embedded in a given
plane by subplanes of the same net.

For the case in question, the given plane is the dual of
a translation plane. The full collineation group of the new
plane is isomorphic to a subgroup of the collineation group
of the original plane. The main point of the argument is to
show that the new planes admit no collineations displacing
the line at infinity.

I. In [2], the author introduced a new class of affine planes. These
new planes were obtained by a construction which consists of starting
with a plane which is the dual of a translation plane and modifying
some of the lines. By the very process of construction, a part of the
collineation group of the original plane is carried over to the new
plane.

However, the full collineation group for these new planes has not
been previously determined; in particular, it has not been known
whether there are any collineations displacing the line at infinity. In
this paper, we show that (with mild restrictions on the nature of the
original plane) the full collineation group on each new plane is precisely
the group "inherited" from the original plane.

II* Preliminary definitions and summary of previous results*
We shall be using Hall's ternary [4] and certain slight modifications
of the ternary as coordinate systems for planes. The point at infinity
on the line y = xm will be denoted by (m); the point at infinity on
x = 0 will be denoted by (°°).

In any case where the coordinate system contains a subfield % it
should be understood that small Greek letters (with the exception of
p and σ) denote elements of %.

For any affine plane 77 and any set @ of parallel classes, the
system consisting of the points of 77 and lines belonging to the parallel
classes in @ will be called a net N embedded in 77. If (m) is the
point at infinity corresponding to some parallel class in JV, we shall
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find it convenient to speak of (m) as "belonging to N."
A quasifield (Veblen-Wedderburn system) will be said to be a left
quasifield if the left distributive law, a(b + c) — ab + ac, holds.

Let % be a coordinate system with associative and commutative
addition. If % contains a subfield $ such that

( 1 ) a(a + β) = aa + aβ

( 2 ) (aa)β=a(aβ)

( 3 ) (a + b)a = aa + ba ,

for all a, b m % and all α, /S in %, we shall say that % is a right
vector space over %.

If lines whose slopes are in g can be represented by equations
of the type y = xa + 6, we shall say that X is linear with respect to

Now let S be a left quasifield of order q2 (q > 4). Suppose that
£ is a right vector space over a subfield f$ of order q. Let /7 be the
affine plane coordinatised in the usual sense by %. (Note: The line
of slope m through the origin is written y — xm rather than with m
on the left.)

We can then define another plane Π [2] whose points are
identical with the points of 77. The lines of Π are of two kinds:

( 1 ) Lines of Π which have finite slopes not in g

( 2 ) Sets of points (x, y) such that x — aa + c, y = aβ + d,

where a Φ 0, c, d are fixed elements of S while a and β vary over

%.
Now the lines of type (2) may be identified with subplanes (of

order q) of Π. If a permutation σ on the points of Π induces a
collineation of either Π or Π which carries lines of type (1) into lines
of type (1), then σ induces collineations of both planes. If σ is a
translation (elation with axis LM) of either plane, then σ is a transla-
tion of both planes [3].

Now let ί be a fixed element of % which is not in %. Each
element of % can be written uniquely in the form ta + β. The lines
of Π can be written in a more convenient form if each point is
assigned new coordinates as follows:

If (x, y) = (ί& + f2, tηt + %), let

(x, y) = (*& + ft, ίfa + ft).

Define a new operation * such that

(tξ1 + ft)*(ίλi + λ2) = tξ2 + ft is equivalent to

= tfxλ, + ftλ2 ,
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where λ2 Φ 0 and \λ{tμλ + μ2) = t + λ2.
See reference [3].

Then the lines of 77 can be represented by equations of the fol-
lowing forms:

Type ( 1 ) : y = (x — a)*m + β, m $ g
Type ( 2 ): y = xδ + b or x = c.

Let /70 denote the affine subplane of 77 which is coordinatised by %
in Z; let 770 be the affine subplane of 77 which is coordinatised by g in
T. Then 770 is the set of points for which x — 0; 770 is the set of
points for which x — 0.

The plane 77 admits all translations of the form (x, y) —> (x, y +
b). The points of Π0(x — 0) are in a single transitive class under this
group of translations—which also acts as a group of translations on
77. There will be further translations if and only if there is some
element c such that (x + c)m = xm + cm for all x and all m. If
there are no further translations, 77 is what we call a strict semi-
translation plane; we shall say that T is a strict left quasifield.

IΓL The collineation group* It is well known that a net can
be coordinatised in much the same fashion as a plane. If the net is
embedded in a plane, a coordinate system for the plane induces a
coordinate system for the net, provided the lines x = 0, y — 0 and
y — x all belong to the net. Conversely, any coordinate system for
the net can be extended to form a coordinate system for the whole
plane.

LEMMA 1. Let N be a net with q + 1 parallel classes. Let N
be coordinatised by a system S, let F be the subset of © such that
xa is defined for all x in (£, all a in %. Suppose that

( 1 ) Addition in (£ is associative.
( 2 ) F is a field of order q ivith respect to addition and

multiplication in (£.
( 3 ) The additive group in & is a right vector space over F.
( 4 ) (£ is linear.

Then N can be embedded in a Desarguesian plane.

Proof. The additive group is isomorphic to the additive group of
a field $ which is a quadratic extension of %. For instance, if q is
odd, multiplication in & may be defined as follows

(ifi + ξ2) o (ίλi + λ2) = ifoλ, + ξ2λi) + (δξ1X1 + f2λ2) ,

where δ is a fixed nonsquare element of % and ί is a fixed element
not in %. Then the net N will be embedded in the Desarguesian plane
coordinatised by ί£.
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LEMMA 2. Let % be a left quasifield coordinatising a plane Π
of order q2. Suppose that (1) % is a right vector space over a
subfield % of order q and (2) X is linear with respect to %. Let X'
be any other coordinate system for Π subject to the following condi-
tion (a). The point (oo) is the same for both % and X\ (b) X' is an
extension of a coordinate system for the net N consisting of those
parallel classes whose slopes in X are infinite or belong to %.

Then Xf is also a left quasifield satisfying conditions (1) and (2).

Proof. The plane Π is a dual translation plane with special point
(oo). This implies that X' is a left quasifield.

It follows from Lemma 1 that any coordinate system for N must
have properties (1) and (2). These properties will carry over to X'.

We now return to the construction discussed in part II. It is to
be understood that X is a left quasifield of order q2 which is a right
vector space over a subfield of order q, that T is linear with respect
to $, and that Π is the new plane introduced in part II.

Since we shall ultimately be concerned with collineations which
might displace the line at infinity, we shall want to deal with the
protective version of Π. We modify our previous notation so that (m)
denotes the point at infinity on y = x*m.

THEOREM 1, If X is a strict left quasifield, then the affine
collineations of Π are precisely those which it shares with Π.

Proof. For each a in %, there are exactly q translations of ZΓ
with center (a). Likewise, there are q translations with center (oo).
If X is a strict left quasifield, so that Π and Π admit exactly (f
translations, we have exhausted the translations in Π.

This implies that no affine collineations of Π carry a line of type
(1) into a line of type (2). Hence every affine collineation of Π is a
collineation of 77.

LEMMA 3. Suppose that Π admits a collineation which carries
the line at infinity into some line L. Then, without loss of
generality, we may take L to be x = 0.

Proof. By Lemma 2 of [3], L is some line of type 2, hence L
consists of the set of points of an affine subplane of Π. By Lemma
2, we can choose a new coordinate system X' for Π such that this
subplane is coordinatised by a field of order q and Xr is a left quasifield
satisfying (1) and (2) of Lemma 2. If X is initially chosen in this.
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way, L has the equation x = 0. Since the basic construction consists
of replacing lines by subplanes (see [3]), the change of coordinate
system for 77 does not alter the nature of 77.

LEMMA 4. If Π admits a collineatίon carrying L^ into x = 0,
multiplication in T takes the form

(ta1 + A) * (tαa + A) = t[h(alf a2) - βxa2 + aβ2]

+ [Aar1 h(aJ9 a2) + k(alf a2)

and

βL * (to2 + ft) - to2 βλ + & &

where h, k, and R are functions from % x g ^^° S

Proof. By Lemma 2 of [3], (<*>) is the center of q elations with
axis x — 0. These collineations act on Π in such a way as to leave
Πo pointwise fixed. Since x — 0 is fixed in 77, 770 is fixed (not
point wise) in 77. Thus we have a group of elations of 77 which is
transitive on the q points of ΠQΠL^ — (co).

There is a similar group of elations in 77 which has center (co),
axis x — 0, and is transitive on the points at infinity of 770 (excluding
the point at infinity of x ~ 0). These collineations carry over into 77,
appearing as collineations which leave 770 pointwise fixed. The col-
lineations leaving 770 pointwise fixed impose automorphisms of T which
fix each element of F. The elations of 77 with center (oo) and axis
x = 0 impose the "partial distributive law" α*(6 + a) = ab + αα α, b e £,
# € $ , on T. Lemma 4 then follows from Theorem 2 and 3 of [1],

LEMMA 5. Under the conditions of the previous Lemmas, X has
the property that ifb*a= — 1, then b * (α * m) = (— 1) * m for all

m in S.

Proof. The proof is essentially the same as the proof of Theorem
11 in [1].

LEMMA 6. Under the conditions of the previous lemmas, there
exist functions f and g such that h(au a2) = f(a^a2y k(alf a2) = g(ax)a2.

Proof. Given taλ (aτ Φ 0), let ta2 + β2 be determined so that
taλ * (ta2 + β2) = — 1. By Lemma 4, h(al9 a2) + aj32 = 0
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By Lemma 5, we have tar * (ta2y + β2y) = — 7, which is equivalent
to the pair of equations

h(au a{ί) + aβ{ί = 0

k(au a2j) = — 7.

Now, by Theorem 11 of [3], f is a right vector space over $. In
particular, (ta± + &) * β2 — taβ2 + / S ^ . From this, and our definition
of α2, we know that a2 Φ 0. We easily get k(au a2j) = &(#!, α2)7 for
each nonzero aλ and 7 in ί7, where α2 depends on alm Letting a2y =
a, we get fc^, a) — k(a19 a^a^a = gia^a. Moreover, /̂ (αfi, 0) = 0.
This establishes the part of our Lemma that pertains to k. A similar
argument works for h.

THEOREM 2. Under the hypotheses of Theorem 1 and the addi-
tional requirement that q > 4, Π admits no collineations displacing
Loo) the full collineation group of Π is the group of affine collinea-
tions which it shares with Π.

Proof. The relations between the multiplications in T and T is
reciprocal, i.e.

(tξi + Vι) (*λi. + λa) = tξ2 + 7]2 —

(^ 1 + ξ2) * (ί/ix + /*,) = tηx + V2 if λ, Φ 0 ,

where λx * ( ί ^ + /i2) = t + λ2 .

Let us assume that Π does admit a collineation displacing LM. We
shall show that we must have q ^ 4. Now let λ2 = 0, ξ1 Φ 0, λx ^ 0.
We have:

(if 1 + ft) (ίλj = ί

is equivalent to

(if 1 + f 2) * (ίλΓ1 - λΓ1 i2(λx, λΓ1)) = tft + η2,

which is in turn equivalent to the pair of equations (by Lemmas 4
and 6)

ft = /( f i )V - IΛΓ1 - fΛΓ 1 ^^, λΓ1)

% = f2IΓ1 /(f JλΓ 1 + g(ξJλΓ1 - fS fΓ1 λΓ1 - f2 λΓ1 i2(λ,, λΓ1).

Let i?(λi, λΓ1) = S^λj). Solving for f2 and η2y we get

(if 1 + ft) («O - *[/(f 1) --f 1 S(\) - ft λj

f JλΓ1 + /(f JftfΓ1 - ft
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By hypotheses, X is a left quasifield which is a right vector space
over g. Hence

y1) (tx)

Carrying out the multiplications in the above equation and separating
the components, we get the two equations

/(fi) ~ fi S(\ + μ) - Vi (λ + μ) = [/(fx) - ξ1 S(X) - ftλ]

[ f ( ) S

+ μ) - ^ ^ ( λ +

-1 + /(fO^fx"1 - y1 S(x) - η\ ξ-λ]
1 + /(fi) Viξl1 -

Eliminating /(&), we find that the terms involving S also drop "out
and we get

0(f i) (λ + ^)- 1 - g (f r) λ-1 + βr(ei)^-1.

Now if £(&) = 0, then (tξ,) (tx) = ί[/(f J - ξ.SiX,)]. But the solutionjof
any equation of the type (tζ) x = tβ is x = ξ^β, which is in g.

Since ίλ ί g, we have a contradiction. We conclude that gfa) Φ 0.
Hence we must have (λ + μY1 = X~λ + μ~λ for all λ, μ in % except in
the cases that λ, μ, or λ + μ is zero.

With μ = 1, this equation is equivalent to

λ2 + λ + 1 = 0, λ Φ 0, - 1 .

Hence % can contain at most 4 elements. Since we assumed q > 4,
the theorem is proved.
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