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FINITISTIC GLOBAL DIMENSION FOR RINGS

HoRACE MOCHIZUKI

The finitistic global dimensions [fPD(R), [FPD(R), and
IFID(R) are defined for a ring E. We obtain the following
results for R semiprimary with Jacobson radical N. C is
a simple left R-module and [.dimzC < «, and suppose
that [.dimz N*-!/N' < oo for ¢ =3. Then m = IfPD(R)=
IFPD(R) < (m+1). Theorem 2: Suppose that!.inj.dimzP =
l.inj. dimz R/IN? < o for every projective (R/N?-module P
and that [. inj. dimgz N©-'%N* < o for ¢ = 3. Then IFID(R) =
l.inj.dimz R < co. The method of proof uses a result of
Eilenberg and a result of Bass on direct limits of modules
together with the lemma: If 1/ is a left R-module such that
Ne1M =+ 0 and N*M = 0, then every simple direct summand
of N*1 is isomorphic to a direct summand of N*-!/NF¥,

1. We begin by discussing some further properties of perfect and
leftiperfect rings. The rest of the paper is devoted to giving sufficient
conditions for finiteness and equality of certain finitistic global dimensions
for a semi-primary ring.

Let R be a ring (with identity). By an R-module we shall always
mean a left unitary module over E. In ([7]) and ([10]), Eilenberg and
Nakayama define what they called minimal epimorphisms. Bass ([1])
altered this definition to call minimal epimorphisms projective covers.
Eilenberg ([7)] studied the dimension theory for modules having minimal
epimorphisms and said that a category of modules is perfect if every
member of the category has a projective cover. Thus Bass ([1]) called
a ring R for which every R-module has a projective cover a left perfect
ring. There are two special types of left perfect rings about which
we are particularly interested. One is the semi-primary ring R where
the Jacobson radical (J-radical) N is nilpotent and R/N is semi-simple
with minimum condition (semi-simple), and the other is a ring with
minimum condition on left ideals (left Artinian ring).

We define the following finitistic global dimensions for K, using
the definitions and notation of ([1]) and ([3]). [FPD(R) = supl.dim, M
for all R-modules of finite projective dimension, [fPD(R) = supl. dim, M
for all finitely generated (f.g.) R-modules of finite projective dimension,
IFWD(R) = sup w.l. dim, M for all R-modules of finite weak dimension,
IFID(R)=supl. inj. dim, M for all R-modules of finite injective dimension.

In § 2 we discuss some further properties of left perfect and perfect
rings.
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In §3 we give a partial answer to the following questions of
Rosenberg and Zelinsky.

(1) Does IfPD(R) = IFPD(R)?

(2) Is IfPD(R) finite?

We prove that if R is a semi-primary ring with J-radical N such that
Ni/N*** has finite projective dimension for 7 = 2, then m < [fPD(R) =
IFPD(R) < (m + 1) where m = sup {l. dim, C: C is a simple R-module
of finite projective dimension}.

In §4 we prove in a manner similar to §3 that if R is a left
Artinian ring with J-radical N such that N?/N**' has finite injective
dimension for % = 2 and R has finite self-injective dimension, then
IFID(R) = l.inj. dim, B. We also show that if K is a ring such that
the direct product of projectives is projective, if the J-radical N of R
has the property that N?/N¢*' has finite injective dimension for ¢ = 2,
and if R has finite self-injective dimension, then [FID(R) = [. inj. dim, R.
We conclude by giving examples for the above theorems.

This paper is essentially the first half of the author’s dissertation
at the University of Washington, Seattle, and was written during his
tenure as a National Science Foundation Cooperative Graduate Fellow.
The author wishes to express his gratitude to Professor James P.
Jans for his advice and encouragement during the preparation of the
dissertation.

2. Left perfect rings. Eilenberg ([7]) and Bass ([1]) introduced
the following concepts.

DEFINITION 2.1. A submodule B of an R-module A is called
superfluous if B+ C = A implies C = A whenever C is a submodule
of A. An R-homomorphism f: A— D is called minimal if Ker f is
superfluous in A. If A is projective and f is an epimorphism, then f
is called a minimal epimorphism. The ring R is called left perfect if
every R-module has a minimal epimorphism.

DEFINITION 2.2. An ideal N of a ring R is called left (right)
T-nilpotent if given any sequence {a;} of elements in N, we can find
an » such that a0, -+ a,=0 (a, -+ a,a, = 0).

Bass proved the following theorem.

THEOREM 2.3 ([1, Theorem P, p. 467]): Let R be a ring and N
its J-radical. Then the following are equivalent.

(1) N is left T-nilpotent and R/N is semi-simple.

(2) R 1s left perfect.
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(3) Every R-module has the same weak as projective dimension.

(4) A direct limit of R-modules of projective dimension <n has
projective dimenston =mn.

(5) R has mo tnfinite sets of orthogonal tdempotents, and every
nonzero right R-module has nonzero socle (sum of all stmple submodules
of the right R-module).

In [7] Eilenberg generalized the concept of semi-primary ring, and
generalized a number of theorems of M. Auslander. We state two of
them here in a slightly more restricted situation.

PROPOSITION 2.4 ([7, Theorem 11, p. 333]). Let R be a left perfect
ring with J-radical N. If A is an R-module, then the following are
equivalent.

(1) Ext3* (A4, R/N) =0 where E/N is considered as an R-module.

(2) Tor%, (R/N, A)=0 where we consider E/N as a right R-module.

(3) l.dimz A = n.

ProposITION 2.5 ([7, Theorem 12, p. 334]): Let R be a perfect
(i.e., left and right perfect) ring with J-radical N. Then the following
are equivalent.

(1) l.gl.dim R = n.

(2) 1.dim,C = w.l.dim, C < » for all simple R-modules C.

(3) l.dim, (R/N) = w.l.(R/N) = n where we consider R/N as an
R-module.

(4) 1.dimy N = w.l.dim, N < n.

(5) l.inj.dim,(R/N) < n where R/N is considered as an E-module.

(6) r.dimg(R/N) = w.r.dimg (R/N) = n where we treat E/N as
a right R-module.

REMARKS. From Proposition 2.4 it is clear that for a left perfect
ring R, !l. gl.dim R < w.r. dimz (R/N) < 7. dim, (B/N) < r. gl. dim R.
By interchanging the ! and the » in Proposition 2.5, we see that
l.gl.dim R = ».gl.dim R = gl. dim R for a perfect ring R.

The following proposition asserts that the simple modules of a right
perfect ring serve as test modules for determining injective dimensions
of modules.

ProrosITION 2.6. Let R be a right perfect ring with J-radical N.
If A is an R-module, then the following statements are equivalent.
(a) BExtyrt(C, A) = 0 for all simple R-modules C.
(b) Ext3™(R/N, A) = 0.
(¢) l.inj.dimz A < n.
Furthermore if #n =1, then (b) becomes Extz™ (R/N, A) = Ext%(N,A) =0.
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Proof. (a)< (b) and (c) = (a) are obvious. We shall show that
(@)=(c)

It is well known ([6]) that we can embed any R-module in an
injective R-module. Thus it is possible to form the exact R-sequence:

0— A do Qa @ Ql & e nt Qn—-l dn Qn 0

where Q;,0 < ¢ < (n — 1), are injective. Ext3™ (M, A) = Ext} (M, Q,)
for all B-modules M where we use the exact sequences

0 A Q, Imd, 0

and

0— Imd,— Q, —> Imd;,, — 0, 1=i=<@m-—1).

If we can show that @, is injective, then A would have injective
dimension =n.

It is well known ([3, Chapter I, Theorem 3.2, p. 8]) that @, is
injective if and only if for each left ideal L, each R-diagram

0—>IL-3.R

7| :
Q.

with j the embedding map can be embedded in a commutative diagram

fl /a/
Q.

By using Zorn’s Lemma (as in the proof of Theorem 3.2 in [3]), we
can show that there exists a left ideal L, of A containing L such that

0— L1,

fl /g{
Q.

(k the embedding map) is commutative and that f cannot be extended
to any left ideal of R properly containing L,. If L,= R, then we are
done. If L, R, then R/L,# 0. According to Theorem 2.3, R/L, has
nonzero socle S(R/L,) = S.

S = @ XC; is the direct sum of simple R-modules. It is well-known
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that Exth (@ 2C;, Q,) = II Ext}; (C,, Q,), which is the zero module.
There exists a left ideal L, of R containing L, such that L,/L,= S.
Ext% (S, @,) = 0 implies that we can extend f (and g¢,) to L,, contra-
dicting the maximality of L,. @, is therefore injective.

COROLLARY 2.7. If R is a right perfect ring with J-radical N,
then 1. gl.dim R = [. dim, B/N = r. gl. dim R.

Proof. Since [. gl. dim R is the supremum of injective dimensions
of all the R-modules and since [. gl. dim R = [. dim R, it follows from
Proposition 2.6 that [. gl. dim B = [. dim ;E. The second part is essentially
contained in a theorem proved by Eilenberg ([7, Theorem 12, p. 334]).

In [4] Chase proved some necessary and sufficient conditions that
direct products of projective modules be projective. A module A of a
ring R is called finitely related if there exists an exact sequence 0 —
K— F— A— 0 of R-modules where I is free and both F' and K are f.g.

PROPOSITION 2.8 ([4, Theorem 3.3, p. 467]). For any ring R the
following statements are equivalent.

(1) The direct product of any family of projective R-modules is
projective.

(2) R is left perfect and finitely generated right ideals of R are
finitely related.

Let R be a ring satisfying (1) and (2) in Proposition 2.8. Let
@D IR, (ac X) be a direct sum of copies of R as an R-module.
Considering the exact sequence

0— @2R, — IR, — (IIR,)/(@® 2 R.) — 0,

we note that (IIR,)/(@® 2R,) is the direct limit of projective R-modules
and is therefore projective. The sequence splits, and @ YR, is embedded
as a direct summand of IIR,.

PRroPOSITION 2.9: Let R be a ring satisfying (1) and (2) of Proposition
2.8. If P is projective, then [.inj.dim, P =< [.inj. dim; R.

Proof. If P is projective, then P is a direct summand of a direct
product IIR, copies of R. It then follows by an exercise in C and FE
([3, Chapter VI, Exercise 7, p. 123]) that l.inj. dim R.

COROLLARY 2.10. Let R be a ring as in Proposition 2.8. If
IFID(R) and l.inj.dim, R are both finite, then they are equal.

Proof. l.inj. dimgz P < I. inj. dim, R < IFID(R) = n where P is any
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projective R-module. Let A be an R-module such that [.inj.dim, 4 =
n. Considering an exact sequence 0 - K— P— A— 0 where P is
projective, we note that [.inj. dim, K < n. Thus we get part of the
exact sequence in Ext as follows:

Ext: (B, K) — Ext} (B, P) — Ext% (B, 4)— 0,

where B is an arbitrary R-module. But then Ext} (B, P) = 0 for an
R-module B such that Ext? (B, A) # 0. Hence 7 = l.inj.dim, P <
l.inj. dim, R < #.

COROLLARY 2.11. Let R be as in Proposition 2.8. IfIFID(R) =
l.inj. dim, R = 0, then R is left Noetherian, t.e., R is quasi-Frobenius
([9, Theorem 18, p. 11]).

Proof. According to theorem of Bass ([2, Theorem 1.1, p. 19]) R
is left Noetherian if and only if the direct sum of injective R-modules
is injective. Let {Q,: 1€ I} be a collection of injective R-modules. For
each 7€ I, we consider an exact sequence 0 — K, — P, — @, — 0 where
P, is projective and thus injective. Since l.inj. dim, K; is finite, K, is
injective, and the sequence splits. Thus @, is also projective, and
@D 2Q,(i€ I)is a projective R-module and hence an injective E-module.

3. Sufficient conditions that [fPD(R) = I[FPD(R) < <. In this
section we attempt to give relatively simple sufficient homological
conditions to answer questions (1) and (2) of Rosenberg and Zelinsky
(appearing in the introduction) in the affirmative. We have the following
theorem.

THEOREM 3.1. Let R be a semi-primary ring with J-radical N.
Ifl.dim,(N"™YN") < oo for r =3, then m = |fPD(R) = [FPD(R) <
(m + 1) where m = max {l.dim, C: C is a simple R-module of finite
projective dimension}.

Before we begin the proof of 3.1 we need a preliminary lemma.

LEMMA 3.2. Let R be a semi-primary ring with J-radical N
such that N+ 0. If M is an R-module such that N™*M = 0 and
N'™M = 0, then N™*M 1is the direct sum of simple R-modules which
appear as direct summands of N™/N'. Thus N M/N"™M, r =
(s — 1), is the direct sum of simple R-modules which appear as direct
summands of N™¢/N™ =+,

Proof. The second part follows easily from the first part by noting
that N™**(M/N™*'M) = 0 and N *(M/N"*M) # 0.
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We first observe that (N }/N"M = @ XC; (i€ I) is the direct sum
of simple R-modules C,. Let x€ M. Then the map f,: a—ax, a € N™/N",
is an R-homomorphism of N*™*/N" onto (N"}/N")x. Let C;, 1€ I, be one
of the direct summands of (N""'/N")M. If x,e€C;, then z, = Ja,z; (1 <
J = n) where a;€ N'/N" and x;€ M. Furthermore x, generates C,.

Let ¢: L = @I(N"'/N") (n copies) —» T = (N"'/Nx; (1 <7 < n)
be the R-epimorphism given by ¢ (Ja, (1 =75 =< n)) = Jax;, (1 < j < n).
Since L and T are both modules over the semi-simple ring R/N, L =
Kero @ T. C;is a direct summand of L. By a well-known theorem
([10, Chapter 1V, Theorem 2, p. 64]) C,; is isomorphic to a direct summand
of N™'/N".

Proof of Theorem 3.1. Let M be an R-module of finite projective
dimension. If NM = 0, then M is a direct sum of simple R-modules
of finite projective dimension. Thus M has projective dimension =m
([3, Chapter VI, Exercise 7, p. 123)].

Suppose then that NM = 0. We assert that [. dim, N'M < m for
1 =2. If N*°M =0, then there is nothing to prove. Hence assume
N°*M # 0. Let t be the integer such that N'M = 0 and N**M = 0.
We have the submodules N*7M,1 < j < (t — 2) to examine. We induce
on the integer 5. If 5 =1, the N*'M is the direct sum of simple
R-module of projective dimension < m by Lemma 3.2 and the hypotheses
of the theorem. [.dim,(N"'M) < m, as above. Assume that
l.dim, (N*"7*'M) = m where 1 <j = (f —2). (N*'M)/(N“"M) has
finite projective dimension < m, being the direct sum of simple R-modules
of projective dimension < m (Lemma 3.2 and the hypotheses of the
theorem). From the exact sequence in Ext in the first variable for
the exact sequence 0 — N9 "' M — NI M —(N*"M)/(N* M) — 0 we
see that I.dim, (N7 M) < m. We have therefore proved our assertion.
Since I. dimy (N*M) < m, from the exact sequence 0 — N’M — M —
M/N*M — 0 we conclude that [. dim, M/N*M < oo,

From the exact sequence 0 — N?— R— R/N*— 0 we notice in
particular that [. dim, N* < m and that [.dim, (BR/N?) < m + 1. Now,
R/N? as a ring is semi-primary with J-radical N/N?, and M/N*M is an
R/N*module. Thus M/N*M has a minimal epimorphism as an E/N?
module. Let 0— K— P— M/N*M— 0 be the minimal (R/N?*)-epimorphism
for M/N*M. Then I.dim,P < m + 1 (since P is a direct summand
of a direct sum of copies of R/N* as an R-module), and K & (N/N?P
(7, p. 330)). K=@2IC,(ac) is a direct sum of simple R-modules
C,, and [.dim, K < . Again applying an exercise in C and F (|3,
Chapter VI, Exercise 7, p. 123]), we see that I.dim,C, < o for all
a€ I. Therefore [. dim, K < m. Using the exact sequence in Ext for
the exact sequences 0 — K— P— M/N*M—0 and 0— N*M — M —
M/N*M — 0,o0m conclude that [.dim, M < [. dim, M/N*M < (m + 1).
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Lastly we assert that M/N*M is the direct limit of f.g. R-modules
of finite projective dimension. Let P= @3IP,(acl’) be a direct
decomposition of P into f.g. projective (R/N*-modules (each of projective
dimension < m + 1). This fact follows from a result of Eilenberg ([7,
Proposition 3, p. 330]). If 4 is an arbitrary finite subset of /" and if
J is any finite subset of I such that @ 2C.(acJ) S @ TP (x < 4), then
M/N*M is the direct limit of f.g. R-modules S(4,J) where 0—
B3C,(aecJ)— @ 2P, (xe 4)— S(4, J) — 0 is exact. Since the first two
both have finite projective dimension, so does S(4, J). From Theorem
2.3 it follows that [.dim, M < [. dimz (M/N*M) < lfPD(R). Since M
was arbitrary with finite projective dimension, we can write that m =<
lfPD(R) < IFPD(R) < (m + 1).

4. Sufficient conditions that [FID(R) < «. We state the main
theorem of this section.

THEOREM 4.1. Let R be a semi-primary ring with radical N such
that
(@) for any projective (R/N?*-module P,

l.inj. dim, P < l. inj. dim, B/N? < o .
b)) iof r =3, then l.inj. dim, (N"Y/N") < oo.

Then [.inj.dim, B < o, and IFID(R) = l. inj. dim R.

Proof. Let M be an R-module of finite injective dimension over
R. Then it follows, in a manner similar to the proof of Theorem 3.1,
that [. inj. dim, N*M = m where m = max {l. inj. dim; C: C is a simple
R-module of finite injective dimension}. From the exact sequence
0—-N?*—>R—R/N*—0 it is evident that [.inj.dim,N?=<m and
l.inj. dim, R < max (m, n) < oo.

Obviously, [l.inj. dim, (M/N°M) < co. M/N*M is an R/N’module
and therefore has a minimal R/N?-epimorphism 0 — K— P — M/N*— 0.
As in the proof of Theorem 3.2, K is the direct sum of simple R-
modules of finite injective dimension. K is thus a direct summand of
a direct product of simple R-modules of finite injective dimension, and
we have that [.inj.dim, K < m ([3, Chapter VI, Exercise 7, p. 123]).
From the exact sequence in Ext for the second variable applied to the exact.
sequence 0 — K— P— M/N*M — 0 we deduce that [. inj. dim,(M/N*M) <
max (m, n) and hence l. inj. dim, M < max (m, n).

IFID(R) =< max (m, n) < oo,
and by Corollary 2.10, {FID(R) = . inj. dim, R.
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We remark that a semi-primary ring R satisfies condition (a) of
Theorem 4.1 if R is a left Artinian ring with I.inj.dim, (R/N?) =
n < oo, or if RK/N*® satisfies (1) and (2) of Proposition 2.8 and
l.inj. dim, R/ N? = n < . In the first case we apply the well-known
fact ([2, Theorem 1.1, p. 19]) that the direct sum of modules of injective
dimension < » has injective dimension =< % for Noetherian rings. Thus
P a direct summand of a free R-module implies that the injective
dimension of P is less than or equal to the injective dimension of RE.
In the second case we use the remarks prior to Proposition 2.9 together
with an exercise in C and E ([3, Chapter VI, Exercise 7, p. 123]) to
find that free R-modules and therefore projective K-modules have
injective dimension less than or equal to the injective dimension of R.

5. Examples. In this section we give examples which satisfy
Theorems 3.1 and 4.1 respectively. The construction is essentially that
given by Chase in [5].

Let R’ and R"” be rings and X a left R’-, right R’’-bimodule.
We form the ring R consisting of matrices (a’, x, 0, 2”) where o’ € R’,
xe X, and o€ R”. Addition is componentwise and multiplication is
given by the equation

(ai, @1, 0, a')(az, @, 0, @) = (a1, 12, + @0y, 0, ai'ay’) .

Chase proved the following proposition.

ProposiTION 3.7 ([5, Lemma 4.1, p. 17]). Let R be as above, and
suppose further that R’ is semi-primary (respectively Artinian) with
radical N’ and R" is semi-simple (with minimum conditions). Then
R is semi-primary (respectively Artinian) with radical N consisting of
the matrices (¢/, z, 0, 0) where ¢’ € N’ and € X. Moreover gl. dim R =
max (gl. dim R’, 1 + [. dim; X).

If G is the finite group of order 2 and K is a field of characteristic
2, then K(G), the group algebra, is a quasi-Frobenius algebra with
nonzero radical N(G@) such that N(G)* =0 (|9, p. 7]). Eilenberg et al.
([8, Proposition 15, p. 94]) have shown that for each positive integer
m, there exists a semi-primary ring R, with radical N, such that
gl.dim R, = m and (INV,)* # 0. Let R' = K(G) @ R"” (ring direct sum).
The radical of R’ is N’ = N(G) + N,.. We can suppose that R, is a
finite dimensional algebra over K. Then R’ is a vector space over K.

(i) Let R =R, X =N’ and R” = K in Proposition 3.7. Then
the following facts hold.

(a) gl.dim R =![.dimy N = oo,

o) l.dim, N =l.dim, (N)Y = (m — 1) if j = 2.

(¢) [I.inj.dim,; R = max {l. inj. dimg R’, l. inj. dim, N'}
= l.inj. dimg N’ = oo,
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Thus we have an example of a semi-primary (Artinian) ring satisfying
the hypotheses of Theorem 3.1 but not those of Theorem 4.1.

(i) Suppose that (N')? = (N,)? = 0 and (N')?* = (N,)*"* = 0 where
g=2. Let R"=R', X=(N’)* and R"” = K in Proposition 3.7. Then
the following facts hold.

(a) gl.dim R = [.dimy N = oo,
(b) l.inj.dimgz R = l.inj., R’ = m.
(¢) l.inj.dim N7 = [. inj. dimg (N') = m.

This gives an example of an Artinian ring satisfying the hypotheses
of Theorem 4.1.
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