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FINITISTIC GLOBAL DIMENSION FOR RINGS

HORACE MOCHIZUKI

The finitistic global dimensions lfPD(R),lFPD(R), and
IFID(R) are defined for a ring R. We obtain the following
results for R semiprimary with Jacobson radical N. C is
a simple left j?-module and I. dimRC < oo, and suppose
that I. άimR W-'IN* < oo for ^ 3 . Then m ^ lfPD(R) =
IFPD(R) ^ (m+1). Theorem 2: Suppose that I. inj. dim* P ^
I. inj. dimR R/N2 < oo for every projective (jβ/iSΓ2)-module P
and that Z. inj. dim* N^N* < oo for i ^ 3. Then IFID(R) =
I. mj. dimRR < oo. The method of proof uses a result of
Eilenberg and a result of Bass on direct limits of modules
together with the lemma: If M is a left ϋJ-module such that
Nk~ιM Φ 0 and NkM= 0, then every simple direct summand
of N^1 is isomorphic to a direct summand of Nk~1/Nk.

1* We begin by discussing some further properties of perfect and
leftjperfect rings. The rest of the paper is devoted to giving sufficient
conditions for finiteness and equality of certain finitistic global dimensions
for a semi-primary ring.

Let R be a ring (with identity). By an .R-module we shall always
mean a left unitary module over R. In ([7]) and ([10]), Eilenberg and
Nakayama define what they called minimal epimorphisms. Bass ([1])
altered this definition to call minimal epimorphisms protective covers.
Eilenberg ([7)] studied the dimension theory for modules having minimal
epimorphisms and said that a category of modules is perfect if every
member of the category has a protective cover. Thus Bass ([1]) called
a ring R for which every iϋ-module has a protective cover a left perfect
ring. There are two special types of left perfect rings about which
we are particularly interested. One is the semi-primary ring R where
the Jacobson radical (/-radical) N is nilpotent and R/N is semi-simple
with minimum condition (semi-simple), and the other is a ring with
minimum condition on left ideals (left Artinian ring).

We define the following finitistic global dimensions for R, using
the definitions and notation of ([1]) and ([3]). IFPD(R) = sup I. dim^M
for all i?-modules of finite projective dimension, lfPD(R) = sup I. dimBM
for all finitely generated (f .g.) iϋ-modules of finite projective dimension,
IFWD(R) = sup w.l. dirnβ M for all ϋί-modules of finite weak dimension,
lFID(R) = swp I. inj. dim^Mfor all iϋ-modules of finite injective dimension.

In § 2 we discuss some further properties of left perfect and perfect
rings.
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In § 3 we give a partial answer to the following questions of
Rosenberg and Zelinsky.

(1) Does lfPD(R) = lFPD{R)el
(2) Is lfPD(R) finite?

We prove that if R is a semi-primary ring with J-radical N such that
N{/Ni+1 has finite protective dimension for i ^ 2, then m ^ lfPD(R) =
IFPD(R) 5g (m + 1) where m = sup {L dim^ C: C is a simple iϋ-module
of finite protective dimension}.

In § 4 we prove in a manner similar to § 3 that if R is a left
Artinian ring with J-radical N such that N*/Ni+1 has finite injective
dimension for i Ξ> 2 and 22 has finite self-injective dimension, then
IFID(R) — I. inj. dim^i?. We also show that if R is a ring such that
the direct product of projectives is protective, if the J-radical N of R
has the property that N^/N**1 has finite injective dimension for i ^ 2,
and if i? has finite self-injective dimension, then IFID(R) = I. inj. dim^i?.
We conclude by giving examples for the above theorems.

This paper is essentially the first half of the author's dissertation
at the University of Washington, Seattle, and was written during his
tenure as a National Science Foundation Cooperative Graduate Fellow.
The author wishes to express his gratitude to Professor James P.
Jans for his advice and encouragement during the preparation of the
dissertation.

2 Left perfect rings* Eilenberg ([7]) and Bass ([1]) introduced
the following concepts.

DEFINITION 2.1. A submodule B of an i?-module A is called
superfluous if B + C — A implies C — A whenever C is a submodule
of A. An i?-homomorphism /: A —> Z) is called minimal if Ker / is
superfluous in A. If A is projective and / is an epimorphism, then /
is called a minimal epimorphism. The ring R is called left perfect if
every iϋ-module has a minimal epimorphism.

DEFINITION 2.2. An ideal N of a ring R is called left (right)
T-nilpotent if given any sequence {αj of elements in N, we can find
an n such that αxα2 an = 0 (an α ^ = 0).

Bass proved the following theorem.

THEOREM 2.3 ([1, Theorem P, p. 467]): Let R be a ring and N
its J-radical. Then the following are equivalent.

(1) N is left T-nilpotent and R/N is semi-simple.
( 2 ) R is left perfect.



FINITISTIC GLOBAL DIMENSION FOR RINGS 251

( 3 ) Every R-module has the same weak as projective dimension.
(4) A direct limit of R-modules of projective dimension ^ n has

projective dimension ^n.
(5) R has no infinite sets of orthogonal idempotents, and every

nonzero right R-module has nonzero socle (sum of all simple submodules
of the right R-module).

In [7] Eilenberg generalized the concept of semi-primary ring, and
generalized a number of theorems of M. Auslander. We state two of
them here in a slightly more restricted situation.

PROPOSITION 2.4 ([7, Theorem 11, p. 333]). Let R be a left perfect
ring with J-radical N. If A is an i2-module? then the following are
equivalent.

(1) Extβ+1 (A, R/N) — 0 where R/N is considered as an iϋ-module.
( 2 ) Torf+1 (R/N, A) — 0 where we consider R/N as a right R-module.
(3)

PROPOSITION 2.5 ([7, Theorem 12, po 334]): Let R be a perfect
(i.e., left and right perfect) ring with J-radical N. Then the following
are equivalent.

(1) I. gl. dim R^n.
(2) I. dim^ C — w.l. dimβ C ^ n for all simple i?-modules C.
( 3 ) I. dimβ (R/N) = w.l. (R/N) ^ n where we consider R/N as an

.β-module.
( 4 ) I. dim^ N — w.l. dim^ N ^ n.
( 5 ) I. inj. dim^ (R/N) g n where R/N is considered as an iϋ-module.
( 6 ) r. dirnβ (R/N) = w.r. dim^ (R/N) ^ n where we treat R/N as

a right iϊ-module.

REMARKS. From Proposition 2.4 it is clear that for a left perfect
ring R, I. gl. dim R ^ w.r. dim,, (R/N) ^ r. dim^ (R/N) ^ r. gl. dim R.
By interchanging the I and the r in Proposition 2.5, we see that
I. gl. dim R — r. gl. dim J? = gl. dim R for a perfect ring R.

The following proposition asserts that the simple modules of a right
perfect ring serve as test modules for determining injective dimensions
of modules.

PROPOSITION 2.6. Let R be a right perfect ring with /-radical N.
If A is an JS-module, then the following statements are equivalent.

(a) Ext£+1 (C, A) = 0 for all simple Λ-modules C.

(b) ExtS+1 (R/N, A) = 0.
(c) L inj. dimβ A ^ n.

Furthermore iin^l, then (b) becomes Ext£+1 (R/N, A) = Έxt%(N9A) = 0.
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Proof, (a) <=> (b) and (c) => (a) are obvious. We shall show that
(a)=>(c)

It is well known ([6]) that we can embed any i?-module in an
injective i?-module. Thus it is possible to form the exact R-sequence:

Π A do Π d l Π dz dn-i ^ dn -> _

w h e r e Qi9 0 S i ^ (n - 1), a re inject ive. E x t £ + 1 (M, A) ^ Ext1* (M, Qn)
for all i2-modules M w h e r e we use t h e exact sequences

0 > A > QQ • Imd, > 0

and

0 > Imdi > Qi > Imdi+1 > 0 , 1 5£ i ^ (n ~ 1) .

If we can show that Qn is injective, then A would have injective
dimension ^n.

It is well known ([3, Chapter I, Theorem 3.2, p. 8]) that Qn is
injective if and only if for each left ideal L, each i?-diagram

Qn

with j the embedding map can be embedded in a commutative diagram

A/ •
Qn

By using Zorn's Lemma (as in the proof of Theorem 3.2 in [3]), we
can show that there exists a left ideal LQ of A containing L such that

(k the embedding map) is commutative and that / cannot be extended
to any left ideal of R properly containing Lo. If Lo — R, then we are
done. If Lo Φ R, then R/Lo Φ 0. According to Theorem 2.3, R/Lo has
nonzero socle S(R/L0) — S.

S — ®ΣCi is the direct sum of simple /^-modules. It is well-known
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that Ext^ ( φ ΣCi9 Qn) ~ ΠΈxt^iCi, Qn), which is the zero module.
There exists a left ideal Lx of R containing LQ such that LJLQ = S.
Exti (S, Qn) = 0 implies that we can extend / (and g0) to Lx, contra-
dicting the maximality of LQ. Qn is therefore injective.

COROLLARY 2.7. If R is a right perfect ring with J-radical N,
then I. gl. dim R = I. dim^ ΛJ/iV ^ r. gl. dim i?.

Proof. Since L gl. dim R is the supremum of injective dimensions
of all the iϋ-modules and since I. gl. dim R ^ I. dim RR, it follows from
Proposition 2.6 that Z. gl. dim R~ I. dim ^ β . The second part is essentially
contained in a theorem proved by Eilenberg ([7, Theorem 12, p. 334]).

In [4] Chase proved some necessary and sufficient conditions that
direct products of protective modules be protective. A module A of a
ring R is called finitely related if there exists an exact sequence 0—>
K-^F—>A—>0of i2-modules where F is free and both F and K are f.g.

PROPOSITION 2.8 ([4, Theorem 3.3, p. 467]). For any ring R the
following statements are equivalent.

( 1 ) The direct product of any family of protective iϋ-modules is
protective.

( 2 ) i? is left perfect and finitely generated right ideals of R are
finitely related.

Let R be a ring satisfying (1) and (2) in Proposition 2.8. Let
QΣRa(ae X) be a direct sum of copies of R as an iϋ-module.
Considering the exact sequence

0 > 0 ΣRa > ΠRa > (ΠRa)/(® ΣRa) > 0 ,

we note that (ΠRa)/(@ ΣRa) is the direct limit of protective i?-modules
and is therefore projective. The sequence splits, and φ ΣRa is embedded
as a direct summand of ΠRa.

PROPOSITION 2.9: Let R be a ring satisfying (1) and (2) of Proposition
2.8. If P is projective, then L inj. dimβ P g I. inj. dim^ R.

Proof If P is projective, then P is a direct summand of a direct
product ΠRa copies of R. It then follows by an exercise in C and E
([3, Chapter VI, Exercise 7, p. 123]) that I. inj. dimβ R.

COROLLARY 2.10. Let R he a ring as in Proposition 2.8. If
IFID(R) and l.mj.dimBR are both finite, then they are equal.

Proof. I. inj. dim^ P^l. inj. dim^ R £Ξ IFID(R) = n where P is any
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protective iϋ-module. Let A be an iϋ-module such that I. inj. dimβ A =
n. Considering an exact sequence 0—> K—> P —> A—> 0 where P is
protective, we note that I. inj. dim^ K fg n. Thus we get part of the
exact sequence in Ext as follows:

ExtJ (B, K) > Ext£ (B, P) > Ext£ (S, A) > 0 ,

where B is an arbitrary i?-module. But then Ext£ (£>, P) Φ 0 for an
i2-module B such that Ext^ (5, A) Φ 0. Hence w ^ J. injβ dirn^P ^
I. inj. dimwit! ^ w.

COROLLARY 2.11. Let R be as in Proposition 2.8. IflFID(R) =
I. inj. dim^ R = 0, ί/^e^ i2 is left Noetherian, i.e., R is quasi-Frobenius
([9, Theorem 18, p. 11]).

Proof According to theorem of Bass ([2, Theorem 1.1, p. 19]) R
is left Noetherian if and only if the direct sum of injective i?-modules
is injective. Let {Q{: ie 1} be a collection of injective i2-modules. For
each ie I, we consider an exact sequence 0 —> K{ —> P{ —* Q{ —-> 0 where
P4 is projective and thus injective. Since I. inj. dim^ Ki is finite, Kt is
injective, and the sequence splits. Thus Qt is also projective, and

e I) is a projective iϋ-module and hence an injective i2-module.

3. Sufficient conditions that lfPD(R) = IFPD(R) < coφ In this
section we attempt to give relatively simple sufficient homological
conditions to answer questions (1) and (2) of Rosenberg and Zelinsky
(appearing in the introduction) in the affirmative. We have the following
theorem.

THEOREM 3.1. Let R be a semi-primary ring with J-radical N.
If I. dim,, (N'-W) < - for r ^ 3, then m ^ lfPD(R) = IFPD(R) ^
(m + 1) where m — max {L dim^ C : C is a simple R-module of finite
projective dimension}.

Before we begin the proof of 3.1 we need a preliminary lemma.

LEMMA 3.2. Let R be a semi-primary ring with J-radical N
such that Nφ 0. If M is an R-module such that N'^M Φ 0 and
NrM = 0, then Nr~λM is the direct sum of simple R-modules which
appear as direct summands of Nr~λ/Nr. Thus Nr~sM/Nr~s+1M, r ^
(s — 1), is the direct sum of simple R-modules which appear as direct
summands of JSfr-s/Nr~s+1.

Proof. The second part follows easily from the first part by noting
that Nr-S+1(M/Nr~s+1M) = 0 and Nr-S(M/Nr~s+1M) Φ 0.
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We first observe that (N^/N^M = φ ΣCi (i e I) is the direct sum
of simple iϋ-modules Cίβ Let xeM. Then the map fx;a—>ax,ae iVr~7iVr,
is an i?-homomorphism of iVr~7iVr onto {Nr~1INr)x. Let Ci9 i e I, be one
of the direct summands of (Nr"1/Nr)M. If xoe Ci9 then x0 — ΣdjXj (1 S
j ^ w) where % G JVr~7iVr and cCj G M. Furthermore x0 generates C{.

Let 99: L = ®Σ(Nr-1/Nr) (n copies) -> Γ = {Nr-1/Nr)xj (1 £ j ^ n)
be the iϋ-epimorphism given by φ (Σa3- (1 ^ j ^ n)) = I t e ^ (1 ^ j ^ n).
Since 1/ and ϊ7 are both modules over the semi-simple ring R/N, L =
Ker φ 0 T. Ci is a direct summand of L. By a well-known theorem
([10, Chapter IV, Theorem 2, p. 64]) C{ is isomorphic to a direct summand
of N'-'/Nr.

Proof of Theorem 3.1. Let M be an i?-module of finite projective
dimension. If NM — 0, then M is a direct sum of simple lϋ-modules
of finite projective dimension. Thus M has projective dimension g m
([3, Chapter VI, Exercise 7, p. 123)].

Suppose then that NM Φ 0. We assert that I. dimR NlM ^ m for
i ^ 2. If iVW = 0, then there is nothing to prove. Hence assume
N2M Φθ. Let t be the integer such that NιM = 0 and N^M Φ 0.
We have the submodules N^^'M, 1 ^ j ^ (ί — 2) to examine. We induce
on the integer j . If j = 1, the iV^W is the direct sum of simple
i?-module of projective dimension ^ m by Lemma 3.2 and the hypotheses
of the theorem. I. dim^ (Nt~1M) ^ m, as above. Assume that
I. ά\mR (N*-ί+1M) ^ m v/here 1 < j ^ (t - 2). (N^M^iN^^M) has
finite projective dimension ^ m, being the direct sum of simple i?-modules
of projective dimension ^ m (Lemma 3.2 and the hypotheses of the
theorem). From the exact sequence in Ext in the first variable for
the exact sequence 0 -> N'-t^M-* N^jM—(Nt-jM)/(Nt-j+1M) — 0 we
see that I. dim^ (Nϋ~jM) :§ m. We have therefore proved our assertion.
Since L άimR(N2M) ^ m9 from the exact sequence 0 -+N2M-^ Λf—•
M/N*M-+0 we conclude that Z. dim^ M/JV2ikf < oo.

From the exact sequence 0 —> ΛΓ2 —> R —> i2/ΛΓ2 —> 0 we notice in
particular that I. dim^iV2 ^ m and that i. dim^ (R/N2) ^ m + 1. Now,
iϋ/ΛΓ2 as a ring is semi-primary with /-radical N/N2, and M/N2M is an
i2/7V2-module. Thus M/N2M has a minimal epimorphism as an R/N2

module. Let 0 —> J5Γ—> P—> M/N2M-+ 0 be the minimal (i2/iV2)-epimorphism
for M/N2M. Then i. dim^ P <* m + 1 (since P is a direct summand
of a direct sum of copies of R/N2 as an iϋ-module), and K S (N/N2)P
([7, p. 330]). i Γ = φ l C J α e / ) is a direct sum of simple iϋ-modules
•Ca, and I. dimBK< oo. Again applying an exercise in C and £7 ([3,
Chapter VI, Exercise 7, p. 123]), we see that I. dim^ Ca < oo for all
α e l . Therefore Z. d i m ^ i ί ^ m. Using the exact sequence in Ext for
the exact sequences 0 -* K-> P—> M/N2M-^ 0 and 0 -+N2M-> M-*
M/N2M-> 0,ΘΛY conclude that L d i m ^ I ^ L dimβM/N2M ^ (m + 1).
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Lastly we assert that M/N2M is the direct limit of f.g. iϋ-modules
of finite projective dimension. Let P — @ΣPa (ae Γ) be a direct
decomposition of P into f.g. projective (i?/iV2)-modules (each of projective
dimension ^ m + 1). This fact follows from a result of Eilenberg ([7,
Proposition 3, p. 330]). If A is an arbitrary finite subset of Γ and if
J i s any finite subset of I such that φΣCa(ae J) £ QΣPa(aeA), then
M/N2M is the direct limit of f.g. ^-modules S(A, J) where 0 ->
© ΣCa(a e J) -> φ ΣPJφc e A)-+S(A, J)~-*0 is exact. Since the first two]
both have finite projective dimension, so does S(A, J). From Theorem
2.3 it follows that LάimBM g I. dimB (M/N2M) ^ lfPD(R). Since M
was arbitrary with finite projective dimension, we can write that m g
lfPD(R) SL IFPD(R) ^ (m + 1).

4* Sufficient conditions that IFID(R) < oo. We state the main
theorem of this section.

THEOREM 4.1. Let R be a semi-primary ring with radical N such
that

(a) for any projective (R/N2)-module P,

I. inj. dim^ P ^ I. inj. dim^ R/N2 < oo .

(b) if r ^ 3, then I. inj. dimΛ (N'^/N*) < oo.

Then I. inj. dim^i? < oo, and IFID(R) = I. inj. dimβi2.

Proof. Let M be an iϋ-module of finite injective dimension over
R. Then it follows, in a manner similar to the proof of Theorem 3.1,
that I. inj. dim^ N2M ^ m where m = max {I. inj. dimΛ C : C is a simple
J?-module of finite injective dimension}. From the exact sequence
0 -> AP -> i? — i2/iV2 —> 0 it is evident that Z. inj. dimfi N

2 ^ m and
ϊ. inj. dim^ i2 ^ max (m, n) < oo.

Obviously, ϊ. inj. dimΛ (AΓ/JVW ) < oo. M/N2M is an J?/iV2-module
and therefore has a minimal jR/AP-epimorphism 0 —* K—+ P—• ikί/iV2 —> 0.
As in the proof of Theorem 3.2, i£ is the direct sum of simple R-
modules of finite injective dimension. K is thus a direct summand of
a direct product of simple JK-modules of finite injective dimension, and
we have that I. inj. dimΛ K^ m ([3, Chapter VI, Exercise 7, p. 123]).
From the exact sequence in Ext for the second variable applied to the exact
sequence 0 -* K-> P-> M/N2M-+ 0 we deduce that I. inj. άimB(M/N*M) ^
max (m, n) and hence I. inj. dim^ M ^ max (m, n).

IFID(R) ^ max (m, w)< oo ,

and by Corollary 2.10, IFID(R) = ϊ. inj. άimBR.
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We remark that a semi-primary ring R satisfies condition (a) of
Theorem 4.1 if R is a left Artinian ring with I. inj. dim^ (R/N2) —
n< °o, or if R/N2 satisfies (1) and (2) of Proposition 2.8 and
1. inj. dim^ R/N2 = n < °°. In the first case we apply the well-known
fact ([2, Theorem 1.1, p. 19]) that the direct sum of modules of injective
dimension ^ n has injective dimension gL n for Noetherian rings. Thus
P a direct summand of a free .B-module implies that the injective
dimension of P is less than or equal to the injective dimension of R.
In the second case we use the remarks prior to Proposition 2.9 together
with an exercise in C and E ([3, Chapter VI, Exercise 7, p. 123]) to
find that free iϋ-modules and therefore projective iϋ-modules have
injective dimension less than or equal to the injective dimension of R.

5* Examples* In this section we give examples which satisfy
Theorems 3.1 and 4.1 respectively. The construction is essentially that
given by Chase in [5].

Let Rr and R" be rings and X a left R'-, right i2"-bimodule.
We form the ring R consisting of matrices (α', x, 0, z") where a! e R\
x e X, and α" e R". Addition is componentwise and multiplication is
given by the equation

(αj, xlf 0, a")(ai, x29 0, α") = (a[a[, a[x2 + s^α", 0, a"a") .

Chase proved the following proposition.

PROPOSITION 3.7 ([5, Lemma 4.1, p. 17]). Let R be as above, and
suppose further that Rf is semi-primary (respectively Artinian) with
radical Nr and R" is semi-simple (with minimum conditions). Then
R is semi-primary (respectively Artinian) with radical N consisting of
the matrices (a', x, 0, 0) where o! e Nr and xe X. Moreover gl. dim R =
max (gl. dim R\ 1 + L dim^ X).

If G is the finite group of order 2 and K is a field of characteristic
2, then K(G), the group algebra, is a quasi-Frobenius algebra with
nonzero radical N(G) such that N(G)2 = 0 ([9, p. 7]). Eilenberg et al.
([8, Proposition 15, p. 94]) have shown that for each positive integer
m, there exists a semi-primary ring Rf

m with radical N'm such that
gl. dim JR; = m and (NLf Φ 0. Let Rf = K{G) © R" (ring direct sum).
The radical of Rr is Nf = N(G) + NL. We can suppose that R'm is a
finite dimensional algebra over K. Then Rr is a vector space over K+

(i) Let R' = R',X= N' and R" = K in Proposition 3.7. Then
the following facts hold.

(a) gl. dim R = I. dim^ N — co.
(b) I. dim^ Nj = I. dim,,, (N'Y ^ (m - 1) if j ^ 2.
(c) I. inj. diniβ R = max {I. inj. dim^ R', I. inj. dim^ N'}

= I. inj. dim^ N' — <*>.
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Thus we have an example of a semi-primary (Artinian) ring satisfying
the hypotheses of Theorem 3.1 but not those of Theorem 4.1.

(ii) Suppose that (N')q = (N^Y Φ 0 and (N'y+1 = (N^y+1 = 0 where
q ^ 2. Let R' = R', X = (JV')? and i2" = J5Γ in Proposition 3.7. Then
the following facts hold.

(a) gl. dim R — I. dimΛ N = °°.
(b) i. inj. dim^ R — I. inj.^ 12' = m.
(c) I. inj. dim JY* = I. inj. dim^ (iV')5 ^ w.

This gives an example of an Artinian ring satisfying the hypotheses
of Theorem 4.1.
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