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SINGULARITIES OF SUPERPOSITIONS
OF DISTRIBUTIONS

DONALD LUDWIG

Distributions of the form

( 1 ) F(x,X)= / . \ . . \ I / ( * , u) I »• g(x, u)duΓ(Ψ")]

are considered, where x and u belong to Rp and Rn respectively.
The parameter λ is complex, and F(x, X) is evaluated for
Re(λ) < 0 by analytic continuation. Such integrals arise in
solution formulas for partial differential equations. In case
n = 1 or n = 2, F is expressed in terms of homogeneous distri-
butions of degree >λ + a, where a is nonnegative and depends
upon the geometry of the roots of /. The case of general n
is also treated, in case the Hessian of / with respect to u is
different from zero. The results lead to asymptotic expansions
of analogous multiple integrals.

We assume that / and g are C°° real-valued functions, and we

assume that the gradient of / with respect to x does not vanish in

the region of Rp x Rn under consideration. Integration is taken over

a compact region U(zRn, and we assume that g has its support in

the interior of U. For Re(X) > 0, the operation of F on a test func-

tion <p is defined by 7(λ) = \Fφdx. For other values of λ, I(λ) is

evaluated by an analytic continuation in λ. The factor 1/Γ[(X + l)/2]
ensures that J(λ) is an entire function of λ. We actually require only
a finite number of derivatives of / and g, provided that Re(\) is
bounded from below.

It is easy to see that, after a change of variables in α -space,
Fλ{x19 λ; x2, , xp) — F(x19 x29 , xp, λ) is a distribution in x19 with
x2,

 β, xP regarded as parameters. In case n = 1 or n — 2, we show
that Fx may be expressed as a sum of homogeneous distributions, plus
a smooth remainder. Each term in the expansion of Fx is associated
with a point or points where f(x, u) — 0 and (df/θu)(x, u) — 0. Ex-
pressions such as (df/dx) and (θf/du) denote the gradients with respect
to the x and to variables, respectively. In case n ~ 1, the most singular
term of F1 has the degree λ + (1/m), if / has order m with respect
to u at the corresponding point. In case n — 2, the degree of the
most singular term of Fx depends upon the geometry of the real roots
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of /, regarded as functions of (u19 u2) for fixed x. The degree of the
singularity varies between λ + (1/m) and λ + (2/m), if / has order m
with respect to u at the point in question. The extreme values of
the degree are assumed in case all roots of / are coincident, or distinct,
respectively. We also consider higher values of n, in the case where
the Hessian matrix (Θ^/duβUj) is nonsingular, which frequently arises
in applications. In this case, the most singular part of F is homo-
geneous of degree λ + (n/2).

Integrals of the form (1) arise in representations of solutions of
hyperbolic partial differential equations, specifically the Herglotz—
Petrovsky formula and its generalizations. (See I. M. Gelfand and
G. E. Shilov [7] pp. 137-141, and R. Courant [2], pp. 727-733.) We
shall apply the results of the present paper to the analysis of the
singularities of fundamental solutions of linear hyperbolic equations in
a forthcoming revision of [10].

Our results also have implications for the asymptotic behavior of
single and double integrals, using a device of D. S. Jones and M. Kline
[8]. Let

= \ exp [ikf(u)]g(u)du .

Then

I(k) = ί eikt h(t)dt , where h(t) = [δ(t ~ f(u))g(u)du .

Here 3 represents the one-dimensional Dirac function. The behavior
of I(k) for large k is determined by the singularities of h(t) (see A.
Erdelyi [4], pp. 46-51.) But h(t) is of the form (1), if we set λ = - 1 .
For double integrals, our results extend those of D. S. Jones and M.
Kline [8] and J. Focke [5] to give asymptotic expansions in cases where
all derivatives of / of second order vanish at some point.

The outline of our work is as follows: the first section is devoted
to preliminary remarks, which apply for any n. We show that F is
a distribution in a single variable, and that singularities of i*\ at x0

are associated with points u where f(x0, u) = 0 and (df/du)(x0, u) = 0.
In the second section, we reduce the case n ~ 1 to consideration of
an integral of the form

( 2 ) I(x, λ, a) = 7(λ) Γ I x + u |λ u^-'du ,
Joo

where a is a real number. Here and henceforth, we write γ(λ) =
1/Γ[(λ + l)/2]. We analyze the singularities of (2) for arbitrary com-
plex λ, and for Re(a) > 0, using analytic continuation in both λ and
a. The result is that I(x, λ, a) is the sum of a homogeneous distri-
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bution of degree λ + a, and a smooth function. In the third section,
we consider double integrals. We resolve the singularities of the
zeros of / by a series of quadratic transformations, and reduce the
problem to consideration of integrals of the form

( 3 ) I(x, λ, a, β) = 7(λ) f f I x + u»vβ | V " V " 1 ^ , v, X)dudv .

In the fourth section, we expand (3) in powers of x. The integral is
reduced to the form (2), or

(2r) Γ(x, λ, a) = 7(λ) \\x + uYu*-1 log udu .
Jo

Γ(x, λ, a) is just the derivative of I{x} λ, a) with respect to a. The
fifth section is devoted to the simpler case of integrals where the
Hessian of / with respect to u does not vanish. In this case, the
leading singularity of F has degree λ + (n/2).

Our procedures, especially in the case of double integrals, would
be rather unwieldy for purposes of calculation. A simpler scheme is
presented by G. F. D. Duff [3]. Our results may be regarded as a
justification of certain of his methods. Our methods and results, es-
pecially in §§ 2 and 5, have much in common with L. Garding [6].

1* General remarks. In this section, we shall first show that
integrals of the form (1) define distributions in a single variable, with
smooth (in distribution sense) dependence on the other variables as
parameters. Then we show that the singularities of such integrals
are associated with points where / and df/du both vanish. This fact
is the analog of the principle of stationary phase for asymptotic ex-
pansion of integrals.

To show that F, given by (1), is a distribution in one variable,
we assume that df/dx1 is bounded away from zero in the region under
consideration. Recalling our assumption that (df/dx) Φ 0, we can
arrange that (df/dxj Φ 0 by taking a partition of unity in x, u space,
and then rotating coordinates in ίc-space.

THEOREM 1.1. //, for ueU, a^x^b, and for (x2, , xp)
belonging to an open subset of R13-1, we have | (df/dxΊ) \ Ξ> a > 0, and
if φ(xλ)e C°° with support in (a, 6), then J(λ), given by the continu-
ation of

(1.1) I(λ) - 7(λ) j F(x, X)φ(x1)dx1 ,

depends continuously on φ in the Co°° topology, and smoothly on
%2, " , xP. J(λ) is an entire analytic function of λ. We recall that
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7(λ) - 1/Γ[(λ + l)/2].

Proof. We may rewrite (1.1) as a double integral, first choosing

Re(X) > 0. Then

I I f(x, u) | λ g{x, u)duφ(x1)dx1

Now we introduce / as a variable of integration;

J(λ) = 7(λ) [ Γ| /l λ ψ(f, u, x2, , xp)dfdu ,

where

dxλ

 v ' '

Xj — %3'(θ — 2, , p), and Xx(f, u,x2j , xp) is defined by the relation
f(X, u) — f. Clearly ψ and its derivatives with respect to x2, , xv

are in Co°° with respect to /, depending continuously on φ in the
topology of test functions. Hence it suffices to show that an integral
of the form

(1.2)

defines an analytic functional of ψ. Following I. M. Gelfand and
G. E. Shilov [7], we write, with an arbitrary positive integer k,

J(λ) = 7(λ) [ I /|* \ψ(f) - Σ ψ<«(0)-£-]d
J-i L i=o j ! J

+ γ(λ) Σ Ψu\0) [ \f\λ4^df+ τ(λ) ( I f\* ψ(f)df.Σ
3=0

The first and third terms are regular in λ for Re(X) > — & — 1; the
second term is easily evaluated as

7(λ) Σ f(2 X

fc r (λ + 2ί

Hence, since 7(λ) has zeros for λ = — 2Ϊ — 1, I ~ integer ^ 0, J(\) is
an entire functional. Thus I(λ) is also an entire functional.

According to the principle of stationary phase, the singularities of
F arise from interior points where both / and df/du vanish, or from

^boundary points where / vanishes and df/du is normal to the boundary.
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(See D. S. Jones and M. Kline [8].) We wish to consider only interior
stationary points, and hence we assume that the support of g(x, u) is
in the interior of U.

THEOREM 1.2. If the support of g(x, u) is in the interior of U,
and if at a point x09 f(x0, u) and (Θf/du)(x0, u) do not both vanish
anywhere in U, then there exists a neighborhood of x0 in which
F(x, λ) is smooth for all λ.

Proof. Let K = mίueu {| f(x0, u) |2 + | (θf/du)(x0, u) |2}. At each
point uoe U, we have either

(a) \f(xo,uo)\*^K/2, or
(b) I (θf/du)(x09 u0) I ̂  K/2.

Hence vv

τe can find a neighborhood of (x0, u0) in which either
(a) |/ ί 2 >ϋΓ/4, or
(b) ! θf/θu I2 > K/A.

Such a neighborhood contains the product of an open ball B(x0) c Rp,
with center at xθ9 and an open ball B(u0) aRn, with center at u0.
The set of such balls B(u0) forms an open covering of U, which can
be reduced to a finite covering since U is compact. The intersection
of the corresponding B(x0) is open. We denote this intersection by
C(x0).

Thus, to each uoe Uis associated an open set N(u0) in which either
(a) | / | 2 > i Γ / 4 , or
(b) I df/du |2 > JSΓ/4, for x e C(x0), u e N(u0).

We choose a C°° partition of unity subordinate to our finite covering
of U. In sets of type (a), the integrand in (1) is C~ for xeC(x0),
for all λ. In sets of type (b), we may introduce / as variable of
integration and proceed as in the proof of Theorem 1.1. Here x plays
the role of a parameter. Thus integrals over sets of type (b) define
functionals which are entire in λ, and which are C°° with respect to x.

2. Single integrals* In this section, we consider the case n = 1,
i.e. where U is an interval of the real line. We shall obtain a
description of the singularity of i^near x0, associated with a neighborhood
of a point u0 where f(xQ, uQ) — 0 and (df/du)(x0, u0) = 0. According to
Theorem 1.2, every singularity of ^corresponds to such a neighborhood.
First we make a change of variables involving both x and u, and
obtain an integral of the same type, where f(x, u) = xλ + ιιm. Theorem
2.1 states that, for fixed λ, F(x, λ) is bounded if g(x, u) vanishes
sufficiently rapidly at u = 0. Thus, applying Taylor's theorem to g as
function of u, we see that the singularities of F arise from terms of
the form \\ xλ + um \κukdu. Finally, Theorems 2.2 and 2.3 show that
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such an integral is the sum of a distribution homogeneous of degree
λ + (k + l)/m and a regular function.

Without loss of generality, we may assume that x0 = 0 and u0 = 0,
and (df/dxJiO, 0) ^ 0. We assume further that, at (0, 0),

/= *£ = ... g"-1/ -o J ^ Z
0% ^ m ~ x ' ml dum x ' '

We fix x2 = xp = 0, and denote xx by x. From Taylor's theorem,

τ(rv> /Ίl\ τ(C\ Ίl\ I sγ*O (Ύ* Ή\

— £> (sy* oj^\l o* —I— ^ ^ ^

V ex(x, u)

Here βj. is a smooth function; ^(0, 0) = (0//$#i)(O, 0). Since / is of
order m at the origin, we may write

f(x, u) = ^(α;, ^)(a; + nme2{x, n)) ,

where βa(a?, u) is smooth, and βa(0, 0) = {[dmf(0, Q)ldum]l[ml(df 18x^(0,0)]}.
If x and % are sufficiently small, the implicit function theorem implies
that we may introduce a new variable of integration, v — u \ e2(x, u) \llm;
thus we obtain

(2.1) Ύ(X)^\f\λgdu - 7(λ)J|a; ± ^m!λ^x(α;, v; X)dv ,

where
(ill

g^x, v;X) = \ ex{x, u) \λ g(x, u) — .
dv

By replacing x by — x if necessary, we may bring (2.1) into the form
where the plus sign holds.

Now we wish to apply Taylor's theorem to g±(x, v; λ), obtaining a
polynomial in v, with a remainder which vanishes rapidly as v —> 0.
First we show that, for fixed λ, the corresponding term in the ex-
pansion of F will be continuous, and can be made as smooth as desired.

THEOREM 2.1. If g{x, u; λ) has I derivatives with respect to u,
and if Re(X) ~ X1 > — I — 1, and if m\x + k + 1 > 0, then

(2.2) I(x, λ) = γ(λ) \a\ x + um | λ ukg(x, u, X)du
Jo

is continuous and bounded as a function of x.

Proof. We set ξ = | x |1/w, and write / = Ix + I2, with

(2.3) Ix = τ(λ) Γ? | x + um | λ ukg(x, u, X)du ,
J
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ί a

I x + um | λ ukg(x, u, X)du .
2ξ

221

In (2.3), we introduce u — ζv. Then

ϋ = 7(λ) I x \^k+^m [) sgn x + vm\λ vkg(x, ξv, X)dv .
Jo

Continuing this expression with respect to X in the usual way (see
proof of Theorem 1.1), we see that if mX1 + k + 1 > 0, Ix is continuous
and bounded. We may rewrite (2.4) as

S a

21 u

λg(x, u; X)du .

sup [ g(x, u; X) \ \ uk+mλ^du ,

Hence,

which is clearly bounded if k + mXx + 1 > 0. The continuity of I2

follows similarly from the uniform continuity of the integrand.
We remark that smoothness of (2.2) for sufficiently large k follows

from formal differentiation of (2.2), and application of Theorem 2.1.
Applying Taylor's theorem to gx(x, v; X) appearing in (2.1), we see

that

(2 5) > u> = Σ

7(λ) j | x + vm
xf v, X)dv .

Theorem 2.1 implies that the remainder is smooth in x for fixed λ, if
k is sufficiently large. Evaluation of the singularities of F is therefore
reduced to evaluation of the singularities of integrals of the form

(2.6) I(x, X) = mτ(λ) I x + vm | λ vn~xdv .
Jo

A change of variables yields an integral of the form

(2.7) I(x, X) = 7(λ) Γ| x + u \λ u«-λdu ,
Jo

where a = (n/m).
In order to describe the singularities of (2.7) and related integrals,

we shall require some facts about certain homogeneous distributions.
We set

x+ — max (x, 0) , #_ = max (—x, 0) .
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LEMMA 2.1. The functional [1/Γ(λ + l)]x\ and [1/Γ(λ +
entire analytic functionals. Moreover,

ΪL are

(2.8)

λ=~ί>

The proof is in I. M. Gelfand and G. E. Shilov [7], pp. 56-65. It
is similar to the latter part of the proof of Theorem 1.1.

The following theorem leads immediately to results about (2.7).

THEOREM 2.2. If Re(a) > 0, the integral

(2.9) , X)
Γ(X Γ(a)

du

may be represented in the form

(2.10)
J+(x, λ) = α+(λ, a)

Γ(λ + a + 1)

α_(λ, α)
Γ(λ + α: + 1)

+ R(x, λ,

R(x, λ, α) is α smooth function of x for small x, which is regu-
lar in λ and a, except for simple poles where λ + a is a nonnegative
integer. The coefficients a+ and α_ are regular except for simple
poles where λ + a is an integer. The sum of the residues at the
poles is zero, since J+{%, λ) is regular. We have

(2.11) α+(λ, a) = sinπλ
sin τr(λ + a)

We also have, for small x,

(2.12) J ^ x )

α_(λ, a) = -sin:
sin π(λ +

Γ(λ + α + 1)

Proof. We shall use analytic continuation in λ and a. First we
assume that ~ 1 < Re(\)< -1/2, 0 < i?e(α)< 1/2. Then we may
write

(2Λ3)

with

/ + M = r<* +
Γ(λ

du + i?(«, λ, α) ,
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(2.14) R(x, λ, a) = - Γ ( x + u ) + -^—- du .
v ; v ' ' J )a Γ(λ + 1) Γ(α)

The first integral in (2.13) may be treated by setting u — \x\v. The
resulting coefficient of | x \λ+<* may be evaluated in terms of Γ-ίunctions,
to produce (2.11). To see that R(x, λ, a) is smooth in x, we introduce
v — (1/u) as variable of integration in (2.14); thus

dv.
Γ{a)

We may apply Taylor's theorem to (1 + vx)+, obtaining a polynomial
in vx, plus a remainder which vanishes rapidly for v = 0. Hence, the
residues of R at its poles are powers of x, and the remainder is
smooth in x.

Now we continue our representation (2.13) for Re(a) > 0. Equation
(2.9) shows that J+(x, λ) is regular for — 1 < λ < —1/2 and Re(a) > 0.
On the other hand, the coefficients a±(x, a) have simple poles for
λ + a = integer. The residues at these poles are determined by the
behavior at OD of the integrand in (2.13). Comparing (2.13) and (2.14),
we see that the sum of the residues at the poles is zero.

Now we are ready to continue in λ, for fixed a, with Re(a) > 0.
First we assume that a is not an integer. From (2.10) and (2.11), it
is apparent that the only possible singularities of the representation
(2.10) are where λ + a is an integer. The case where λ + a is a
nonnegative integer has already been discussed. If λ + a is a negative
integer, then both J(x, λ) and R(x, λ, a) are regular. It follows that
the sum of the residues of

a+ X+ and α x~
Γ(x + a+ 1) Γ(λ + a + 1)

must be zero. This can be verified by a direct calculation, using
Lemma 2.1.

If a is a positive integer, a — I, we obtain

a+(x, I) = (-1) 1 , α_(λ, ί) = 0 .

In this case, R is regular in λ, because of the factor 1/Γ(λ + 1).
The fact that (x + u)\ + (x + u)i = \x + u\λ immediately implies

THEOREM 2.3. If

(2.15) I(x, λ) = τ(λ) \a\x +
Jo

we may write

u | λ u'-
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,2.16, 7feX) = M X , t t ^

Here

i (λ + α + l)

(2.17) δ+(λ, a) = Γ(α)7(λ)Γ(λ + 1) — sin
sin π(λ + α)

(2.18) δ_(λ, α) = Γ(α)τ(λ)Γ(λ + 1) Γl — . *ilθL

(

πa 1 ,
L sin π(λ + α) J

and R(x, λ, α) is a smooth function of x, with poles if X + a is a
nonnegative integer.

REMARK. Equation (2.16) may be differentiated with respect to
a, to obtain results for

I x + u \λ u"'1 log udu .
o

We omit the calculation.
It may be useful to give our results for the leading, or most

singular term in the expansion of (1) an explicit form. In this term,
only the values of ψf/dxJiO, 0) = 6, (l/m!)(dm//6>um)(0, 0) = c, and g(0, 0)
enter. Taking the most singular term only,

F1(x1) - 7(λ) f" I ±bx+ I c I um | λ dug(Q, 0) .
J — a

Setting v — \c |1/m u, and z — b sgn (c)sc,

\z + vm \λdv •

If m is even,

jPiίa i) ^ 27(λ) \ β l | « + ^ m | λ dv •

> 0 )

c | —
m

m

and if m is odd,

7(λ)
lei-

m

These integrals may be evaluated by means of Theorem 2.3.
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3* Reduct ion of double integrals to a standard form* We
shall consider the integral (1), in the case n = 2. As before, the
singularity of F near a given point x0 is associated with points u0 such
that f(x0, u0) = 0 and (df/du)(x0, u0) = 0. Such points u0 may be isolated,
or may lie on a curve. In order to evaluate the contribution from a
neighborhood of such a curve, we would have to cover it by a system
of sufficiently small neighborhoods, taking particular notice of singular
points of the curve, and then apply the theory of this section.

Without loss of generality, we may assume that x0 — 0 and uQ = 0.
We set fQ(u) = /(0, u). Our method consists in dividing the w-plane
into regions, in such a way that distinct roots of fQ appear in different
regions. After a change of variables, f0 may be represented as the
product of a monomial and a nonvanishing function, in each region.
The shapes of the regions involved are determined by the Puiseux
expansions of the roots of /0. We obtained the required regions by
an iterative process. If fQ is analytic, then the process will terminate.
In fact, if distinct roots of fQ have distinct Puiseux expansions, then
the process will terminate if foeC°°. Since the process involves only
a finite number of derivatives of fQ, it will terminate if f0 has enough
derivatives so that distinct roots have distinct truncated Puiseux ex-
pansions.

The integral over a single region assumes the form

(3.1) 7(λ) [ [I x + u°vβ | λ uy-1vδ~1g(uf v; λ, x)dudv .

Integrals of this form will be treated in §4. Finally, (Lemma 3.1)
we show that if f0 has order m at the origin, then min (Ύ/OC, δ/β) ^ 1/m.

As before, we assume that (df/dx^φ, 0) Φ 0, we set x2 — xz —
. . . Xp = 0, and we write x1~x. Then we may write

f(x9 u) = fo(u) + xex(x, u) = ex{x, u)(x + fQ(u)E(x, u)) .

Functions denoted by e{ or E{ are different from zero at the origin.
We first consider the simplest case, where the roots of f0 have distinct
tangents at the origin. We write ux = u, u2— v. Then fo(ulf u2) =
Pm(u, v) + Q(u, v), where Pm is a homogeneous polynomial of degree
m, and Q is of order m + 1 at the origin. By our assumption, the
real roots of Pm are distinct. We introduce a partition of unity on
the circle, symmetric about the origin, such that each function of the
partition has its support in a region where either Pm(cos θ, sin θ) Φ 0,
or (d/dθ)(Pm(cos θ, sin θ)) Φ 0. Regions of the first type give rise to
an integral of the form

(3.2) τ(λ) j jI x + rmElx, r, θ) |λ | e1 |
λ g1rdθdr .
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In regions of the second type, we may introduce V — PJβ) + rQ(r, θ)
as a variable of integration; we obtain an integral of the form

(3.3) τ(λ) J JI x + rm VE1 |
λ gλ(x, r, V, X)rd Vdr ,

if r is sufficiently small in the support of gx.
Now we consider the general case, where Pm may have multiple

roots. We shall obtain integrals similar to (3.2) and (3.3), which may
be reduced to the form (3.1). By the term "sector" we shall mean a
region generated by rotating a line about the origin. Thus a sector
will consist of two wedge-shaped regions. By a "strip" we shall mean
a region generated by displacement of a line parallel to the %-axis.
By a "quadratic transformation" we shall mean a transformation of
the form u — uu v — u{ox. Under a quadratic transformation, a sector
in the u, v plane which does not contain the 'y-axis is transformed
into a strip in the ul9 vt plane. We shall be integrating over strips
and sectors, and we would like to decompose an integral over a strip
into a sum of integrals over sectors. We accomplish this by formally
extending all integrations over the whole plane. First, we assume
that the integrand in (1) has support in a finite disc about the origin.
Given any open, finite covering of the unit circle, we can find a C°°
partition of unity, such that each function φs{θ) has its support in
one of the covering sets. The functions φ3 (2θ) provide a partition of
unity which is constant on lines through the origin, and such that
each function of the partition has its support in a sector. After
rotation and application of a quadratic transformation, each of the func-
tions <ps will have support in a strip. Thus, after quadratic transfor-
mation, our original integral is transformed into a sum of integrals
over strips. Integration over each strip may formally be extended over
the whole plane, which in turn may be decomposed into sectors by a
partition of unity. This process may be repeated as often as desired.
In this way the burden of the complexities of the actual region of
integration is thrown on the structure of the final partition of unity.

We cover each of the real roots of PJu, v) by a sufficiently small
open sector, and choose a covering of the remaining sectors which is
finite and does not intersect the roots of Pm. We choose a partition
of unity subordinate to this covering. Integrals over sectors which
do not contain a root of Pm, or which contain a simple root of Pmf

may be treated as before, leading to integrals of the form (3.2) or
(3.3). A sector which contains a multiple root of Pm may be rotated
so that the root coincides with the new %-axis. Under such a transfor-
mation, an expression of the form u"vβE(u, v), where i?(0, 0) Φ 0, is
transformed into a similar expression. Such expressions remain of the
same type under a quadratic expression as well. Hence, after a rotation
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and a quadratic transformation, we have

E(u, v, x)fQ(u, v) = E(Pm + Q) = u?E,[Pmi(uu vx) + QJ .

Here we have divided Pm + Q by ^Γ and collected terms of lowest
degree in uλ and vx to obtain Pmi(uu vj. Observe that m1 is less than
or equal to the multiplicity of the root of Pm in question.

Now we apply a similar procedure to Pmι instead of Pm. A second
application of the procedure may result in an expression of the form

Ef0 = uζvξE2[Pn2 + Q] ,

if vλ divides P m i , but further applications of the procedure do not
result in expressions of more complicated form. We temporarily halt
our procedure if Ef0 assumes the form

(3.4) Ef0 = ufflEfa + aux + )γ ,

where a Φ 0. This situation will always occur if distinct roots of f0

have distinct (truncated) Puiseux expansions. In particular, if fQ is
analytic, we may apply the Weierstrass preparation theorem to f0 (see
G. A. Bliss [1], pp. 53-55.) Thus after rotation,

fo(u, v) = E(u, v)[um + a^u™-1 + + am(v)] ,

where E(u, v) and a,j(v)(j = 1, , m) are analytic and £7(0, 0) Φ 0.
Since the field of fractional power series is algebraically closed, the
roots of /0 may be expanded in Puiseux series (see R. Walker [12],
pp. 97-102.) Thus after a finite number of quadratic transformations,
the distinct roots of f0 must belong to distinct sectors, and f0 will
appear as a product of powers of factors whose lowest term is of
degree one, multiplied by a nonvanishing function, as shown in (3.4).
Hence, after a final rotation and quadratic transformation, we are led
to integrals of the form

γ(λ) 11 x + u*vβE(u, v, x) | λ ̂ "•"V"1^, v, x, X)dudv ,

where 7 ^ 1 , 3 ^ 1 . The factor u ^ V " 1 arises from the Jacobians
of the quadratic transformations. Now, using the implicit function
theorem, we set v1 = v | E(u, v, x) \yβ

9 for u, v, x sufficiently small and
obtain an integral of the form

(3.5) γ(λ) ίfI ±χ + u"vζ | λ u ^ v t W u , vl9 x, X)dudv1 .

Thus after appropriate changes of variables, and a partition of unity,
the evaluation of (1) is reduced to evaluation of integrals of the form
(3.5).
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We shall see in the next section that the leading singularity of
(3.5) is determined by μ — min (y/a, δ/β).

LEMMA 3.1. // f0 has order m at the origin, and g(uy v, s, λ)
has the form u^v^g^u, v, x, λ), then in all integrals of the form
(3.5) which arise by the preceding process, we have μ ^ min (y/m, δ/m).

Proof All integrals which arise are of the form

In = τ(λ) f f I x + uoύvβE(Pι + Q) ̂ uv-ψ-'giu, v, x, X)dudv .

For such an integral, we define μn — min [y/(a + I), δ/(β + Z)]. We show
that μ is a nondecreasing function under rotations, quadratic transfor-
mations, and (clearly) if a monomial is factored out of Pt + Q. The
only nontrivial case is a quadratic transformation. Under quadratic
transformation,

+ urβ+ιv?E(Ph + Qa) ̂ uΓ^vl-'giu,, uxvlf x, X)du1dv1 .

Hence, μn+1 = min [(y + δ)/(a + β + Z + lλ), δ/(β + Zj)]. Since I, ̂  ^
we have δ/(β + ZJ ^ /in, hence also (y + δ)/(α + β + I + k) ^ μn.

4* Expansion of double integrals* In this section, we shall
expand double integrals of the form

(4.1) I(x) = 7(λ) ί ί I x + u«vβ |λ ut-^^giu, v; λ,

in powers of x, using the results of § 2. First we prove Theorem 4.1,.
which asserts that I(x) is continuous in x if y + <xRe(λ) > 0 and
δ + βRe(X) > 0. Thus if g(u, v; λ, a;) is written as a sum of functions,
with remainder multiplied by a large power of both u and v, then the
remainder will give rise to a continuous function of x. The major
portion of this section is devoted to expansion of integrals of the form

(4.2) J(x) = 7(λ) ί 1 I x + u"vβ |λ u^v^giv; λ, x)φ{u)dudv ,
J Ju^o

§0

where g(v) and <ρ(̂ ) have compact support, and φ(μ) = 1 for small %..
The results are summarized as Lemma 4.2. An appropriate expansion
of g(u, v; λ, x), together with Lemma 4.2 then implies an expansion of
(4.1) in powers of xf specified in Theorem 4.2. Finally, we give a
more or less explicit formula for the coefficient of the leading or most
singular term in the expansion of (4.1).

THEOREM 4.1. If a, β ^ 0, y, δ > 0 and if y + aRe(X) > 0 and
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δ + βRe(X) > 0, and if g(u, v; X) has enough derivatives with respect
to u and v, and has compact support in u and v, then the integral
(4.1) is bounded and continuous in x, for small x.

Proof. Let ξ = | x \1/a. We write

[ I x + u"vβ |λ ut-ψ^
J J\u\£kξ

τ(λ) if \x + u«vβ |
J Jw>/ί£

«vβ | λ u^v^

We shall specify fc presently. In the first integral, we set u — ξμ.
Then

J J ±1 | λ μy-ψ'-

Now we choose k so small that ± 1 + μ*vβ does not vanish for | μ \ g fe,
if v is in the support of 0. As in the proof of Theorem 2.1, it follows
that Ij is continuous in cc.

In the second integral, we divide by | u |Λ; thus

u i

Now we may apply Theorem 2.1 to the inner integral taken over v,
since x \ u |~* is bounded. Since βRe(X) + δ > 0, the inner integral is
continuous in x and u for u bounded away from zero, and bounded
for u in the region of integration. Hence, since aRe(X) + 7 > 0, the
double integral is continuous in x.

We proceed to the statement and proof of Lemma 4.1. Starting
with (4.2), we set μ = ua

y v — vβ, p — y/a, q = δ/β, r = 1//3, <Pi(μ) =
φ(μ1!"). Thus

J(x) = 7(λ) \\ I x + μv |
o

>'; x, X)φλ{μ)
aβ

We recall that φx(μ) = 1 for small μ. Introducing w — μv as a new
variable of integration, we have

(4.3)

where

(4.4)

J(x) = 7(λ) I I a; + w \λ k(w; x, X)dw ,
J

k{w; x, X) =

For w Φ 0, the integral exists and is smooth, since g and <£Ί have
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compact support. For the same reason, k has compact support in w.
It follows that the singularities of J(x) for small x are determined by
the behavior of k(w; x, λ) for small w. This is precisely the statement
that the singularities of (4.2) are associated with the u and v axes.
Since x and λ play the role of parameters in the following, we shall
usually not indicate their presence.

LEMMA 4.1. For small w, the function k(w), defined by (4.4),
with p,q,r > 0, may be represented in the form

k(w) — a^wv~1 + a\wv~x log w
(4.5)

1=0

for any L, if g has enough derivatives. The coefficients α0, αj, bt

depend on x and λ, and are given by certain of the formulas (4.6-
4.23). The coefficient a] vanishes unless p — q + Jr, for some integer
J ^ 0. The remainder R(wr) is smooth for small values of its
argument.

Proof We distinguish three cases:
(A) q > p,
(B) q < p, p Φ q + Jr for any integer J, and
(C) q — p + Jr, J — integer ^ 0.

A. If q > p, we define

. μr /' aβ

If w Φ 0, this integral exists, since g has compact support. Making a
change of variables,

Jo aβ

Hence, we have ko(w) = ^ ^ ^ ( x , λ), with

(4.6) ao(x, λ) = I g(vr; x, λ ) ^ ^ " 1 - ^ - .
Jo aβ

Now we may write

(4.7) k(w) — a^wv~x + wq~

We observe that φx{μ) — 1 vanishes for small μ. Hence, g may be
expanded in powers of wr/μr, leading to an expansion of k(w) in powers
of wr. We have
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(4.8) &,(*, λ) = i - (^-)g(v; x, λ)
aβ

B. If q < p, q + (J ~ l)r < p < g + Jr, for some positive integer
e7, we write

g(v)φ(μ) = Σ + - Σ

, λ) = — (-?-) g(v; x, λ)

here

aAx. X) =
ί! \dv

Thus k(w) — k^(w) + k2(w) + k3(w), with

(4.9) h(w) - Γ £ 9ι ̂ r- φι{μ)wq~
Jo i=o μ.lr

(4.10) /

(4.11)

The integral (4.9) exists, since for 0 ^ I ^ J — 1, p — ir — g > 0 , and
<£>! has compact support. In fact, we have

1-0

with

(4.12) bt(x9 λ) = gr,(ί», λ) I φλ(μ)μ
Jo

- 1 - ^ > (og^J-i).

The integral (4.10) exists for w Φ 0, since, for small μ, g(wr/μr)
vanishes, and p — Ir — q > 0. For large μ, the quantity inside the
brackets may be written as wJμ~Jh(w/μ), where h is a smooth function.
Hence, k2 is integrable at ω . A change of variables shows that

k2(w) = ; x, λ) - Σgι(x,
aβ

thus

(4.13) , λ) = \[g(V; x, λ) - Σgι(x,
Jo
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Finally, we observe that (4.11) may be written in the form

(4.14) Jφo) = «"+"

This integral may be treated in the same manner as (4.7).

C. If p = q + Jr, J is a nonnegative integer. This case is
similar to the preceding one. We shall use the Heaviside function

( if v < 1 .

We may write

φ(u)g(v) = Σ (S^VM + \g(v) - Σ9ιvι - H(l - v)g,>A
1=0 L 1=0 J

Σ 9ιvι - H(l - v)9jv
J][<p(u) - 1]

- v)gjv
JH(l -u) + H{1 - v)gjv

J[φ(u) - H(l - u)]

Thus k(w) = ΣS =i kά{w), with

(4.15)
aβ

(4.16) k^w) = 5"[ff(w>rA£"τ) - Σg^μr"

- H(l - wμ-ι)gwJψ-3r}w'>-ιμv-' -1 ^- ,
aβ

μ4lL ,

(4.18) [Ή( ) ^—)gjWμH(l μ ) W μ ^ - ,
μJ aβ

(4.19) k > ^ = S " 2 ^ 1 ~ ^ ^ " 1 ) ^ w J r / < " J r

The integral (4.15) is identical with (4.9); thus the coefficients
bι(l — 0, , J — 1) are given by (4.12). The integral (4.16) is similar
to (4.10). By analogous reasoning, we conclude that kt(w) = w"~1c0(x, λ),
with

(4.20) co(x, λ) = \~[g(tf) - Σgy ~»~-H{l-v)gy\v-lrJ %
Jo aβ
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the coefficient ao(x, λ) will also involve a contribution from kδ(w). In
the integral (4.17), we observe that the integrand vanishes for small
μ. Hence, for small w, H(l — wμ~ι) == 1, in the region of integration.
Thus, if vJ+1h(v) — g(v) — Σo7 QιVι, we may write

(4.21) Ίφo) = wp+'

for small w. Thus ks(w) may be expanded in powers of wr, in the
same manner as (4.7).

The integral (3.22) exists for w Φ 0, since integration may be
taken over a finite segment excluding the origin. After a change of
variables,

Jc4(w) — — - ^ - wp~τ log w .
aβ

Hence

(4.22) a](x, λ) - - ~
aβ

Finally, for small w,

kδ(w) - w^
aβ

Combining this result with (4.20), we have

(4.23) ao(x, X) = co(x, X) + gΛχ, X) \" ^ ) - H(l - μ) dμ_ ̂
Jo μ aβ

This completes the proof of Lemma 4.1.
Now we may apply Theorem 2.2 to the integral (4.3). Lemma

4.1 immediately implies

LEMMA 4.2. J(x)9 given by (4.3), has an expansion in distri-
butions homogeneous of degrees λ + p, λ + q + lr(0 S I 1=k L), possibly
including a term of the form a}Qc±x++p log \x\.

It follows that there is a similar expansion of I(x), given by (4.1),
provided that g(u, v; x, λ) can be represented as a sum of terms of
the form g(v; x, X)φ(u), plus a remainder multiplied by large powers
of both u and v. We define the second difference quotient

\ —^— (us, vt; x, X)dsdt
oJo dudv

— [g(u, v) - g(u, o) - g(o, v) + gr(o, o)] .
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Hence

(4.24) g(u, v) = g(u, o) - g(o, v) - g(of o) + uvgjμ, v).

Clearly, g12 is smooth if g is smooth. Unfortunately, the terms on
the right hand side of (4.24) do not have compact support in u and v.
Although this difficulty could be circumvented by a systematic use of
finite-part integrals, we prefer to work with functions with compact
support.

Let φ be a C°° function with compact support, which is even,
and such that φ = 1 in a neighborhood of the origin. We define
h(u, v) by the equation

(4.25) g(uf v) = g(u, o) φ (v) + g(o, v) φ(u) - g(o, o) φ(u) φ{v)

+ uvh(u, s).

Using (4.24), we may write

h(u, v) = ) (

+ g(0, o) ( *"> - 1 ) (VM^L) + gn(u> υ).V u / V v J

hence k is a smooth function. We may apply the same process to
h(u, v), and thus obtain a remainder for g with the factor uV. The
process will terminate only if g ceases to have the required derivatives.

We conclude that, after breaking the region of integration into
quadrants, I(x) may be represented as a sum of integrals of the form
(4.2), plus a smooth remainder. Thus we have

THEOREM 4.2. I{x), given by (4.1), has an expansion in distribu-
tions homogeneous of degrees

λ + 7 + m (0 S m ^ M), λ + A±J (O^ί^L)
a (0 S m ^ M), λ + ( O ^ ί ^ L ) ,
a β

plus terms of the form d±x± log (x), in case (7 + m)ja = (δ + 1)1 β — σ
for certain I and m. The remainder has order greater than
min [(7 + Jlf)/α), (δ + L)/β)].

Now we shall compute the most singular term in the expansion
of I(x). We break the region of integration into quadrants, and
evaluate the contribution from a single quadrant. The complete result
would depend on the parity of a, β, 7, d. As before, we write p = y/a,
q — §/β. Observe that a lower bound on p and q is given by Lemma
3.1.
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A. If p < q, we write, from (4.25),

g(u, v) = g(o, v) φ{u) + [g(u, o) - g(o, o) φ(u)] φ{v) + uvh(u, v).

Since g(u, o) — g(o, o) φ(u) is smooth and vanishes for u = o, the leading

term arises from g(o, v) φ{v). From Lemma 4.1, we obtain

v>0

x + w

IM+(X) — 7(λ) II I x + uoύvβ l^ 7 " 1 ^ 8 " 1 flr(tt, v; x, X)dudv

= 7(λ) I
Jo

f rom (4.6) we have

ao(x, λ) = Γ g(o, v; x, \)v*~™" -^- .
Jo a

The leading t e r m of I++(x) is given by Theorem 2.3.

B. If q < p , we have, similarly,

o

with

bo(x, λ) = 1 g(u, o; x, λ) u ^ " 8 ^ — ^ - .
Jo /9

C. If p — q, we wr i te

g(u, v) = g(u, o) φ{v) + g(o, v) φ(u) — g(o, o) φ{u) φ{v) + uvh(u, v).

Applying Lemma 4.1 to each of the first three terms, we obtain

I++(x) = 7(λ) I I x + w | λ [CLQW^1 + alw9'1 log | w \ + o(wp~1)]dw,
Jo

with

Γsr(o, v) - £Γ(1 -- v) g(o, oYiv'1

o a

+ [g{u, o) - i ϊ ( l - u) g(o, o)]^-1 - ^ ,
Jo β

and

Λ I ^ \) — — ff(°> °; g?» λ )
aβ
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We remark that the preceding integrals are the finite parts of the
integrals

f°° dv Γ°°

1 g(o, v) , and 1 g(u, o)
Jo CCV Jo

βu

5 Integrals with nonvanishmg Hessian* We consider integrals
of the form

(5.1) F(x, λ) = 7(λ) [ I f(x, u) | λ g(χ, u)duy

where xeXcz Rp, ueU c Rn, and g has support in the interior of
the bounded set U. We assume that the Hessian matrix [d*f/(dv,iduk)]
is nonsingular for all xe X and ue U. In this case, a rather simple
description of the singularity of F can be given, using only the results
of § 2. Our method consists in a change of variables of integration,
which enables us to write f(x, u) = f(x) ± U\± Ul. An applica-
tion of Theorems 2.2 and 2.3 then shows that F can be expressed in
terms of /* + n / 2 . Similar results have been obtained by a number of
authors, for example J. Leray [9], L. Garding [6], G. F. D. Duff [3],
D. Ludwig [10].

Theorem 1.2 implies that the singularities of F are associated with
points XQ,UQ where both f(x0, u0) — 0 and [(df/du)(x0, u0)] — 0. Thus we

may analyse the singularity of F near x0 by covering the associated
point or points u0 by a finite collection of sufficiently small neighbor-
hoods and choosing a partition of unity. We shall assume that this
has been done. The size of the neighborhoods will be determined from
the following discussion.

Since the Hessian matrix is nonsingular, we may determine u =
uo(X) from the equations (df/du)(x, u) — 0 in a neighborhood of xQm

We write u = uo{x) + v, fλ(x, v) — f(x, uo(x) + v). We can perform a
rotation in the i>-space so that the matrix [d2fJ(dVidvk)] is diagonal at
x = x0, v — 0. Now we determine vx(x, v2, , vn) from the equation
9fjdv1 = 0. Hence

/iθ, v) = fax, vu v2, , vn) + (v - vτγ e^x, v),

where ex(x9 v) does not vanish for x near x0, if v is small. Applying
this process to v2, , vn in succession, we obtain

n

/i(», v) = fx{x, 0) + Σ (^i - Vjf eά{x, v),
i=i

for x near x09 and for v sufficiently small. This type of result is known
as Morse's lemma (see M. Morse [11].) We set

γ . = (Vj - vj) I ej(x, v) 1/2
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and

f(x) = fx(x, 0) = f(x, uo(x)).

Introducing V as variable of integration, we have F as a sum of
integrals of the form

(5.2) I(x, λ) = τ(λ) J| f(x) ± VI • ± VI \λ

gi(x, V)dV.

We note that

fr(α, 0) = g(x, uo(x)) 2nl2 A~ll\

where

A = det

This integral could be handled by an application of Theorems 2.2
and 2.3 n times; we prefer to apply the theorems only twice. After
rearrangement of indices, we may assume that

eλ(x, v) > 0, ek(x, v) > 0,

e*+iO», v) < 0, ek+ι(x, v) < 0. Here k + I = n. We write

rl^VlΛ- ••• VI; 1*= Vi+ι + ••• F J + I .

Then

Here a*! and ω2 represent the corresponding angular variables. Inte-
grating first over these angular variables we obtain

I(x, λ) - τ(λ) J jl /(a?) + r? - rl |λ^2(x, r?f r^r^1 r^drβr,.

We note that ^2 is regular in τ\ and rj, and

g2(x, 0, 0) =

Now we may expand g2 in integral powers of r\ and rj; for fixed
λ the remainder will be smooth in x if enough terms are taken. It
therefore suffices to find the singularity of a single term of the form
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(5.3) J(χ, λ) = 7(λ) 1 f(x) + 8l - s2

The leading term of I(x, λ) will have precisely the form (5.3),
multiplied by

(2π)nl'

-ΊM1
g(x, uo(x)) .

Now applying Theorem 2.3, we see that

sinπλ

sin π ( λ + —

sin π[ λ H j — sin π —

sin τr( λ + —-
2

(x, λ),

where

λ + -i-

and i2(cc, λ) is regular. Now applying Theorem 2.2 to I±, we find that

f+\+mi2)

J(x, λ) = Γ (A) r ( A ) 7(λ)Γ (λ + 1)

x

sinτr( λ + —) — sin Γ —1 2 / 2
tγi

sinττ( λ + —

k \ k
sin π( λ + — — sin π —

2/ 2sin π( λ + —
V 2

Γ( λ + | -

Hence the leading term of I(x, λ) is given by

(5.4)

X

! g(x, uo(x))

J+
7 λ+nβ

Γ( X + -^ + 1

R2(x,X).

with
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(5.5) d+ = 7(λ) Γ(λ

sin π[ λ + —) — sin π —
2/ 2

(5.6) <L = γ(λ) Γ(λ + 1)

The coefficients d+ have simple poles as functions of λ according to

the following scheme:

If k and I are both even, there are poles if λ is of the form

— 2(7, g integer Ξ> 0.

If A and Z are both odd, there are poles if λ = — 2q — 1, q integer

^ 0.

If k + I is odd, there are poles if λ = q + 1/2, # any integer.

Since /(#, λ) is regular for all λ, of course the sum of the residues

at these poles is zero.
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