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ON ARITHMETIC PROPERTIES OF COEFFICIENTS
OF RATIONAL FUNCTIONS

DAVID G. CANTOR

The purpose of this note is to prove the following: gener-
alization of a result of Polya:

THEOREM. Let {an} be a sequence of algebraic integers,
and / a nonzero polynomial with complex coefficients. If
Σn=of(n)anz

n is a rational function, then so is Σn=oCtnz
n.

Polya [3] has proved that if Σ * = o nanz
n is a rational function, then

so is Σ?=o ttn

z% It follows immediately from Polya's result that if k
is a rational integer and Σ~=o (n — k)anz

n is a rational function, then
so is Σ~= o anz

n. It is then easy to prove inductively, that if / is a
polynomial with complex coefficients, all of whose roots are rational
integers, and if Σ~= o f(

n)anzn ι s a rational function, then so is Σ~=o <V%*
Suppose K is an algebraic number field and A c K is an ideaL

If a and β are algebraic numbers in K, we say, as usual, that a = β(A),
if there exists a rational integer r, relatively prime to A, such that
ra and r/3 are algebraic integers and {ra — r/3) e A. We say that A
divides the numerator (denominator) oΐ a Ίί a = 0(A) {{IIa) == 0(A)).
We denote the norm of the ideal A by NmA.

LEMMA 1. Let K be an algebraic number field and a e K an
algebraic number. Then the set of those prime ideals of K which
divide the numerator of some element of the sequence {k — a : k —
1, 2, 3, •} is infinite.

Proof. Suppose n is a rational integer such that na is an algebraic
integer, and suppose Pl9 P2, , P r are the only prime ideal divisors of
the sequence {nk — na : k — 1, 2, 3, •}. Now Nm{nk — na) is a non-
constant polynomial g{k) with rational integral coefficients. Hence for
each rational integer k, there exist rational integers slf s2, , sr such
that g{k) = +Π<=i (NmP?)Si. Thus there are only finitely many rational
primes which divide some element of the sequence {g{k) : k — 1, 2, 3, •}.
But this is false [2, p. 82].

REMARK. A less elementary proof of Lemma 1 is obtained by
observing that if P is a prime ideal with residue class degree 1, and
not dividing the denominator of a, then there exists a rational integer
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n such that n Ξ= a(P); since the set of such prime ideals has Dirichlet
density 1, among all prime ideals, there are infinitely many of them.

LEMMA 2. Suppose {an} is a sequence of algebraic integers and
a is an algebraic number. If Σ~= o (w — oc)anz

n is a rational function
then so is ^^anz

n.

Proof. Since Σn=o (n — a)anz
n is a rational function, there exist

distinct nonzero algebraic numbers θl9 θ2, , θm and polynomials with
algebraic coefficients λ l f λ2, , λm such that

(1) (n- a)an = ± x^nW ,
i = l

for all n^ n0, where n0 is a rational integer. By replacing the sequence
{αj by the sequence {an+nQ} if necessary, we may assume that (1) holds
for all n ^ 0. Let K be an algebraic number field which contains a,
the coefficients of the Xi9 and the θ{. Choose a rational integer k and
a prime ideal P a K such that P divides the numerator of k — a and
does not divide the numerator or denominator of a, the θi9 the dif-
ferences (θi — θj) (i Φ j), and the coefficients of the λ̂ ; by Lemma 1,
there are infinitely many choices for the prime ideal P. Suppose that
JSfmP = pf where p is a rational prime. We substitute n — k + jpf

in (1), where j is a rational integer:

(k + jpf - a)an = Σ \(k + jpf)θϊ+jpf .

Since pf = 0(P) and k = a(P), we obtain

But 0f ' Ξ Θ{{P), hence

m
y Δ ) f.Λ Ki\(X)ui -

The m equations obtained from (2) by successively substituting j =
0,1, 2, , m — 1 are linear in the λ^α) and have as determinant
Πί=i <̂ times the Vandermonde determinant det || θ\" ||, 1 ^ i ^ m, 0 ^
j ^ m — 1, which is not =0(P), since P does not divide any of the
θi or the differences (^ — #,•) (i Φ j). Hence

( 3) Xi(a) = 0 ( P ) , l ^ i ^ m .

By Lemma 1, (3) is true for infinitely many prime ideals P, hence
Xi(a) = 0, 1 g i ^ m. It follows that the polynomials X{(n) are divis-
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ible by n — a. Put μt(n) = Xi(n)/(n — a); μ^n) is a polynomial with
algebraic coefficients. By (1)

α» = Σ ΛW*?
ΐ = l

Thus ΣΓ=o α«zw is a rational function.

LEMMA 3. Suppose {an} is a sequence of algebraic numbers and
fis a nonzero polynomial with complex coefficients. If "Σ^^ f{n)anz

n

is a rational function, then there exists a nonzero polynomial g with
algebraic coefficients snch that ΣZ=o9(n)anz

n is a rational function.

Proof. There exist distinct nonzero complex numbers θu θ2, , θm

and nonzero polynomials with complex coefficients \, λ2, , λm such
that

on

( 4 ) f(n)an = Σ K(n)θϊ ,

for all large n. Without loss of generality, we may assume that (4)
holds for all n ί> 0. In what follows, all fields are considered as sub-
fields of the field of complex numbers. Denote by Ω the field of
algebraic numbers, and by L the smallest field which contains Ω, the
θi9 and all of the coefficients of the polynomials /, Xl9 λ2, , λw.

Since L is finitely generated over Ω, it has a finite transcendence
basis xl9 x2, •••, xr. Each of the θi9 the coefficients of the λ̂ , and the
coefficients of / satisfies an irreducible polynomial equation whose
coefficients are elements of Ω[xl9 x2, , xr]. Let hl9 h2, , hs be all
of the nonzero coefficients of these polynomials; h19 h2, , hs are poly-
nomials in xlfx2f -",xr with coefficients in Ω. Since there are only
finitely many such polynomials, there exist algebraic numbers ξl9 ξ2, , ξr

such that h(ξl9 f2, , ξr) Φ 0, 1 ^ i ^ s. The map x{ —> ξ{ gives rise
to a homomorphism of the ring Ω[xlf x2i , xr] onto Ω9 which is the
identity on Ω. By the extension of place theorem [1, p. 8], this homo-
morphism can be extended to a place φ : L —> Ω9 which is the identity
on Ω. If a e L, we denote by a the image of a under φ and if b is
a polynomial, b(n) = Σί=i ^inί with coefficients b{ e L, we denote by b
the polynomial with b(n) = Σ*=i δ ^ The ^ { and the coefficients of
/, λj, λ2, , λm satisfy nonconstant polynomials gl9 g29 , gυ with non-
zero constant term; the nonzero coefficients of these polynomials are
the hj. Under the place φ the hd go into finite nonzero algebraic
numbers hj. Hence the polynomial gk has the same degree as gk9 all
of its terms are finite, and its constant term is not zero (1 ̂  k ^ v).
The Si and the coefficients of /, λlf λ2, , Xr are roots of these poly-
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nomials; hence the θi are finite, nonzero algebraic numbers, and the
/, Xu λ2, , λm are nonzero polynomials, with finite, algebraic coef-
ficients. Applying the place φ to both terms in (4), and putting / : — g9

yields, since an = an

g(n)an = ^ \(w)#? .

Hence

Σ ΰ(n)anz
n = Σ Σ \(n)θΐzn

is a rational function, and g is a nonzero polynomial with algebraic
coefficients.

Proof of theorem. By Lemma 3, we may assume that / h a s alge-
braic integer coefficients. Let a be a root of / and g{n) = f(n)/(n — α);
by the lemma of Gause, g(n) is a polynomial with algebraically integral
coefficients. Put bn = g(n)an; {bn} is a sequence of algebraic integers and
Σ~=o (n — a)bnz

n is a rational function. By Lemma 2, so is Σ?=o ^ %

Proceeding inductively, on the degree of /, we see that Σ^=o &%%% is a
rational function.

REMARK. By the Remark following Lemma 1, one can replace, in
the theorem, the requirement that the an be integers, by the require-
ment that the set of prime ideal divisors of the denominators of the
an has Dirichlet density less than 1 among all prime ideals.

Let f(z) — ΣΓ=o Ov^, where the an are rational integers. Polya's
theorem then asserts that if f'(z) is a rational function, so is f(z). The
corresponding assertion of our generalization of Polya's theorem is: Let
f(z) — Σ"=o αnz

n be a power series with algebraically integral coefficients.
If there exists a nonzero differential operator L, of the form L =
ΣUoCiizd/dzY (Ci complex numbers), such that Lf is a rational func-
tion, then so is f(z).
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